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We consider edge decompositions of K (3)
v − I , the complete 3-uniform hypergraph of order 

v minus a set of v/3 mutually disjoint edges (1-factor). We prove that a decomposition 
into tight 6-cycles exists if and only if v ≡ 0, 3, 6 (mod 12) and v ≥ 6; and a decomposition 
into tight 9-cycles exists for all v ≥ 9 divisible by 3. These results are complementary to the 
theorems of Akin et al. [Discrete Math. 345 (2022)] and Bunge et al. [Australas. J. Combin. 
80 (2021)] who settled the case of K (3)

v .
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 

CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

A decomposition of a (hyper)graph H is a collection of edge-disjoint sub(hyper)graphs H1, . . . , Hm of H whose union is 
H. If each Hi is isomorphic to a fixed hypergraph F , then {H1, . . . , Hm} is called an F -decomposition of H. Obviously, if 
H admits an F -decomposition, then the number of edges in H is a multiple of the number of edges in F . Here we study 
decompositions into 3-uniform cycles of lengths 6 and 9, and prove that this obvious necessary condition is also sufficient 
for the decomposability of every nearly complete hypergraph K (3)

v − I obtained from the complete 3-uniform hypergraph 
K (3)

v of order v by the deletion of a 1-factor, i.e. omitting v/3 mutually disjoint edges.
Edge decompositions of complete graphs K v , and complete graphs minus a 1-factor, K v − I , of order v have a long 

history for over a century. Concerning the existence of decompositions into cycles of a fixed length it was proved by Alspach 
and Gavlas [2] and Šajna [23], with a substantially different proof by Buratti [8] for odd cycle lengths, that the standard 
necessary arithmetic conditions—i.e., the degree v − 1 or v − 2 must be even, and the number 

(v
2

)
or v(v−2)

2 of edges must 
be a multiple of the cycle length—are also sufficient. Also the existence of decompositions into Hamiltonian cycles requires 
just the proper parity of v; this well-known fact dates back to the 19th century.

1.1. Berge cycles in hypergraphs

The situation becomes more complicated when larger edge size is considered. This is so already for the complete 3-
uniform hypergraphs K (3)

v of order v . In hypergraphs there are several ways to define cycles, and the stricter one is taken, 
the harder the question of decomposability becomes.
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The weakest form of cycle in a hypergraph is Berge k-cycle, defined as an alternating cyclic sequence v1, e1, v2, e2, . . . , vk,

ek of k mutually distinct vertices and edges such that vi ∈ ei ∩ ei−1 for all 1 < i ≤ k and v1 ∈ e1 ∩ ek . The particular case 
where k is the number v of vertices means Hamiltonian Berge cycle. Here the necessary condition for K (3)

v means v | (v
3

)
, 

and it turns out to be sufficient. Namely, the existence of decompositions of K (3)
v into Hamiltonian Berge cycles was proved 

by Bermond [4] for v ≡ 2, 4, 5 (mod 6), and by Verall [25] for v ≡ 1 (mod 6). Kühn and Osthus [18] generalized this 
result, proving the sufficiency of v | (v

r

)
for Hamiltonian Berge-cycle decompositions of complete r-uniform hypergraphs K (r)

v
(r ≥ 4), with the slight restriction v ≥ 30 if r = 4 and v ≥ 20 if r ≥ 5.

Assume next that the number v of vertices is a multiple of the edge size r. If r = 3, then in the hypergraph K (3)
v − I

the number v2(v−3)
6 of edges is a multiple of v , and K (3)

v − I admits a decomposition into Hamiltonian Berge cycles [25]. 
Similarly, if r ≥ 4 and v is not too small, then every r-uniform hypergraph with v vertices and 

(v
r

) − (
(v

r

)
mod r) edges is 

decomposable into Hamiltonian Berge cycles [18].
Concerning cycles of any fixed length the decomposability problem on K (r)

v (and even on complete multi-hypergraphs) 
was solved by Javadi, Khodadadpour and Omidi [12] for all v ≥ 108. For the particular cycle lengths k = 4 and k = 6 with 
edge size r = 3 it is also known that the lower bounds on v can be omitted; see [14] and [19], respectively.

