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Since there exist several completion methods to estimate the missing entries of pairwise 
comparison matrices, practitioners face a difficult task in choosing the best technique. Our paper 
contributes to this issue: we consider a special set of incomplete pairwise comparison matrices 
that can be represented by a weakly connected directed acyclic graph, and study whether the 
derived weights are consistent with the partial order implied by the underlying graph. According 
to previous results from the literature, two popular procedures, the incomplete eigenvector and 
the incomplete logarithmic least squares methods fail to satisfy the required property. Here, the 
recently introduced lexicographically optimal completion combined with any of these weighting 
methods is shown to avoid ordinal violation in the above setting. Our finding provides a powerful 
argument for using the lexicographically optimal completion to determine the missing elements 
in an incomplete pairwise comparison matrix.

“An important property of any weighting method is the ability to preserve the ordinal preferences which are implicitly expressed by the 
ratio-scale preference matrix entries.”1

1. Introduction

Decision theory extensively uses pairwise comparisons. For example, the popular AHP (Analytic Hierarchy Process) methodology 
[25,26] establishes priorities among the alternatives and criteria based on their pairwise comparisons. Therefore, a fundamental 
element of the decision-making process is deriving priorities from the pairwise comparison matrix. Several procedures exist to that 
end [11], the most common choices being the eigenvector [25] and the logarithmic least squares/row geometric mean [12] methods.

However, some pairwise comparisons may be missing due to the lack of data or the inability of an expert to compare two 
alternatives. This is often the case in sporting contexts if some players do not play against each other [3,9,13,30]. Fortunately, both 
the eigenvector and the logarithmic least squares methods have been extended to incomplete pairwise comparison matrices [4], and 
there are several other completion techniques proposed in the literature [29].
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Nonetheless, practitioners may face a dilemma when they should work with incomplete pairwise comparison matrices: Which 
completion method should be chosen? In order to contribute to this issue, we take an axiomatic approach. In particular, the current 
paper considers incomplete pairwise comparison matrices generated by (connected) directed acyclic graphs, and set up a natural 
research question: Is there a pair of a completion and a weighting method to obtain priorities that are certainly free from any ordinal 
violation?

The answer is far from trivial because both the eigenvector and logarithmic least squares solutions can yield a ranking that contra-
dicts the ordinally consistent preferences if the number of items is at least seven [15,19]. Here, the recently proposed lexicographically 
optimal completion [1] is proved to result in no ordinal violation if (1) the preferences are represented by a directed acyclic graph, 
and (2) the weight vector is determined by the eigenvector method or the logarithmic least squares method. Our main contribution 
resides in finding a procedure for pairwise comparison matrices with missing entries to guarantee a reasonable ranking without any 
additional restrictions.

The remainder of the paper is organised as follows. Section 2 introduces incomplete pairwise comparison matrices and their op-
timal completions. The lack of ordinal violations is verified in Section 3 for the above procedure. Finally, Section 4 offers concluding 
remarks.

2. Preliminaries

In the following, we concisely present all necessary definitions and notations.

2.1. Pairwise comparison matrices and weighting methods

Denote by ℝ𝑛
+ the set of positive vectors of size 𝑛, and by ℝ𝑛×𝑛

+ the set of 𝑛 × 𝑛 positive matrices.

Definition 1. Pairwise comparison matrix: Matrix 𝐀 =
[
𝑎𝑖𝑗
]
∈ℝ𝑛×𝑛

+ is a pairwise comparison matrix if 𝑎𝑗𝑖 = 1∕𝑎𝑖𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Throughout the paper, the set of pairwise comparison matrices is denoted by , and the set of 𝑛 × 𝑛 pairwise comparison matrices 
is denoted by 𝑛×𝑛.

Definition 2. Consistency: A pairwise comparison matrix 𝐀 =
[
𝑎𝑖𝑗
]
∈𝑛×𝑛 is called consistent if 𝑎𝑖𝑘 = 𝑎𝑖𝑗𝑎𝑗𝑘 holds for all 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛.

