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Abstract: This paper aims to report on novel research results about developing a reinforcement learning 
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1. INTRODUCTION 

Performing special driving techniques such as drifting can be 
challenging even for professional human drivers. However, 
such maneuvers can be essential to avoid certain accidents in 
critical road situations, such as losing traction on a slippery 
road surface, or executing a maneuver to avoid a sudden 
obstacle in front of the car (e.g., a deer) (Zhao et al., 2021). 
According to Li et al. (2016), the relative frequency of control 
loss-related crashes in the US was around 8.3% and accidents 
connected with running over an animal or a pedestrian sum up 
to 6.69% based on GES (General Estimates System) crash 
records from 2013. These significant numbers indicate the 
importance of focusing on such driving assistance which can 
help to avoid these unfortunate situations. 

With the rapid improvement of artificial intelligence (AI) 
technologies, autonomous vehicles (AV) are becoming more 
effective at solving the above-described realistic scenarios to 
improve road safety, but there is still a lot of work ahead to 
provide a reliable solution in practice. A reasonable first step 
is to focus on solving steady-state drift problems, which means 
initiating and holding a pre-defined target drift state. This 
requires the kind of precision essential to complete more 
complex, practical tasks, but in a less sophisticated 
environment. 

Researching steady-state drift problems with linear control 
methods started at the beginning of the previous decade (Voser 

et al., 2010; Velenis et al., 2011), but not later than ten years 
later that a MIMO controller was successfully applied in a real-
world environment (Bárdos, 2020). Also, Model Predictive 
Controls (MPCs) were considerably successful even in 
handling more complex, trajectory-following tasks and 
changing environmental conditions (Czibere et al., 2021; 
Domina & Tihanyi, 2022). Furthermore, supervised neural 
network-based hierarchical control solutions have also been 
applied and evaluated on RC cars (Acosta & Kanarachos, 
2018; Yang et al., 2022). 

Besides the methods mentioned above, reinforcement learning 
(RL) can have promisingly better performance and 
adaptability in the case of changing environmental conditions 
and on-line learning, making it a considerable approach for 
developing self-driving agents. In the case of the current state 
of the art applications, deep reinforcement learning (DRL) is 
by far the most accepted and widely used method so far (Kiran 
et al., 2021). The main reason behind this is the complex nature 
of automotive control in general, which requires an 
approximation method precise enough to operate the vehicle 
in the continuous environment. The works of Cutler & How 
(2016), Bhattacharjee et al. (2018), Cai et al. (2020) and 
Orgován et al. (2021) show that both model-based and model-
free DRL can solve simple and more complex drift problems, 
even with added stochastic elements in the environment. 
Further enhancing these results, Domberg et al. (2022) 
introduced an agent which is viable to drift along arbitrary 
trajectories, showing the assumed generalization abilities of 
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RL. Previous works (Tóth et al., 2022a, b) lay further 
groundwork for steady-state drifting, although it was found 
later by the authors that the applied Soft Actor-Critic (SAC) 
algorithm – with its differential entropy-based exploration 
policy – is more susceptible to instability than anticipated 
before. This had a significantly negative impact on the 
robustness of the agent, like catastrophic forgetfulness, so a 
solution for this is introduced in this paper, using simple 
tabular Q-learning. 

This paper contributes to the field of autonomous drifting by 
introducing a tabular Reinforcement Learning (RL) based, 
purely discrete self-operating agent with a novel, adaptive 
exploration policy to perform steady-state drifting in a 
MATLAB/Simulink simulation environment. Although the 
task is inherently continuous, the proposed agent learnt to 
achieve its goal while operating the vehicle smoothly enough 
to show promising performance for further development and 
future real-life applications. 