1.2. Tight cycles in uniform hypergraphs

A stricter cycle definition is r-uniform tight k-cycle that means a cyclic sequence v1, v2, . . . , vk of k vertices, together with 
k edges formed by the r-tuples of consecutive vertices vi, vi+1, . . . , vi+r−1 (i = 1, 2, . . . , k, subscript addition taken modulo 
k).

From now on, by k-cycle we mean 3-uniform tight k-cycle. The decomposition problem into such cycles seems much harder 
than the one above on Berge cycles, already on K (3)

v and K (3)
v − I . Decomposability of K (3)

v into Hamiltonian cycles has the 
simple necessary condition 3 | (v − 1)(v − 2). But its sufficiency has been studied only within a limited range (v ≤ 16 by 
Bailey and Stevens [3], v ≤ 32 by Meszka and Rosa [21], v ≤ 46 by Huo et al. [11].)

For fixed cycle length k concerning K (3)
v , only three cases are solved: the very famous class of Steiner Quadruple Systems 

(k = 4) by the classical theorem of Hanani [10], and the very recent works by Akin et al. [1] for k = 6 and by Bunge et al. 
[7] for k = 9. There are many constructions for k = 5 and k = 7, but no complete solution is available on them; for partial 
results and further references we cite [15] and [20].

In this paper we initiate the study of k-cycle decompositions of K (3)
v − I . Hence, let us assume 3 | v , and consider k = 4

first. Note that the edges of a 3-uniform tight 4-cycle are exactly the 3-element subsets of a 4-element set, therefore edge-
disjoint collections of 4-cycles are in one-to-one correspondence with partial Steiner Quadruple Systems. In this way, in the 
particular case k = 4, estimates due to Johnson [13] and Schönheim [24] yield that the maximum number of edge-disjoint 
4-cycles on v vertices does not exceed⌊

v

4

⌊
v − 1

3

⌊
v − 2

2

⌋⌋⌋
.

For v ≡ 3 (mod 6) this means v(v − 1)(v − 3)/24. Moreover, as discussed by Brouwer in [6], another upper bound due 
to Johnson yields v(v2 − 3v − 6)/24 if v ≡ 0 (mod 6). As a consequence, in either case the number of edges covered by 
any collection of edge-disjoint 4-cycles is smaller than v2(v − 3)/6. In our context this fact has the following important 
consequence.

Corollary 1. No K (3)
v − I can admit a decomposition into tight 4-cycles.

The main goal of the present note is to prove that in the other two cases that are solved for K (3)
v , namely k = 6 and 

k = 9, the k-cycle decompositions of K (3)
v have their natural analogues for K (3)

v − I . In this way we solve the spectrum 
problem for the decomposability of K (3)

v − I for the cases of 6-cycles and 9-cycles. More explicitly, we prove the following 
two results.

Theorem 2. The hypergraph K (3)
v − I admits a decomposition into 6-cycles if and only if v ≥ 6 and v ≡ 0, 3, 6 (mod 12).

Theorem 3. The hypergraph K (3)
v − I admits a decomposition into 9-cycles if and only if v ≥ 9 and v is a multiple of 3.

Since K (3)
v − I has v2(v −3)/6 edges, and a k-cycle has k edges, the general necessary conditions now mean 6k | v2(v −3). 

That is, 3 | v for both k = 6 and k = 9, moreover the residue class v ≡ 9 (mod 12) is excluded if k = 6.

Remark 4. Since K (3)
v − I has v2(v − 3)/6 edges, and every k-cycle has exactly k edges, for the existence of a decomposition 

into k-cycles we must have 6k | v2(v − 3), therefore the conditions given in Theorems 2 and 3 are necessary.
2
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Fig. 1. Illustrations for K (3)

a,b,c , K (3)

a→b and K (3)

a↔b .