In practice, pairwise comparison matrices are usually inconsistent. The level of inconsistency can be quantified by inconsistency 
indices, see Brunelli [7] for a survey.

Definition 3. Weighting method: A weighting method associates a weight vector 𝐰 =
[
𝑤𝑖

]
∈ ℝ𝑛

+ satisfying ∑𝑛

𝑖=1𝑤𝑖 = 1 to any pairwise 
comparison matrix 𝐀 =

[
𝑎𝑖𝑗
]
∈𝑛×𝑛.

The most popular weighting methods are as follows.

Definition 4. Eigenvector method [25,26]: Let 𝐀 =
[
𝑎𝑖𝑗
]
∈𝑛×𝑛 be a pairwise comparison matrix. The weight vector 𝐰 =

[
𝑤𝑖

]
∈ ℝ𝑛

+
provided by the eigenvector method is the solution 𝐰 of a system of linear equations:

𝜆max𝐰 =𝐀𝐰, (1)

that is, 𝜆max𝐀 is the dominant eigenvalue of matrix 𝐀 and 𝐰 is the associated right eigenvector.

Definition 5. Logarithmic least squares method [12,16,17,23,35]: Let 𝐀 =
[
𝑎𝑖𝑗
]
∈𝑛×𝑛 be a pairwise comparison matrix. The weight 

vector 𝐰 =
[
𝑤𝑖

]
∈ℝ𝑛

+ provided by the logarithmic least squares method is the solution 𝐰 of the following optimisation problem:

min
𝑛∑
𝑖=1

𝑛∑
𝑗=1

[
log𝑎𝑖𝑗 − log

(
𝑤𝑖

𝑤𝑗

)]2
subject to 𝑤𝑖 > 0 for all 𝑖 = 1,2,…𝑛. (2)

It can be shown that the unique solution 𝐰 of (2) (up to multiplication by a positive constant) is given by the geometric means of 
row elements, namely,

𝑤𝑖 =
𝑛

√√√√ 𝑛∏
𝑖=1

𝑎𝑖𝑗 for all 1 ≤ 𝑖 ≤ 𝑛. (3)
2

Choo and Wedley [11] discuss several other weighting methods.
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2.2. Directed graphs and incomplete pairwise comparisons

Ordinal pairwise comparisons can be represented by a directed graph.

Definition 6. Directed graph: The tuple (𝑁, 𝐸) is a directed graph, where 𝑁 is the set of vertices and 𝐸 is the set of ordered pairs of 
vertices (arcs).

Definition 7. Directed walk: Let (𝑁, 𝐸) be a directed graph. A directed walk is a sequence of arcs in 𝐸 such that the ending vertex of 
each arc in the sequence is the same as the starting vertex of the next arc in the sequence.

Definition 8. Cycle: Let (𝑁, 𝐸) be a directed graph. A directed walk is called a cycle if the starting vertex of the first arc coincides 
with the ending vertex of the last arc.

Definition 9. Connected directed acyclic graph (CDAG): A directed graph (𝑁, 𝐸) is acyclic if it does not contain any cycle.
A directed graph (𝑁, 𝐸) is (weakly) connected if the underlying undirected graph, where all arcs are replaced by undirected edges, is 
connected.

An incomplete pairwise comparison matrix may contain missing entries outside its diagonal, which are denoted by ∗.

Definition 10. Incomplete pairwise comparison matrix: Pairwise comparison matrix 𝐀 =
[
𝑎𝑖𝑗
]
∈𝑛×𝑛 is an incomplete pairwise comparison 

matrix if 𝑎𝑖𝑗 > 0 implies 𝑎𝑗𝑖 = 1∕𝑎𝑖𝑗 and 𝑎𝑖𝑗 =∗ implies 𝑎𝑗𝑖 =∗ for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

The set of incomplete pairwise comparison matrices is denoted by ∗ .