2. THEORETICAL BACKGROUND 

In the case of steady-state drifting, the main objective is to 
reach a pre-defined drift equilibrium point in the vehicle’s state 

space, which usually contains the longitudinal (𝑣𝑣𝑥𝑥) and lateral 
(𝑣𝑣𝑦𝑦) velocities along with the yaw rate (𝑟𝑟) (Fig. 1.). For a 
vehicle with three degrees of freedom, the Newtonian laws of 
motion (Jazar, 2019) 

          𝑣𝑣�̇�𝑥 =
1
𝑚𝑚 𝐹𝐹𝑥𝑥 + 𝑟𝑟𝑣𝑣𝑦𝑦             (1) 

 

          𝑣𝑣�̇�𝑦 =
1
m𝐹𝐹𝑦𝑦 − 𝑟𝑟𝑣𝑣𝑥𝑥           (2) 

 

               �̇�𝑟 = 1
𝐼𝐼z
𝑀𝑀𝑧𝑧           (3) 

 
define that if a point is an equilibrium, then 

           𝑣𝑣�̇�𝑥 = 𝑣𝑣�̇�𝑦 = �̇�𝑟 = 0           (4) 
 
must apply. With added tire force saturation constraints, drift 
equilibrium points can be computed by solving this (4) system 
of algebraic equations (Hindiyeh & Gerdes, 2009). 

Besides steady-state problems, drifting can be defined as other 
objectives, like encouraging the vehicle to achieve a side slip 
angle (𝛽𝛽) as high as possible while following a desired 
trajectory (Cai at al., 2020; Orgován et al., 2021; Domberg et 
al., 2022). In these cases, the resulting agent is trained to 
perform spectacular stunts worth using for autonomous 
competitions (Yang, 2021), however, in critical traffic 
scenarios, precisely attaining the desired side slip angles along 
the trajectory is a more important factor, which is the main 
reason this research is focusing on steady-state drifting. 

2.1 Vehicle Model 

The model used for the MATLAB/Simulink simulation 
environment is a rear wheel drive (RWD) one-track planar 

Fig. 1. The force components and tire slip angles of the 
presented one-track vehicle model. (Hindiyeh, 2009) 

vehicle model with a brush tire model on the front wheel 
(Jazar, 2019) and a combined-slip tire model on the rear wheel 
(Hindiyeh, 2009, 2013). The main describing equations for the 
vehicle model are the following: 

       𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑥𝑥𝑟𝑟 − 𝐹𝐹𝑦𝑦𝑓𝑓 sin 𝛿𝛿                        (5) 

 
                  𝐹𝐹𝑦𝑦 = 𝐹𝐹𝑦𝑦𝑓𝑓 cos 𝛿𝛿 + 𝐹𝐹𝑦𝑦𝑟𝑟 (6) 

 
                𝑀𝑀𝑧𝑧 = 𝑎𝑎𝐹𝐹𝑦𝑦𝑓𝑓 cos 𝛿𝛿 − 𝑏𝑏𝐹𝐹𝑦𝑦𝑟𝑟           (7) 

where the rear longitudinal wheel force (𝐹𝐹𝑥𝑥𝑟𝑟) and the front 
wheel angle (𝛿𝛿) are the input parameters of the model and the 
lateral wheel forces for the front (8) and the rear (9) are 

𝐹𝐹𝑦𝑦𝑓𝑓 =

{
 
 

 
 −𝐶𝐶𝛼𝛼 tan𝛼𝛼𝑓𝑓 +

𝐶𝐶𝛼𝛼2

3𝜇𝜇𝐹𝐹𝑧𝑧𝑓𝑓
|tan 𝛼𝛼𝑓𝑓| tan 𝛼𝛼𝑓𝑓                            

    − 𝐶𝐶𝛼𝛼3

27𝜇𝜇2𝐹𝐹𝑧𝑧𝑓𝑓
2 tan3 𝛼𝛼𝑓𝑓                        𝑖𝑖𝑖𝑖 |𝛼𝛼𝑓𝑓| ≤ 𝛼𝛼𝑠𝑠𝑙𝑙𝑓𝑓

−𝜇𝜇𝐹𝐹𝑧𝑧𝑓𝑓sgn 𝛼𝛼𝑓𝑓                                      𝑖𝑖𝑖𝑖 |𝛼𝛼𝑓𝑓| > 𝛼𝛼𝑠𝑠𝑙𝑙𝑓𝑓   

 (8) 

 