Sufficiency of the conditions in Theorems 2 and 3 will be proved in Section 2 and Section 3, respectively. Further systems 
with additional properties are constructed in Sections 4 and 5. One of those properties specifies “2-split systems” [9] that 
have been used frequently in recursive constructions for other cycle lengths. The other considered type is “cyclic systems” 
having a rotational symmetry.

1.3. Notation

We write C∗(3,k, v) to denote any decomposition of K (3)
v − I into tight 3-uniform k-cycles. Moreover, for some particular 

types of 3-uniform hypergraphs we use the following notation (see Fig. 1 for illustrations):

• K (3)

a,b,c — complete 3-partite hypergraph whose vertex set is partitioned into three sets A, B, C with |A| = a, |B| = b, 
|C | = c, and a 3-element set T ⊂ A ∪ B ∪ C is an edge if and only if |T ∩ A| = |T ∩ B| = |T ∩ C | = 1.

• K (3)

a→b — 3-uniform hypergraph whose vertex set is partitioned into two sets A and B with |A| = a and |B| = b, and a 
3-element set T ⊂ A ∪ B is an edge if and only if |T ∩ A| = 2 and |T ∩ B| = 1.

• K (3)

a↔b — a hypergraph of “crossing triplets”: 3-uniform hypergraph whose vertex set is partitioned into two sets A and 
B with |A| = a and |B| = b, and a 3-element set T ⊂ A ∪ B is an edge if and only if it meets both A and B .

2. The spectrum of C∗(3,6, v) systems

In this section we prove Theorem 2. Let v = 12m + 3s, where m ≥ 1 is any integer and s = 0, 1, 2. We denote by H2 the 
3-uniform hypergraph with four vertices a, b, c, d and two edges abc, abd. We shall apply the following well-known result.

Theorem 5 (Bermond, Germa, Sotteau [5]). If n ≡ 0, 1, 2 (mod 4), then K (3)
n has a H2-decomposition.

Moreover, two building blocks will be used. The first one is derived from the cycle double cover of the edge set of 
the complete bipartite graph K3,3 with the three cycles x1 y1x2 y2x3 y3, y1x2 y3x1 y2x3, x2 y3x3 y1x1 y2, where the two vertex 
classes are {x1, x2, x3} and {y1, y2, y3}.

Lemma 6. The hypergraph K (3)
6 − I obtained from K (3)

6 by omitting the 1-factor I = {a1a2a3, a4a5a6} has a decomposition into the 
three 6-cycles

a1a4a2a5a3a6 , a4a2a6a1a5a3 , a2a6a3a4a1a5 .

The second small construction is derived by combining the two cyclic P4-decompositions x1+i y1+i x2+i y3+i and 
y1+i x1+i y3+i x2+i (i = 0, 1, 2, subscript addition taken modulo 3) of the same K3,3.

Lemma 7. The complete 3-partite hypergraph K (3)
3,3,2 with its three vertex classes {a1, a2, a3}, {b1, b2, b3}, {c1, c2} has a decomposition 

into the three 6-cycles

a1+i b1+i c1 a2+i b3+i c2 (i = 0,1,2)
3
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Fig. 2. We view K (3)
v − I as the result of substituting 4u + s triplets A1, . . . , A4u+s into the vertices x1, . . . , x4u+s of K (3)

4u+s . An example with triplets 
A1, A2, A8 and the corresponding three vertices x1, x2, x8 is highlighted.

Fig. 3. Example H2 formed by the triplets xi x j xk1 , xi x j xk2 in the decomposition.

where subscript addition is taken modulo 3.

Alternative constructions for Lemmas 6 and 7, which have a less symmetric structure, can be found in Examples 2 and 
5 of [1].