Definition 11. CDAG-based incomplete pairwise comparison matrix: Let (𝑁, 𝐸) be a connected directed acyclic graph with |𝑁| = 𝑛. 
Matrix 𝐀 =

[
𝑎𝑖𝑗
]
∈∗ is a CDAG-based incomplete pairwise comparison matrix if 𝑎𝑖𝑗 ∈ {1∕𝛼; 1; 𝛼; ∗} such that for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛:

• 𝑎𝑖𝑖 = 1;
• (𝑖, 𝑗) ∈𝐸 implies 𝑎𝑖𝑗 = 𝛼 > 1 and 𝑎𝑗𝑖 = 1∕𝛼 < 1;
• (𝑖, 𝑗) ∉𝐸 and (𝑗, 𝑖) ∉𝐸 imply 𝑎𝑖𝑗 =∗ and 𝑎𝑗𝑖 =∗.

To summarise, the ordinal preferences contained in the connected directed acyclic graph are represented by numerical values 
that satisfy the reciprocity property of pairwise comparison matrices. Obviously, there exists a one-to-one correspondence between 
directed acyclic graphs and incomplete pairwise comparison matrices for which the conditions of Definition 11 hold.

2.3. Optimal completions of missing pairwise comparisons

The missing entries of incomplete pairwise comparison matrices are usually determined by replacing them with numerical values 
that minimise an inconsistency index [22]. Perhaps the most popular inconsistency measure 𝐶𝑅 has been suggested by Saaty [25,26]. 
Since it is a linear transformation of the dominant eigenvalue 𝜆max, Shiraishi et al. [28] and Shiraishi and Obata [27] have proposed 
to choose the missing values in order to minimise 𝜆max. Bozóki et al. [4] have solved the corresponding optimisation problem that 
leads to the 𝐶𝑅-optimal completion of the incomplete pairwise comparison matrix.

Another widely used inconsistency measure is the geometric consistency index 𝐺𝐶𝐼 [12,2]. Minimising 𝐺𝐶𝐼 for incomplete 
pairwise comparison matrices yields the incomplete logarithmic least squares method [4,6]. Although this technique provides only 
the optimal weight vector directly, the 𝐺𝐶𝐼 -optimal completion can be easily obtained by replacing each missing entry 𝑎𝑖𝑗 with the 
corresponding ratio 𝑤𝑖∕𝑤𝑗 of the optimal weights.

According to Bozóki et al. [4], both the 𝐶𝑅- and 𝐺𝐶𝐼 -optimal completions are unique if and only if the graph associated with 
the incomplete pairwise comparison is connected, i.e. any two items can be compared at least indirectly through other items.

In every inconsistent pairwise comparison matrix, at least one inconsistent triad exists. There is only one reasonable measure of 
triad inconsistency [14,8]:

𝑇 𝐼 =max
{

𝑎𝑖𝑘

𝑎𝑖𝑗𝑎𝑗𝑘
;
𝑎𝑖𝑗𝑎𝑗𝑘

𝑎𝑖𝑘

}
. (4)

In particular, note that Bozóki and Rapcsák [5] have proved a (monotonic) functional relationship between the inconsistency index 
𝑇 𝐼 , the Koczkodaj inconsistency index 𝐾𝐼 [21,18], and Saaty’s inconsistency ratio 𝐶𝑅 on the set of triads. Furthermore, according 
to Cavallo [8], almost all inconsistency indices—including the geometric inconsistency index 𝐺𝐶𝐼—are functionally dependent for 
𝑛 = 3. Csató [14] has given an axiomatic characterisation of the inconsistency ranking generated by these inconsistency indices.

Focusing on 𝑇 𝐼 has inspired the idea of a lexicographically optimal completion, which has been introduced recently by Ágoston 
3

and Csató [1].
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Incomplete pairwise
comparison matrix 𝐀

(Complete) pairwise
comparison matrix 𝐀(𝐱)

Weight vector 𝐰

Does the weight vector 𝐰
contain ordinal violation with

respect to the incomplete
pairwise comparison matrix 𝐀?

Definition 11

Completion method

Weighting method

Fig. 1. The setting where ordinal violations are investigated.

