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Abstract: In this paper, we construct nonparametric, nonasymptotic, and
simultaneous condence bands for band-limited regression functions based on
the theory of Paley-Wiener kernels. We work with a sample of independent
and identically distributed (i.i.d.) input-output pairs, the measurement noises
are assumed to have a joint distribution that is invariant with respect to
transformations from a compact matrix group (e.g., permutations), and we
also assume that the distribution of the inputs is a priori known. The task is
divided into two steps: rst, we study the case when the outputs are noise-free,
then the problem is generalized for measurement noises. The algorithms
provide nonasymptotic guarantees for the inclusion of the true regression
function in the condence band, simultaneously for all possible inputs. Finally,
we demonstrate our results via numerical experiments.
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1 Introduction

Constructing condence bands for the regression function from a nite sample
of input-output data is a core problem in statistics and machine learning
[1]. In a parametric setting, such region estimates are typically induced by
condence sets in the parameter space, however, in a nonparameteric setting
this indirect approach is often infeasible, which calls for direct constructions.
The problem comes with a fairly standard setting. We are given a nite

i.i.d. sample of input-output pairs, (x1, y1), ▷ ▷ ▷ , (xn, yn), having an unknown
joint distribution PX,Y , where xk ∈ Rm, yk ∈ R and E[y2k ] < ∞. We assume
that yk = f∗(xk) + εk, for k ∈ [n] = {1, ▷▷▷, n}, where {εk} represent the
(measurement) noise terms on the true regression function f∗ with E[εk] = 0.

Our primary goal is the following: we are looking for an I : Rm → R× R
function, such that I(x) = (I1(x), I2(x)) species the endpoints of an interval
estimate for f∗(x), where x ∈ Rm. The aim is to construct I with the property:

ν(I) ▷= P

I1(x) ≤ f∗(x) ≤ I2(x), for PX-a.e. x ∈ Rm


≥ 1− α,

where α ∈ (0, 1) is a (user-chosen) risk probability. Since the condence
band I depends on the sample, typically we have P = P⊗n

X,Y ▷ We call ν(I) the
reliability of the condence band. Next, we dene Paley-Wiener spaces [2].

Defnition 1. A Paley-Wiener space H is a subspace of L2(Rm), where for
each φ ∈ H the support of the Fourier transform of φ is included in a given
hypercube [−η, η ]m, where η > 0 is a hyper-parameter.

Paley-Wiener spaces are Reproducing Kernel Hilbert Spaces (RKHSs) with
the following reproducing kernel function. For all u, v ∈ Rm :

k(u, v) ▷= π−m
m

j=1

sin(η(uj − vj))
uj − vj

,

where, for convenience, sin(η · 0)◁0 is dened to be η. Henceforth, we work
with the Paley-Wiener kernel dened above and denote our RKHS by H.

Our fundamental assumptions are as follows:
A1. The sample (x1, y1), ▷ ▷ ▷ , (xn, yn) ∈ Rm × R is i.i.d., and E[y21 ] < ∞.
A2. For k ∈ [n], E


εk

= 0, variables {xk} and {εk} are independent, and

there is a compact matrix group, G ⊆ Rn×n, such that ∀G ∈ G : G ε
d= ε.

A3. The probability distribution of the inputs, {xk}, is a priori known, it is
absolutely continuous, and its density, h∗, satises h∗(x) > 0, ∀x ∈ Rm.
A4. The regression function f∗ is from a Paley-Wiener space and there is a
(universal ) constant ρ > 0, such that for all x ∈ Rm, f2

∗ (x) ≤ ρh∗(x)▷
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The third part of A2 can be easily satised, e.g., by the group of permutation
matrices [3], as {εk} are i.i.d.; A4 ensures that the observations are informative.

2 Noise-Free Outputs

We start by studying a simplied problem: when the true regression function,
f∗, is observed perfectly at random inputs, that is ∀k ∈ [n] : yk = f∗(xk).