𝐹𝐹𝑦𝑦𝑟𝑟 =

{ 
 
  
−𝐶𝐶𝛼𝛼 tan𝛼𝛼𝑟𝑟 +

𝐶𝐶𝛼𝛼2

3𝜉𝜉𝜇𝜇𝐹𝐹𝑧𝑧𝑟𝑟
|tan 𝛼𝛼𝑟𝑟| tan 𝛼𝛼𝑟𝑟                           

    − 𝐶𝐶𝛼𝛼3

27𝜉𝜉2𝜇𝜇2𝐹𝐹𝑧𝑧𝑟𝑟
2 tan3 𝛼𝛼𝑟𝑟                    𝑖𝑖𝑖𝑖 |𝛼𝛼𝑟𝑟| ≤ 𝛼𝛼𝑠𝑠𝑙𝑙𝑟𝑟

−𝜇𝜇𝜉𝜉𝐹𝐹𝑧𝑧𝑟𝑟sgn 𝛼𝛼𝑟𝑟                                    𝑖𝑖𝑖𝑖 |𝛼𝛼𝑟𝑟| > 𝛼𝛼𝑠𝑠𝑙𝑙𝑟𝑟   

 (9) 

 
respectively. The advantage of the proposed vehicle model 
against other representations is its computational simplicity, 
while it only ignores non-essential dynamics (for moderate-
speed drifting), like roll and aerodynamics. For more details 
regarding the non-described components and variables of the 
model, please address the referenced works (Jazar, 2019; 
Hindiyeh, 2009; Tóth et al., 2022a). 

2.2 The Proposed Reinforcement Learning Algorithm 

The agent presented in this paper was trained with Tabular Q-
learning, which is one of the first off-policy Temporal-
Difference (TD) control algorithms (Watkins, 1989). This 
simple method has already proven its effectiveness many times 
in practice, e.g. in manufacturing (Viharos & Jakab, 2021) and 
even for autonomous driving (García Cuenca et al., 2019). 
Also, because of its simplicity, the method is very 
customizable with exploration policies. 

The agent itself is an action-value function 𝑄𝑄: [𝒮𝒮𝑑𝑑,𝒜𝒜𝑑𝑑] → ℝ, 
which can be represented as a lookup table where every row 
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Fig. 2. The main structure of the adaptive exploration tabular 
Q-learning algorithm. 

identifies as a (discrete) state and every column as an action. 
The learning is based on the TD update rule: 

        𝐺𝐺𝑡𝑡 = 𝑅𝑅(𝑆𝑆𝑡𝑡) + 𝛾𝛾𝑅𝑅(𝑆𝑆𝑡𝑡+1) + ⋯ + 𝛾𝛾𝑛𝑛−1𝑅𝑅(𝑆𝑆𝑡𝑡+𝑛𝑛−1) +  
                 + 𝛾𝛾𝑛𝑛 max

𝑎𝑎∈𝒜𝒜𝑑𝑑
𝑄𝑄(𝑆𝑆(𝑡𝑡+𝑛𝑛)𝑑𝑑, 𝑎𝑎)                                    (10) 

    𝑄𝑄(𝑆𝑆𝑡𝑡𝑑𝑑, 𝐴𝐴𝑡𝑡𝑑𝑑) = 𝑄𝑄(𝑆𝑆𝑡𝑡𝑑𝑑, 𝐴𝐴𝑡𝑡𝑑𝑑) +  𝛼𝛼 (𝐺𝐺𝑡𝑡 − 𝑄𝑄(𝑆𝑆𝑡𝑡𝑑𝑑, 𝐴𝐴𝑡𝑡𝑑𝑑))     (11) 

where 𝛼𝛼 is the learning rate, 𝛾𝛾 is the discount parameter, 𝑛𝑛 is 
the parameter of foresight and 𝑅𝑅: 𝒮𝒮 → ℝ is the reward function 
of the defined reinforcement learning problem. 