Definition 12. Lexicographically optimal completion: Let 𝐀 ∈∗ be an incomplete pairwise comparison matrix. Let 𝐀(𝐱) be the pairwise 
comparison matrix where the missing entries in matrix 𝐀 are replaced by variables collected in 𝐱. Let 𝑡𝑖𝑗𝑘(𝐱) be the inconsistency of 
the triad determined by the items 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 according to the inconsistency index 𝑇 𝐼 in matrix 𝐀(𝐱). Let 𝜃(𝐱) be the vector of the 
𝑛(𝑛 − 1)(𝑛 − 2)∕6 local inconsistencies 𝑡𝑖𝑗𝑘(𝐱) arranged in a non-increasing order: 𝜃𝑢(𝐱) ≥ 𝜃𝑣(𝐱) for all 𝑢 < 𝑣.

Matrix 𝐀(𝐱) is a lexicographically optimal completion of the incomplete pairwise comparison matrix 𝐀 if there is no lexicographically 
smaller completion: for any other completion 𝐀(𝐲), there does not exist an index 1 ≤ 𝑣 ≤ 𝑛(𝑛 − 1)(𝑛 − 2)∕6 such that 𝜃𝑢(𝐱) = 𝜃𝑢(𝐲) for 
all 𝑢 < 𝑣 and 𝜃𝑣(𝐱) > 𝜃𝑣(𝐲).

Again, the lexicographically optimal completion is unique if the graph associated with the incomplete pairwise comparison is 
connected [1, Theorem 1].

2.4. The research question

The ordinal preferences of the decision-maker are often more reliable than the cardinal values [36]. Thus, it is crucial to investi-
gate whether the derived priorities contain any ordinal violation.

Definition 13. Ordinal violation: Let 𝐀 =
[
𝑎𝑖𝑗
]
∈ ∗ be an incomplete pairwise comparison matrix and 𝐰 =

[
𝑤𝑖

]
∈ ℝ+ be a weight 

vector. The weight vector 𝐰 shows ordinal violation if there exist items 𝑖, 𝑗 such that 𝑎𝑖𝑗 > 1 but 𝑤𝑖 ≤𝑤𝑗 , or 𝑎𝑖𝑗 = 1 but 𝑤𝑖 ≠𝑤𝑗 .

Golany and Kress [20] have suggested the number of violations as an important criterion to compare weighting methods. This 
issue has been widely discussed in the literature [10,15,19,24,31–33,36,34].

Fig. 1 outlines the problem for which the current paper makes a substantial contribution. We consider a (connected) directed 
acyclic graph, construct the associated incomplete pairwise comparison matrix according to Definition 11, estimate the values of 
missing entries, and derive a weight vector from the complete pairwise comparison matrix. A natural question is how the lack of 
ordinal violation can be guaranteed in this process.

3. The main result

First, two results from the extant literature are recalled to highlight the significance of the problem presented in Fig. 1.

Lemma 1. Let 𝐀 =
[
𝑎𝑖𝑗
]
∈∗ be a CDAG-based incomplete pairwise comparison matrix. The priorities may contain ordinal violation if the 
4

𝐶𝑅-optimal completion is used to obtain the missing entries and the eigenvector method is used to derive the weight vector.
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Proof. See Csató and Rónyai [15, Theorem 4.2]. □

Lemma 2. Let 𝐀 =
[
𝑎𝑖𝑗
]
∈∗ be a CDAG-based incomplete pairwise comparison matrix. The priorities may contain ordinal violation if the 

𝐺𝐶𝐼 -optimal completion is used to obtain the missing entries and the logarithmic least squares method is used to derive the weight vector.

Proof. See Csató and Rónyai [15, Theorem 3.3]. □

According to our knowledge, there exists no pair of completion and weighting techniques that guarantees the avoidance of ordinal 
violations for CDAG-based incomplete pairwise comparison matrices yet. In the following, we provide such a procedure.