Proof of Theorem 2. The case of v = 6 is settled in Lemma 6. Let now v = 12u + 3s, where u ≥ 1 and s = 0, 1, 2. We view 
K (3)

v − I as the result of substituting 4u + s triplets A1, . . . , A4u+s into the vertices x1, . . . , x4u+s of K (3)
4u+s (see Fig. 2). The 

sets Ai will play the role of edges in the 1-factor whose omission from the edge set of K (3)
v yields K (3)

v − I . Then each edge 
of K (3)

v − I meets two or three of the sets Ai . Those two types of edges will be covered with 6-cycles separately.

(a) For the edges meeting two sets from A1, . . . , A4u+s we consider all pairs i, j with 1 ≤ i < j ≤ 4u + s, and apply 
Lemma 6 to cover all triplets but Ai and A j inside Ai ∪ A j . This step creates three 6-cycles for each pair i, j.

(b) For the edges meeting three of the Ai we take an H2-decomposition of K (3)
4u+s as guaranteed by Theorem 5. Suppose 

that the triplets xi x j xk1 , xi x j xk2 form a copy of H2 in this decomposition (see Fig. 3). They represent the complete 3-partite 
hypergraph K (3)

3,3,6 whose vertex classes are Ai , A j , and Ak1 ∪ Ak2 . We split Ak1 ∪ Ak2 into three pairs Ck0 , Ck1 , Ck2 , in this 
way decomposing K (3)

3,3,6 into three copies of K (3)
3,3,2 (see Fig. 4). Now Lemma 7 can be applied to find 6-cycle decompositions 

of the complete 3-partite hypergraphs whose vertex classes are Ai , A j , and Ck�
for � = 0, 1, 2. This step creates nine 6-cycles 

for each copy of H2.

These collections of 6-cycles decompose K (3)
v − I . �
4
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Fig. 4. A copy of H2 represents the complete 3-partite hypergraph K (3)
3,3,6. Continuing the example of Fig. 3, the vertex classes of the K (3)

3,3,6 are Ai , A j and 
Ak1 ∪ Ak2 . We split Ak1 ∪ Ak2 into three pairs, decomposing K (3)

3,3,6 into three copies of K (3)
3,3,2.

3. The spectrum of C∗(3,9, v) systems

In this section we prove Theorem 3. Although its form is simpler than Theorem 2, it requires more types of building 
blocks than the construction for 6-cycles, moreover a distinction between the three residue classes will also be needed. 
Before the main part of the proof we give several constructions of 9-cycle decompositions of hypergraphs on a small 
number of vertices.

Lemma 8. There exists a decomposition of K (3)
9 − I into nine 9-cycles.

Proof. We construct a system with cyclic symmetry, composed from the following 9-cycles, subscript addition taken modulo 
9:

a1+i a2+i a3+i a8+i a7+i a5+i a9+i a6+i a4+i (i = 0,1, . . . ,8) .

These cycles cover all vertex triplets but a1a4a7, a2a5a8, and a3a6a9. �
The method of the following construction works in a more general way also, for an infinite sequence of cycle lengths as 

shown in [17]; but here we only need its particular case yielding 9-cycles.

Lemma 9. There exists a decomposition of K (3)
9→3 into twelve 9-cycles.

Proof. Let A = {a1, . . . , a9} and B = {b1, b2, b3} be the two vertex classes of K (3)
9→3. As mentioned in the introduction, cycle 

systems on ordinary complete graphs K v exist whenever v is odd and the number of edges is divisible by the given cycle 
length. In particular, K9 with 9 vertices and 36 edges can be decomposed into six 6-cycle subgraphs. We take this auxiliary 
decomposition over the vertex set A, and construct two 9-cycles in K (3)

9→3 for each of its graph 6-cycles. Say, a1a2a3a4a5a6

is one of the cycles in K9. We define the two 9-cycles

a1 b1 a2 a3 b2 a4 a5 b3 a6 , b2 a1 a2 b3 a3 a4 b1 a5 a6 .