The algorithm was implemented and tested with two different 
exploration strategies. The first one is a decaying 𝜀𝜀-greedy 
policy, which means that the exploration rate 𝜀𝜀 changes as 

            𝜀𝜀 = 𝜀𝜀(1 − 𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑)         (12) 

after every update step, where 0 < 𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑 < 1 is a tuneable 
parameter. The initial value of 𝜀𝜀 is 1, and for each 𝑄𝑄(𝑆𝑆, 𝐴𝐴) is 0 
(the best possible solution). The second alternative is a custom, 
self-adaptive exploration policy based on the Q-learning 
update rule. In this case (Fig.2.), in addition to the action-value 
table, a separate exploration table is defined, which chooses an 
𝜀𝜀 value (from a pre-defined, finite 𝜀𝜀 value set) for the agent 
before every action selection and is updated accordingly to the 
Q-learning update rule (11). A very important feature of this 

solution is that all states have different, own 𝜀𝜀 values that 
control itself dynamically during training. This novel applied 
self-adaptive method is already proven to be effective in 
manufacturing (Viharos & Jakab, 2021). 

3. THE STRUCTURE OF THE PROBLEM 

3.1 Properties of the Continuous Environment 

The state space of the continuous environment contains the 
three major describing velocities: 

            𝒮𝒮 ∶= [𝑣𝑣𝑥𝑥, 𝑣𝑣𝑑𝑑, 𝑟𝑟]         (13) 
 
There is no need to include the side slip angle 𝛽𝛽 because it can 
be computed directly from 𝑣𝑣𝑥𝑥 and 𝑣𝑣𝑑𝑑: 

            𝛽𝛽 = tan−1 (𝑣𝑣𝑦𝑦
𝑣𝑣𝑥𝑥

)         (14) 

 
As it was mentioned in the beginning of Section 2, it is needed 
to specify a target drift state, and by solving the equation 
system (1) with the pre-definition 𝑣𝑣𝑥𝑥 = 10 𝑚𝑚 𝑠𝑠⁄  and 𝛿𝛿 =
−10 𝑟𝑟𝑎𝑎𝑟𝑟: 
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               = (10 𝑚𝑚 𝑠𝑠⁄ , −3.4812 𝑚𝑚 𝑠𝑠⁄ , 0.8334 𝑟𝑟𝑎𝑎𝑟𝑟 𝑠𝑠⁄ )          (15) 

 
Based on the vehicle model’s inputs, the action space consists 
of the steering wheel angle 𝛿𝛿𝑠𝑠𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 ∈ [−200°, 100°] (identical 
to 𝛿𝛿) and the gas pedal position 𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑑𝑑𝑑𝑑 ∈ [0,1] (identical to 
𝐹𝐹𝑥𝑥𝑑𝑑),so: 
 
                             𝒜𝒜 = [0,1] × [−200°, 100°]       (16) 
 
The domain of 𝛿𝛿𝑠𝑠𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑  is limited from [−400°, 400°] to the 
above interval accordingly to the target drift state to reduce the 
number of actions for the discreet version of the action space, 
and to give some help to the agent in finding the optimal action 
values (Tóth et al., 2022a). The defined reward function is 

          𝑅𝑅(𝑆𝑆𝑡𝑡) = −√1
3 ∑ ( 𝑆𝑆𝑑𝑑𝑑𝑑
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2
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which is the relative mean squared distance of the current state 
from the target drift state. In other words, the agent’s objective 

is to initiate and hold a drifting motion with minimal average 
error at a dedicated equilibrium point. In addition, an indicator 
metric of drift tolerance was defined as a primary metric to 
evaluate and monitor the agent’s performance during training: 

𝐼𝐼𝑠𝑠𝑟𝑟𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼(𝑆𝑆𝑡𝑡) = {1    𝐼𝐼𝐼𝐼 | 𝑆𝑆𝑑𝑑𝑑𝑑
𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

− 1| < 0.1 ∀𝐼𝐼 ∈ {1,2,3}

0                                              𝑜𝑜𝐼𝐼ℎ𝑝𝑝𝑟𝑟𝑒𝑒𝐼𝐼𝑠𝑠𝑝𝑝
      (18) 
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Fig. 2. The main structure of the adaptive exploration tabular 
Q-learning algorithm. 
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3.2 Discrete Representation of the Environment 

For a discrete agent to operate in a continuous environment, a 
discretized representation was created for both the state and 
the action spaces. During operation, at each time step 𝑡𝑡 ≥ 0 , 
the agent processes the continuous state signal coming from 
the vehicle model by rounding it accordingly to the finite state 
space 𝒮𝒮𝑑𝑑 ⊆ 𝒮𝒮, such that 