Lemma 3. Let 𝐀 =
[
𝑎𝑖𝑗
]
∈𝑛×𝑛 be a (complete) pairwise comparison matrix and 1 ≤ 𝑖, 𝑗 ≤ 𝑛 be two items such that 𝑎𝑖𝑗 > 1 > 𝑎𝑗𝑖 and 𝑎𝑖𝑘 ≥ 𝑎𝑗𝑘

for all 𝑘 ≠ 𝑖, 𝑗. If the weight vector 𝐰 =
[
𝑤𝑖

]
is derived by the eigenvector method or the logarithmic least squares method, then 𝑤𝑖 > 𝑤𝑗 .

Proof. For the eigenvector method, (1) implies that

𝜆max𝑤𝑖 =
𝑛∑

𝑘=1
𝑎𝑖𝑘𝑤𝑘 >

𝑛∑
𝑘=1

𝑎𝑗𝑘𝑤𝑘 = 𝜆max𝑤𝑗.

For the logarithmic least squares method, (3) directly gives the required implication as

𝑛∏
𝑘=1

𝑎𝑖𝑘 >

𝑛∏
𝑘=1

𝑎𝑗𝑘. □

Theorem 1. Let 𝐀 =
[
𝑎𝑖𝑗
]
∈∗ be a CDAG-based incomplete pairwise comparison matrix. The priorities do not contain ordinal violation 

if the lexicographically optimal completion is used to obtain the missing entries and the eigenvector method or the logarithmic least squares 
method is used to derive the weight vector.

Proof. For any CDAG-based incomplete pairwise comparison matrix, it can be assumed without loss of generality for all 𝑖 < 𝑗 that 
𝑎𝑖𝑗 = 𝛼 or 𝑎𝑖𝑗 is missing (due to topological sort). Denote by 𝐁 =

[
𝑏𝑖𝑗
]
∈ the (complete) pairwise comparison matrix obtained from 

𝐀 by the lexicographically optimal completion. First, it is verified that 𝑎𝑖𝑗 = 𝛼 > 1 implies 𝑏𝑖𝑘 ≥ 𝑏𝑗𝑘 for all 𝑘 ≠ 𝑖, 𝑗.
Assume, for contradiction, that 𝑏𝑖𝑘 < 𝑏𝑗𝑘 is satisfied for a particular 𝑘. Consequently, 𝑇 𝐼𝑖𝑗𝑘 (𝐁) > 𝛼 holds for the triad determined 

by items 𝑖, 𝑗, 𝑘.
Define the (complete) pairwise comparison matrix 𝐂 =

[
𝑐𝑖𝑗
]
∈ for all 𝑖 < 𝑗 as follows:

• 𝑐𝑖𝑗 = 𝑎𝑖𝑗 if 𝑎𝑖𝑗 = 𝛼;
• 𝑐𝑖𝑗 = 𝛼 if there exists a directed walk (see Definition 7) from 𝑖 to 𝑗 in the underlying connected directed acyclic graph;
• 𝑐𝑖𝑗 = 1 otherwise.

Entries below the diagonal are filled to satisfy the reciprocity property.
It can be checked that the inconsistency 𝑇 𝐼 of any triad in matrix 𝐂 is at most 𝛼: (4) may exceed 𝛼 only if the 𝑐𝑖𝑗 𝑐𝑗𝑘 = 𝛼2

(𝑐𝑖𝑗𝑐𝑗𝑘 = 1∕𝛼2), but then there is a directed walk from 𝑖 to 𝑘, hence 𝑐𝑖𝑘 = 𝛼 (𝑐𝑖𝑘 = 1∕𝛼). Therefore, 𝐁 is not the lexicographically 
optimal completion of the incomplete pairwise comparison matrix 𝐀 since matrix 𝐂 provides a lexicographically smaller completion.