Since A1 and A3 guarantee that the inputs {xk} are almost surely distinct,
the element from H, which interpolates every yk output and the corresponding
xk input, and which has the smallest possible kernel norm, that is

f̄
▷= argmin


∥f ∥H : f ∈ H & ∀k ∈ [n] : f(xk) = yk


,

exists and it takes the following form for all possible inputs x ∈ Rm:

f̄(x) =
n

k=1
α̂kk(x, xk),

where the weights are α̂ = K−1y with y
▷= (y1, ▷▷▷, yn)T and α̂ := (α̂1, ▷▷▷, α̂n),

and Ki,j = k(xi, xj) is the kernel or Gram matrix. Note that under A1, A3
and A4, the Gram matrix is almost surely invertible.

The main idea behind our approach is as follows. First, we need to estimate
how “smooth” the function is, which is measured by ∥f∗∥H = ∥f∗∥2 ▷
Lemma 1. Assuming A1, A3, A4 and that yk = f∗(xk) for k ∈ [n], for any
risk probability α ∈ (0, 1), we have P(∥f∗∥2H ≤ κ) ≥ 1− α, with

κ
▷= 1

n

n

k=1

y2k
h∗(xk)

+ ρ


lnα
−2n ▷

This statement can be proved analogously to the similar Lemma 1 in [3].
To test a “candidate” (x0, y0) ∈ Rm ×R input-output pair, we can compute

the minimum norm needed to interpolate the original {(xk, yk)}, k ∈ [n]
combined with (x0, y0) ∈ Rm × R. The minimum norm interpolation of
(x0, y0), ▷ ▷ ▷ , (xn, yn) is now f̃(x) =

n
k=0 α̃kk(x, xk), where the weights are

α̃ = K−1
0 ỹ with ỹ

▷= (y0, y1, ▷ ▷ ▷ , yn)T, α̃
▷= (α̃0, ▷ ▷ ▷ , α̃n)T, and K0(i+1, j+1) =

k(xi, xj) is the extended kernel matrix. Since H is an RKHS, we have

∥ f̃ ∥2H = α̃TK0α̃ = ỹTK−1
0 K0K

−1
0 ỹ = ỹTK−1

0 ỹ▷

For a candidate (x0, y0) input-output pair, we rst calculate the norm square
of the minimum norm interpolation of {(x0, y0)} ∪ {(xk, yk)}. Then, if this
norm square is less than or equal to our estimate (denoted by κ), we include
(x0, y0) in our condence band, otherwise, (x0, y0) is not included in the band.
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To obtain the interval endpoints for a given query input x0, we have to
calculate the highest and lowest y0 values which can be interpolated with a
function from H having at most norm square κ. This leads to the problems:

min /max y0

subject to (y0, yT)K−1
0 (y0, yT)T ≤ κ,

(1)

where “min /max” means that we have to solve the problem as a minimization
and also as a maximization (separately). The problems in (1) are convex and
their solutions can be calculated analytically [3]. The optimal values, denoted
by ymin and ymax, respectively, determine the endpoints of the condence
interval for f∗(x0), that is I1(x0)

▷= ymin and I2(x0)
▷= ymax. If there is no

solution, we return I(x0) = ∅. We conclude with the following theorem.

Theorem 1. Assume A1, A3, A4 and that yk = f∗(xk) for all k. Then, for
any risk probability α ∈ (0, 1) and for any nite sample size n, the constructed
condence band is guaranteed to have the reliability ν(I) ≥ 1− α▷

Proof sketch. According to Lemma 1, P(∥f∗∥2H ≤ κ) ≥ 1− α. If ∥f∗∥2H ≤ κ,
then for all x0, the value f∗(x0) is in the condence band, since f∗ interpolates
the sample extended with (x0, f∗(x0)), and its norm is ≤ κ, thus the minimum
norm interpolant of this extended sample inherits this norm bound.

3 Noisy Outputs

Next, we provide our solution for the case when the outputs are aected
by measurement noises which satisfy A2. A new problem is that we do not
observe the true function values at the sample inputs. However, we can
apply the KGP method [5] to construct an ellipsoid Z with the guarantee
P

(f∗(x1), ▷ ▷ ▷ , f∗(xd))T ∈ Z


≥ 1− β, for a given β ∈ (0, 1) and d ≤ n [4].