    𝑆𝑆𝑡𝑡𝑑𝑑 = argmin
𝑆𝑆𝑑𝑑∈𝒮𝒮𝑑𝑑

(|𝑆𝑆𝑑𝑑 − 𝑆𝑆𝑡𝑡|)        (19) 

In other words, the 𝑅𝑅𝑡𝑡+1 agent recognizes the 𝑆𝑆𝑡𝑡 state as 𝑆𝑆𝑡𝑡𝑑𝑑, 
then chooses an action 𝐴𝐴𝑡𝑡𝑑𝑑 ∈ 𝒜𝒜𝑑𝑑 ⊆ 𝒜𝒜. An issue to address 
when creating 𝒮𝒮𝑑𝑑 is the unboundedness of 𝒮𝒮: to have finitely 
many elements, a maximum and a minimum value for each 
dimension must be defined. In the case of 𝑣𝑣𝑥𝑥, because the aim 
is to initiate moderate-speed drifting, 5𝑚𝑚 𝑠𝑠⁄ ≤ 𝑣𝑣𝑥𝑥 ≤ 15𝑚𝑚 𝑠𝑠⁄  
are reasonable upper and lower bounds, while −5𝑚𝑚 𝑠𝑠⁄ ≤ 𝑣𝑣𝑦𝑦 ≤
0 and 0 ≤ 𝑟𝑟 ≤ 1 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄  are based on the definition of 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡: 
too low negative side slip angles are considered equal and the 
positive direction is irrelevant in this case. After experimenting 
with several different (𝒮𝒮𝑑𝑑, 𝒜𝒜𝑑𝑑) finite subset pairs, the 
following ones provided the best performance: 
 
   𝒮𝒮𝑑𝑑 = 𝑉𝑉𝑥𝑥𝑑𝑑 × 𝑉𝑉𝑦𝑦𝑑𝑑 × 𝑌𝑌𝑟𝑟𝑤𝑤𝑑𝑑          (20) 
 
                       𝑉𝑉𝑥𝑥𝑑𝑑 = {5𝑚𝑚 𝑠𝑠⁄ , 6𝑚𝑚 𝑠𝑠⁄ ,… , 15𝑚𝑚 𝑠𝑠⁄ }                 (21) 
 
                  𝑉𝑉𝑦𝑦𝑑𝑑 = {−5𝑚𝑚 𝑠𝑠⁄ ,−4.5𝑚𝑚 𝑠𝑠⁄ ,… , 0𝑚𝑚 𝑠𝑠⁄ }               (22) 
 

             𝑌𝑌𝑟𝑟𝑤𝑤𝑑𝑑 = {0 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ , 0.1 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ , … , 1 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ }           (23) 

 
            𝒜𝒜𝑑𝑑 = 𝑃𝑃𝑑𝑑 × Δ𝑑𝑑         (24) 
 
      𝑃𝑃𝑑𝑑 = {0,0.1, … ,0.9,1}         (25) 
 
         Δ𝑑𝑑 = {−200,−170,… ,−20, 0, 10, 40, 70, 100}        (26) 
 
Representations sparser than this resulted in an insufficient 
performance of the agent, and denser ones did not perform as 
much better considering the increase in training time. As for 
the reward, two options were implemented to calculate its 
value, either from the current vehicle state (continuous) or the 
current agent state (discrete). 

3.3 Training Properties 

The training of the agent is episodic with the initial state 𝑆𝑆0 =
(9𝑚𝑚 𝑠𝑠⁄ , 0𝑚𝑚 𝑠𝑠⁄ , 0 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ ) and an episode last until a 

simulation reaches a defined simulation termination time 𝑇𝑇. 
The sample time of the controller is 𝑇𝑇Δ = 0.1𝑠𝑠, which means 

that the agent intervenes 
𝑇𝑇
0.1 times during each episode. With 

the help of this method the training of the agent is balanced 
between initiating and stabilizing the drift. As for the values of 
the optimal hyperparameters in each case, see Table 1. 