Thus, 𝑎𝑖𝑗 = 𝛼 > 1 implies 𝑏𝑖𝑘 ≥ 𝑏𝑗𝑘 for all 𝑘 ≠ 𝑖, 𝑗, and the conditions of Lemma 3 are satisfied by the lexicographically optimal 
completion of the incomplete pairwise comparison matrix 𝐀. Hence, 𝑤𝑖 > 𝑤𝑗 for the weights derived by the eigenvector method or 
the logarithmic least squares method. □

The key in the proof of Theorem 1 is the construction of matrix 𝐂, which is illustrated below.

Example 1. Consider the directed acyclic graph shown in Fig. 2 [15, Example 3.4]. It is the minimal counterexample that can be used 
in the proof of Lemma 2 regarding the number of items (7), and among them, the number of arcs (11). According to Definition 11, 
the associated incomplete pairwise comparison matrix 𝐀 is as follows:

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝛼 ∗ ∗ ∗ 𝛼 𝛼

1∕𝛼 1 𝛼 𝛼 ∗ ∗ ∗
∗ 1∕𝛼 1 𝛼 𝛼 ∗ ∗
∗ 1∕𝛼 1∕𝛼 1 𝛼 𝛼 ∗
∗ ∗ 1∕𝛼 1∕𝛼 1 𝛼 𝛼

1∕𝛼 ∗ ∗ 1∕𝛼 1∕𝛼 1 ∗
1∕𝛼 ∗ ∗ ∗ 1∕𝛼 ∗ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

5

where 𝛼 > 1.
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3
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7

Fig. 2. The connected directed acyclic graph of Example 1.

This leads to the following (complete) pairwise comparison matrix 𝐂:

𝐂 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼

1∕𝛼 1 𝛼 𝛼 𝛼 𝛼 𝛼

1∕𝛼 1∕𝛼 1 𝛼 𝛼 𝛼 𝛼

1∕𝛼 1∕𝛼 1∕𝛼 1 𝛼 𝛼 𝛼

1∕𝛼 1∕𝛼 1∕𝛼 1∕𝛼 1 𝛼 𝛼

1∕𝛼 1∕𝛼 1∕𝛼 1∕𝛼 1∕𝛼 1 1
1∕𝛼 1∕𝛼 1∕𝛼 1∕𝛼 1∕𝛼 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For instance, 𝑐15 = 𝛼 due to the directed walk 1 → 2 → 3 → 5 but 𝑐67 = 1 because there is no directed walk from vertex 6 to vertex 7. 
It can be seen that 𝑇 𝐼 ≤ 𝛼 for any triad 𝑖, 𝑗, 𝑘: while 𝑇 𝐼 = 𝛼 in the case of most triads, 𝑇 𝐼167 = 𝑇 𝐼267 = 𝑇 𝐼367 = 𝑇 𝐼467 = 𝑇 𝐼567 = 1.

The second part of the proof of Theorem 1 is based on Lemma 3, which is probably satisfied by most (if not any) reasonable 
weighting methods, similar to the eigenvector and the logarithmic least squares methods.

4. Conclusions

The current paper has studied an axiom for completion methods of pairwise comparison matrices with missing entries. As Fig. 1
shows, a three-step procedure has been investigated:

1. A directed acyclic graph is transformed into an incomplete pairwise comparison matrix (Definition 11);
2. All missing entries of the incomplete pairwise comparison matrix are estimated (Section 2.3);
3. Priorities are determined by using a weighting method (Section 2.1).

In particular, we have focused on the conditions of avoiding ordinal violations in this setting. Csató and Rónyai [15] have already 
revealed that the 𝐶𝑅-optimal completion combined with the eigenvector method, as well as the 𝐺𝐶𝐼 -optimal completion combined 
with the logarithmic least squares method does not satisfy the required property. On the other hand, the lexicographically optimal 
completion together with any of these popular weighting methods is proven to guarantee the lack of any ordinal violation. This 
seems to be a strong argument in favour of filling the missing entries by lexicographically minimising the inconsistencies of the 
triads, which is a recent but promising proposal to handle incomplete pairwise comparisons [1].