The 18 edges of size 3 in these two 9-cycles are precisely those triplets that consist of two consecutive vertices along the 
graph 6-cycle and one vertex from B . Hence, taking the same for all the six cycles in the decomposition of K9, a required 
collection of 9-cycles is obtained in K (3)

9→3. �
A similarly symmetric construction cannot be expected for K (3)

6→3, nevertheless a 9-cycle decomposition still exists.

Lemma 10. The five 9-cycles
a1 a2 b1 a3 a4 b2 a5 a6 b3
a1 a5 b1 a6 a4 b2 a2 a3 b3
a2 a4 b1 a1 a6 b2 a3 a5 b3
a3 a6 b1 a2 a5 b2 a1 a4 b3
a4 a5 b1 a3 a1 b2 a2 a6 b3

decompose K (3) whose two vertex classes are A = {a1, a2, . . . , a6} and B = {b1, b2, b3}.
6→3

5
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We also recall the following construction, which is derived from three Hamiltonian cycles of the complete graph K9 .

Lemma 11 (Bunge et al. [7], Example 5). The three 9-cycles

a1 a1+i a1+2i . . .a1+8i (i = 1,2,4)

with subscript addition modulo 9 decompose K (3)
3,3,3 whose vertex classes are {a1, a4, a7}, {a2, a5, a8}, and {a3, a6, a9}.

It will be convenient to put these small structures together in some larger hypergraphs as follows.

Lemma 12. All of the following types of hypergraphs admit decompositions into 9-cycles:

(i) K (3)
3p,3q,3r for all p, q, r ≥ 1,

(ii) K (3)
3p→3q for all p ≥ 2 and q ≥ 1,

(iii) K (3)
3p↔3q for all p, q ≥ 2,

where p, q, r denote integers.

Proof. Concerning (i), the following decomposition chain is easily seen:

K (3)
3p,3q,3r −→ r × K (3)

3p,3q,3 −→ qr × K (3)
3p,3,3 −→ pqr × K (3)

3,3,3

and for K (3)
3,3,3 we have a decomposition into three 9-cycles by Lemma 11. Similarly in (ii) we can do the step K (3)

3p→3q −→
q × K (3)

3p→3. Now we write p in the form p = 2a + 3b, which is possible whenever p ≥ 2.

(In fact b = 0 or b = 1 can always be ensured.) Splitting the 3p vertices in the first class of K (3)
3p→3 into a sets of size 6 

and b sets of size 9 we can proceed with the step

K (3)
3p→3 −→

(
a × K (3)

6→3

)
∪

(
b × K (3)

9→3

)
∪

(
ab × K (3)

3,6,9

)
∪

((
a

2

)
× K (3)

3,6,6

)
∪

((
b

2

)
× K (3)

3,9,9

)

completing the decomposition by Lemmas 9 and 10, also using (i). Finally, (iii) is implied by K (3)
3p↔3q −→

(
K (3)

3p→3q

)
∪(

K (3)
3q→3p

)
that can be done due to (ii). �

We shall need two further small cases for the general proof of Theorem 3. The first one is v = 12.

Lemma 13. For v = 12 the two 9-cycles

a1 a2 a3 a5 a6 a9 a11 a4 a7 , a1 a2 a8 a12 a3 a10 a11 a7 a9

and their rotations modulo 12 form a decomposition of K (3)
12 − I , with uncovered (omitted) triplets a1a5a9 , a2a6a10 , a3a7a11 , a4a8a12 .

As a final auxiliary step, we also need to handle the case of v = 15 separately.

Lemma 14. The hypergraph K (3)
15 − I admits a 9-cycle decomposition into 50 cycles.

Proof. Let the vertex set be A ∪ B ∪ C , with |A| = |B| = 6 and |C | = 3. Inside A ∪ C and also inside B ∪ C we take a copy 
of the 9-cycle decomposition of K (3)

9 − I , where C is an uncovered vertex triplet. These 18 cycles cover all triplets inside 
A and inside B—with the exception of two disjoint triplets in each—and also the A–C and B–C crossing triplets. The A–B
crossing triplets can be covered by a decomposition of K (3)

6↔6 (20 cycles); and the triplets meeting all the three parts A, B, C
decompose as K (3)

6,6,3 (12 cycles), applying Lemma 12 for both cases. �
Now we are in a position to prove Theorem 3.