Table 1. Optimal Hyperparameter Values   

Name of parameter 𝜀𝜀-greedy 
exploration 

Adaptive 
exploration 

Learning Rate (𝛼𝛼) 0.5 0.2 
Discount factor (𝛾𝛾) 0.7 0.7 

Parameter of foresight (𝑛𝑛) 1 1 
Episode simulation time (𝑇𝑇) 5𝑠𝑠 8𝑠𝑠 

Reward computation continuous discrete 

 
4. RESULTS 

Fig. 3. Successful training with the ε-greedy strategy, with 
cumulative rewards earned during the episode in blue, 'isdrift' 
episode percentages in red, and exploration rates in yellow. 

4.1 Greedy Exploration 

The curves showing a successful training can be read from Fig. 
3.: after 12,900 episodes, the attainable optimum was found, 
with which the agent is able to maintain the defined target drift 
through 67.26% of the 5-second episode, i.e., for 3,363 
seconds. Achieving numbers higher than this in 5 seconds 
might be possible, although it’s sure that there is an upper 
bound lower than 100%, because the starting position is not a 
drift state, and the vehicle physically needs a certain amount 
of time to create drifting. The exploration decay factor was 
𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 = 7*10−5, which means that the 𝜀𝜀 exploration ratio 
reaches zero close to the 100.000th episode. It can be seen from 
the exploration rates that the interval between episode 6000 
and 13000 mostly contains exploitation, though even during 
this phase, the agent's performance improves significantly. 
This is mainly due to the appropriate all-zeros initialization of 
the Q-table: since the global maximum of the reward function 
is 0 and the values of state-action pairs that have not yet been 
tried via exploration are all left as zeros, the algorithm will 
prioritize these in case of exploitation, thus providing a 
secondary, internal exploration feature. 
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Fig. 4. A scope diagram showing the performance of the agent 
obtained as a result of a successful training. The ‘x’ axis shows 

the simulation time in seconds.   

Fig. 4. shows a scope graph, which describes the evolution of 
the state variables, the reward, the indicator, and the actions 
delivered by the agent through an episode. It can be noticed 
that the drifting movement takes place long before the defined 
indicator function shows the target drift. This can be seen from 
the fact that shortly before 1 second the angle 𝛽𝛽 is already in 
the negative range, while the value of 𝑟𝑟 is still positive. Also, 
Fig. 5. shows the trajectory taken by the vehicle controlled by 
the agent in the case of a 30 second simulation. In the red part 
of the curve, no drifting has yet occurred, in the yellow part 
side slippage is already taking place, and in the blue part the 
indicator function is already indicating. This colour coding can 
also be seen on Fig. 4., above the sideslip angle curve. All this 
information means that the defined target state is located not 
only at the handling limit, but also well beyond it. 

  
Fig. 5. The movement path of the car controlled by the agent 
for 30 seconds. 

Furthermore, looking at the evolution of the actions, it can be 
concluded that the agent is able to choose them quite precisely, 
there is no significant "twitching", which is a surprisingly good 
result considering the discrete nature of the agent. 
Nevertheless, a more serious regulation of the dynamics of the 
actuators will be necessary for the purpose of solving more 
complex tasks and testing on a real vehicle. 

In summary, the tabular agent operated with simple ε-greedy 
discovery successfully performed the set task, and the training 
instabilities experienced with the SAC algorithm were also 
eliminated, each training can be repeated with the same result, 
and the exploration strategy does not cause performance 
issues. However, it is important to note that finding the optimal 
values of the hyperparameters controlling the exploration took 
considerable time, which can cause difficulties in the case of a 
more complicated task (e.g. changing traction conditions).  

4.2 Adaptive Exploration 

During the experiments, the possible 𝜀𝜀 value set for the 
exploration agent was defined as follows: 

              Ε = {0,0.05,0.15,0.25,0.5,1}                     (19) 
 