There are several interesting directions for future research. It would be interesting to see other pairs of completion and weighting 
techniques that avoid ordinal violations. Some restrictions can be imposed on directed acyclic graphs to ensure ordinal consistency 
for the incomplete eigenvector and the incomplete logarithmic least squares methods. A natural extension of our setting can allow 
6

for different intensities of the preferences given by a directed acyclic graph.
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Appendix A

The lexicographically optimal completion (see Definition 12) has been introduced and discussed by Ágoston and Csató [1]. Here 
a short overview and an illustrative example are provided on its construction based on Ágoston and Csató [1, Section 3]. Further 
details can be found in Ágoston and Csató [1].

By regarding the logarithmically transformed entries of the original pairwise comparison matrix, the lexicographically optimal 
completion can be obtained via solving successive linear programming (LP) problems.

Let  denote the index set of all triads. The elements of a triad 𝓁 ∈  are denoted by 𝑖𝓁 , 𝑗𝓁 , and 𝑘𝓁 . Consider the LP problem in 
the following form:

𝑧→min (LP1.obj)

log𝑎𝑖𝓁 ,𝑗𝓁 + log𝑎𝑗𝓁 ,𝑘𝓁 + log𝑎𝑘𝓁 ,𝑖𝓁 ≤ 𝑧𝓁 ∀𝓁 ∈  (LP1.1)

log𝑎𝑖𝓁 ,𝑗𝓁 + log𝑎𝑗𝓁 ,𝑘𝓁 + log𝑎𝑘𝓁 ,𝑖𝓁 ≥ 𝑧𝓁 ∀𝓁 ∈  (LP1.2)

𝑧𝓁 ≤ 𝑧 ∀𝓁 ∈  (LP1.3)

𝑧𝓁 ≥ 0 ∀𝓁 ∈ 

𝑧 ≥ 0 ,

where log𝑎𝑖𝓁 ,𝑗𝓁 , log𝑎𝑗𝓁 ,𝑘𝓁 , log𝑎𝑘𝓁 ,𝑖𝓁 is a parameter (unbounded decision variable) if the corresponding matrix element is known 
(missing). The suggested algorithm for the lexicographically optimal completion is provided in Algorithm 1.

Algorithm 1 Lexicographically optimal completion.
1:  ← 

2: solve the LP problem LP1
3: 𝑜𝑏𝑗 ← objective value of LP1
4: while 𝑜𝑏𝑗 > 0 do

5: find a constraint 𝑧𝓁 ≤ 𝑧 (𝓁 ∈) for which the dual variable is negative
6: change constraint 𝑧𝓁 ≤ 𝑧 to 𝑧𝓁 ≤ 𝑜𝑏𝑗

7:  ← ⧵ {𝓁}
8: solve the modified LP
9: 𝑜𝑏𝑗 ← objective value of the modified LP

10: end while

Thus, the lexicographically optimal completion can be obtained by an iterative process:

1. A linear programming problem is solved to minimise the natural triad inconsistency index for all triads with an unknown 
value of 𝑇 𝐼 .

2. A triad (represented by two constraints in the LP), where the inconsistency index 𝑇 𝐼 cannot be lower, is chosen, which can 
be seen from the non-zero shadow price of at least one constraint.

3. The inconsistency index 𝑇 𝐼 is fixed for this triad (or one of these triads if there exists more than one), the associated 
constraints are removed from the LP, and we return to Step 1.

The algorithm finishes if the minimal 𝑇 𝐼 is determined for all triads. The number of LPs to be solved is at most the number of triads 
having an incomplete pairwise comparison (which is finite) because the number of constraints in the LP decreases continuously.