Proof of Theorem 3. The three feasible residue classes 0, 3, 6 modulo 9 will be treated separately.

Case 1: v ≡ 0 (mod 9).
6
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For v = 9u let the vertex set be A1 ∪ · · · ∪ Au with |Ai | = 9 for all 1 ≤ i ≤ u. Inside each Ai we take a copy of the 
9-cycle decomposition of K (3)

9 − I given in Lemma 8. The family of triplets meeting an Ai in two vertices and another A j

in one vertex can be covered by the 9-cycle decomposition of K (3)
9↔9, as in Lemma 12. Finally, the triplets meeting three 

distinct parts Ai, A j, Ak form a copy of K (3)
9,9,9 for any 1 ≤ i < j < k ≤ u, hence this type is also decomposable into 9-cycles 

by Lemma 12.

Case 2: v ≡ 3 (mod 9).
If v = 9u + 3, beside the sets A1, . . . , Au with |Ai | = 9 we also take an A0 with |A0| = 3. Now inside each A0 ∪ Ai

we insert a copy of the K (3)
12 − I decomposition as in Lemma 13, in such a way that A0 is one of the uncovered triplets. 

Hence the copies of K (3)
12 − I for distinct i are independent of each other. Inside A1 ∪ · · · ∪ Au we cover the triplets meeting 

more than one Ai in the same way as we did in the case of v = 9u. Hence only those triplets remain to be covered that 
meet A0 and two further Ai, A j (1 ≤ i < j ≤ u). For any fixed pair i, j those triplets form a copy of K (3)

9,9,3, thus they are 
decomposable into 9-cycles by Lemma 12.

Case 3: v ≡ 6 (mod 9).
If v = 9u + 6, beside the sets A1, . . . , Au with |Ai | = 9 we take an A0 with |A0| = 6. In this case A1 will be treated 

differently from the other parts Ai , i ≥ 2. Then we take:

• K (3)
15 − I inside A0 ∪ A1, see Lemma 14;

• K (3)
9 − I inside each Ai for 2 ≤ i ≤ u, see Lemma 8;

• K (3)
6↔9 between A0 and each Ai for 2 ≤ i ≤ u, see Lemma 12 (iii);

• K (3)
6,9,9 with vertex classes A0, Ai, A j for all 1 ≤ i < j ≤ u, see Lemma 12 (i);

• K (3)
9↔9 with vertex classes Ai, A j for all 1 ≤ i < j ≤ u, see Lemma 12 (iii);

• K (3)
9,9,9 with vertex classes Ai, A j, Ak for all 1 ≤ i < j < k ≤ u, see Lemma 12 (i).

The decompositions of these parts can be done according to the lemmas above, and they together decompose K (3)
9u+6 − I

into 9-cycles. �
4. 2-split systems

The notion of 2-split systems was introduced and applied in [9], with the intention to build cycle systems of double 
size from available constructions. In our present context a 2-split system of order v consists of a decomposition of two 
vertex-disjoint copies of K (3)

v/2 − I , together with a decomposition of K (3)
v/2↔v/2 for the set of edges that meet both of the two 

disjoint parts.
In this section we prove that this can be done for all feasible residue classes; i.e., 2-split C∗(3,6, v) and C∗(3,9, v)

systems exist for all v that admit C∗(3,6, v/2) and C∗(3,9, v/2) systems, respectively. In fact, the existence of 2-split 
C∗(3,9, v) systems already follows from our previous lemmas.

Theorem 15. There exists a 2-split 9-cycle decomposition of K (3)
v − I if and only if v ≥ 18 and v ≡ 0 (mod 6).