Initially, all values are -1’s for both Q-tables. The first 
noticeable experience during training (Fig.6.) was that the rate 
of exploration oscillates between 20 and 40%, so around the 
average of 32.5%. Examining the evolution of the values of 
the exploratory Q-table during training, it can be seen in the 
vast majority of states that the Q-values of the epsilons are 
relatively close to each other throughout, and therefore their 
selection takes place with almost the same probability (Table 
2.). After investigating, the hypothesis was formed that the 
main reason for this is that when choosing the probabilities, 
the distance of the rate values relative to 0 (best possible 
reward) is considered, however, in most cases, reaching this 
value is impossible even with optimal actions, since the reward 
is the distance from the working point,  
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Table 2. Choosing an exploration rate   

which is obviously nonzero for practically all states. Changing 
the reward calculation to continuous did not solve this issue. 
Despite all of this, the agent has an even better performance 
than with the 𝜀𝜀-greedy exploration, with a 72.55% maximum 
drift ratio under the first 5 seconds (83.95% under 8 seconds) 
(Fig.7.). Moreover, this result has been achieved with stable, 
repeatable convergence, but due to the explorations that occur 
with a high probability on average, in a lot of cases it cannot 
maintain drifting for a long time. In addition, a significant 
"twitching" of the action values can also be experienced, 
which was not the case with the 𝜀𝜀-greedy exploration. These 
issues will be addressed by adding regulator constraints for the 
actions (see Section 5.1). 

5.  CONCLUSIONS 

In this paper, a control agent was developed to initiate and 
stabilize a steady-state drift motion in a simulation 
environment using tabular Q-learning with two different 
exploration strategies. The learned agents successfully 
approached the target state in both cases.  

  
Fig. 7. Performance of the adaptively exploring agent on a 
scope diagram. The brown curve shows the exploration cases 
together with the “isdrift” values (blue). 

The greedy exploration also made it possible to learn the 
information needed to maintain the target state, though finding 
the correct exploration hyperparameters required a significant 
amount of time. Although the adaptive strategy resulted in too 
much exploration, the reason for this behaviour was found, and 
it is possible to correct it in the future. The learning instabilities 

Choosing exploration: 
Epsilon 
value 

Exploratory table value 
(in the given state) 

Probability of 
selection 

𝜀𝜀 = 0 -0.2737 0.1704 
𝜀𝜀 = 0.05 -0.2857 0.1632 
𝜀𝜀 = 0.15 -0.2467 0.1891 
𝜀𝜀 = 0.25 -0.3301 0.1413 
𝜀𝜀 = 0.5 -0.2702 0.1726 
𝜀𝜀 = 1 -0.2853 0.1635 

Random probability variable for selection: 𝑝𝑝 = 0.1279 
𝑝𝑝 < 0.1704  𝜀𝜀𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0 

Fig. 6. Learning curves of the agent with the adaptive exploration strategy. The reward signal here has been split with respect to 
the state variable components in (17). 
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experienced before with the SAC algorithm were also 
eliminated, every session can be repeated with the same result, 
and the exploration strategies do not cause critical 
performance issues. 

The research will continue with correcting the difficulties of 
the adaptive algorithm and adding environmental noise and 
regulation dynamics for the actuators. After these trials, if the 
agent continues to show promising performance and 
robustness, testing on a real vehicle can take place on the 
ZalaZONE test track (https://www.zalazone.hu/). In the later 
stages, the goal is to develop an agent capable of performing 
continuous drifting through specified tracks and road sections. 
Another goal could be the development of an adaptive feature 
that successfully responds to stochastic road conditions while 
performing on the track. 

5.1 Outlook: Applying Regulation for the Actuator Dynamics 

The ongoing research works related to the regulation of 
actuator dynamics will be briefly presented here. 

Fig. 8. The performance of the adaptive algorithm with the 
addition of actuator dynamics, in the case of n = 5 and a 
sample time of 0.2s. The green curves are the action values 
actually delivered for the vehicle. 

Actuator control in this case means that a delaying, one-
storage proportional member is added to the input signal of 
both actions, and a rate limiter is added to the steering wheel, 
thereby simulating the conditions of controlling a real vehicle. 
Experiments with the adaptive exploration so far show that the 
algorithm can adapt to conditions that make the task more 
difficult, but only by increasing the parameter of foresight. In 
some cases, it can also be observed that the limited actions 

only reach the target values desired by the agent if the sample 
time is increased accordingly (Fig. 8.). In the absence of this, 
it may happen that the agent plans too far in advance, thus 
intervening in the process prematurely, which sometimes 
nullifies the effect of the actions issued so far. On the other 
hand, increasing the sample time can have the disadvantage of 
losing the precision required to maintain the drift. This trade-
off situation is an important part of future development to do 
further experiments on. 
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