Example 2. Take the following incomplete pairwise comparison matrix of order four, where 𝑎13 (thus 𝑎31) and 𝑎14 (thus 𝑎41) remain 
undefined:

𝐀 =

⎡⎢⎢⎢
1 𝑎12 ∗ ∗
𝑎21 1 𝑎23 𝑎24
∗ 𝑎32 1 𝑎34

⎤⎥⎥⎥ .
7

⎢⎣ ∗ 𝑎42 𝑎43 1 ⎥⎦
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The four triads imply eight constraints in the first LP due to the reciprocity condition:

𝑧1 →min

log𝑎12 + log𝑎23 − log𝑥13 ≤ 𝑧1

− log𝑎12 − log𝑎23 + log𝑥13 ≤ 𝑧1

log𝑎12 + log𝑎24 − log𝑥14 ≤ 𝑧1

− log𝑎12 − log𝑎24 + log𝑥14 ≤ 𝑧1

log𝑥13 + log𝑎34 − log𝑥14 ≤ 𝑧1

− log𝑥13 − log𝑎34 + log𝑥14 ≤ 𝑧1

log𝑎23 − log𝑎24 + log𝑎34 ≤ 𝑧1

− log𝑎23 + log𝑎24 − log𝑎34 ≤ 𝑧1 (5)

If 𝑎12 = 2, 𝑎24 = 8, 𝑎23 = 𝑎34 = 1, and the missing elements are substituted by variables, we get the matrix below:

𝐁(𝐱) =

⎡⎢⎢⎢⎢⎣

1 2 𝑥13 𝑥14
1∕2 1 1 8
1∕𝑥13 1 1 1
1∕𝑥14 1∕8 1 1

⎤⎥⎥⎥⎥⎦
.

This matrix contains four triads with the following values of 𝑇 𝐼 :

𝑇 𝐼123(𝐱) = max
{

𝑥13
2

; 2
𝑥13

}
;

𝑇 𝐼124(𝐱) = max
{

𝑥14
16

; 16
𝑥14

}
;

𝑇 𝐼134(𝐱) = max
{

𝑥14
𝑥13

;
𝑥13
𝑥14

}
;

𝑇 𝐼234(𝐱) = max
{
8; 1

8

}
.

According to equation (3.6) in Bozóki and Rapcsák [5], the Koczkodaj inconsistency index of matrix 𝐁(𝐱) is

𝐾𝐼 (𝐁(𝐱)) = 1 − 1
max

{
𝑇 𝐼123(𝐱);𝑇 𝐼124(𝐱);𝑇 𝐼134(𝐱);𝑇 𝐼234(𝐱)

} .
Hence, 𝐾𝐼 (𝐁(𝐱)) is minimal if 𝑡(𝐱) =max

{
𝑇 𝐼123(𝐱);𝑇 𝐼124(𝐱);𝑇 𝐼134(𝐱);𝑇 𝐼234(𝐱)

}
is minimal. Since 𝑇 𝐼234(𝐱) = 8, 𝑡(𝐱) ≥ 8.

In addition, 𝑡(𝐱) = 8 if the following conditions are satisfied:

𝑇 𝐼123(𝐱) ≤ 8 ⟺ 1∕4 ≤ 𝑥13 ≤ 16;

𝑇 𝐼124(𝐱) ≤ 8 ⟺ 2 ≤ 𝑥14 ≤ 128;

𝑇 𝐼134(𝐱) ≤ 8 ⟺ 1∕8 ≤ 𝑥13∕𝑥14 ≤ 8.

Therefore, 𝑧1 = 𝑧1 = 3 in (5) due to the seventh constraint but there are multiple optimal solutions.
In the second iteration, a simpler LP should be solved after removing the constraints associated with the triad (2, 3, 4):

𝑧2 →min

log𝑎12 + log𝑎23 − log𝑥13 ≤ 𝑧2

− log𝑎12 − log𝑎23 + log𝑥13 ≤ 𝑧2

log𝑎12 + log𝑎24 − log𝑥14 ≤ 𝑧2

− log𝑎12 − log𝑎24 + log𝑥14 ≤ 𝑧2

log𝑥13 − log𝑎34 + log𝑥14 ≤ 𝑧2

− log𝑥13 + log𝑎34 − log𝑥14 ≤ 𝑧2 (6)
8

(5) already has a unique solution: log2 𝑥13 = 2 (𝑥13 = 4), log2 𝑥14 = 3 (𝑥14 = 8), 𝑧2 = 1.
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