In order to get an estimate of ∥f∗∥2H, we can solve the following problem

maximize 1
d

d

k=1

z2k
h∗(xk)

subject to z ∈ Z▷ (2)

This problem is not convex, but due to strong duality, we can solve its convex
dual instead. The construction is analogous to the one in [4, Section 6.1].

Lemma 2. Under A1, A2, A3, A4 and for any α,β ∈ (0, 1) risk probabilities,

P

(f∗(x1), ▷ ▷ ▷ , f∗(xd))T ∈ Z ∧ ∥f∗∥2H ≤ τ


≥ 1− α− β,

where τ
▷= ξ + ρ


ln(α)◁(−2d) and ξ is the optimal value of problem (2).
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Given ellipsoid Z which contains with high probability the true outputs of f∗
at the sample inputs {xk}dk=1, we can construct a condence interval for f∗(x0)
at any query input x0 by computing the maximum and the minimum potential
output z0 ∈ R at x0, for which there is an interpolant that interpolates the
sample {(x0, z0)} ∪ {(xk, zk)}dk=1, for a z ∈ Z, and has a norm square ≤ τ ,
i.e., our upper bound for ∥f∗∥2H. This leads to the (convex) problems

min /max z0

subject to (z0, z1, ▷ ▷ ▷ , zd)K−1
0 (z0, z1, ▷ ▷ ▷ , zd)T ≤ τ

(z1, ▷▷▷, zd) ∈ Z▷

(3)

Let zmin and zmax be the optimal values of (3). The condence interval for
f∗(x0) is given by [zmin, zmax]. We return I(x0) = ∅ if (3) is infeasible.

Theorem 2. Assume that A1, A2, A3 and A4 are satised. Then, for any
risk probabilities α,β ∈ (0, 1) and for any nite sample size n, the constructed
condence band is guaranteed to have the reliability ν(I) ≥ 1− α− β▷

Proof sketch. The core idea of the proof is very similar to that of Theorem 1.
According to Lemma 2, the event A that both (f∗(x1), ▷ ▷ ▷ , f∗(xd))T ∈ Z as
well as ∥f∗∥2H ≤ τ happen has probability at least 1− α− β.

Conditioning on event A, for all query input point x0 such that K0 is
invertible, which holds a.e., we can guarantee that there is a z ∈ Z, namely
z = (f∗(x1), ▷ ▷ ▷ , f∗(xd))T, and z0, name z0 = f∗(x0), such that the minimum
norm interpolant of {(x0, z0)}∪ {(xk, zk)}nk=1 has a norm square ≤ τ , since f∗
intself is an interpolant of this dataset. Thus, we have that zmin ≤ z0 ≤ zmax,
for z0 = f∗(x0). This property is always guaranteed, hence, we simultaneously
have for PX-a.e. x0 ∈ Rm that zmin(x0) ≤ f∗(x0) ≤ zmax(x0), under A.

4 Numerical Experiments

The methods were also tested and implemented numerically. The Paley-
Wiener RKHS was used with parameter η = 30 and the original data-
generating function was created as follows: 20 random input points {x̄k}20k=1
were generated, with uniform distribution on [−1, 1]. Then we created
f∗(x) =

20
k=1 wkk(x, x̄k), where each wk had a uniform distribution on

[−1, 1]. The function was normalized, in case its maximum value exceeded 1.
A sample with n = 300 random noisy observations from f∗ was generated.

The inputs {xk} followed Laplace distribution with location µ = 0 and scale
b = 0▷3 parameters, while the measurement noise {εk} had the following
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distribution: rst, we experimented with a non-symmetric dase, where ε ∼
exp(λ) − 1◁λ, where λ = 0▷3, then we implemented an experiment with a
symmetrically distributed noise, namely ε had Laplace distribution with µ = 0
and b = 0▷3 parameters. Both of these statistical setups satisfy A2.
Figure 1 demonstrates that the proposed approach leads to feasible and

informative simultaneous (nonparametric, nonasymptotic) condence bands.
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Figure 1: Nonparametric, nonasymptotic, simultaneous condence bands with
Laplace distributed inputs and symmetric and non-symmetric noises.
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