Proof. A C∗(3,9, v/2) system with v/2 = 3p exists for every p ≥ 3 by Theorem 3, and a K (3)
3p↔3p system exists by part (iii)

of Lemma 12. On the other hand, the condition 3 | v
2 is clearly necessary. �

The construction of 2-split 6-cycle systems requires more work. Along the way we shall also need a fundamental result 
on Kirkman triple systems. Recall from the literature that a Kirkman triple system of order v is a collection of 3-element sets 
(blocks) such that each pair of elements belongs to exactly one block, and the set of blocks can be partitioned into (v −1)/2
so-called parallel classes, each of those classes consisting of v/3 mutually disjoint blocks.

Theorem 16 (Ray-Chaudhuri, Wilson [22]). For every v ≡ 3 (mod 6) there exists a Kirkman triple system of order v.

We shall also use the following small construction.

Lemma 17 (Akin et al. [7], Example 3). There is a decomposition of K (3)
6↔6 into 6-cycles.

Proof. The construction in [7] takes Z12 as vertex set, and defines 30 cycles derived from two cycles (0, 5, 10, 8, 11, 2)

and (0, 1, 9, 4, 3, 7) turning them into 12 positions via the mappings j �→ j + i (mod 12) for i ∈ Z12, and from a third 
7



A. Keszler and Zs. Tuza Discrete Mathematics 347 (2024) 113782
cycle (0, 1, 2, 6, 7, 8) turned into 6 positions via j �→ j + i (mod 12) for i = 0, 1, . . . , 5. Here the two vertex classes are 
A = {0, 2, 4, 6, 8, 10} and B = {1, 3, 5, 7, 9, 11}. �

The spectrum of 2-split C∗(3,6, v) systems can now be determined.

Theorem 18. There exists a 2-split 6-cycle decomposition of K (3)
v − I if and only if v ≥ 12 and v ≡ 0, 6, 12 (mod 24).

Proof. According to Theorem 2, the arithmetic condition v/2 ≡ 0, 3, 6 (mod 12) is necessary. To prove sufficiency, consider 
first the cases where v is of the form v = 12p. We know from Theorem 2 that a C∗(3,6,6p) system exists for every p ≥ 1. 
Let now A1 ∪ · · · ∪ Ap and B1 ∪ · · · ∪ B p be the vertex sets of two such systems, where the Ai and Bi are mutually disjoint 
6-element sets. For all 1 ≤ i, j ≤ p we take decompositions of K (3)

6↔6 as given in Lemma 17, for the crossing triplets in 
Ai ∪ B j . It remains to cover the triplets that meet two subsets on one side of C∗(3,6,6p) and one subset on the other side. 
For any three of those 6-element sets we can apply the decomposition chain

K (3)
6,6,6 −→ 2 × K (3)

3,6,6 −→ 4 × K (3)
3,3,6 −→ 12 × K (3)

3,3,2

and find a decomposition according to Lemma 7.
For the third residue class v = 24p + 6, the construction starts with two copies of a C∗(3,6,12p + 3) system, say over 

the disjoint sets A′ and A′′ , guaranteed by Theorem 2. Apply Theorem 16 to find Kirkman triple systems over A′ and A′′ , 
to be used as auxiliary tools. We denote by F ′

1, . . . , F ′
6p+1 and F ′′

1 , . . . , F ′′
6p+1 the corresponding parallel classes. Then for 

i = 1, . . . , 6p + 1, for all T ′ ∈ F ′
i and T ′′ ∈ F ′′

i we take a decomposition of K (3)
6 − I whose missing edges are T ′ and T ′′ (three 

6-cycles for each pair T ′, T ′′) as given in Lemma 6. The collection of those cycles covers all crossing triplets exactly once. 
Indeed, a triplet T meeting both A′ and A′′ has two vertices on one side; those two vertices are contained in a unique 
block of the Kirkman triple system on that side; and the block uniquely determines the index i of F ′

i ∪ F ′′
i in which the 

block occurs; hence T is contained in a single well-defined set T ′ ∪ T ′′ and appears in just one of its 6-cycles. Consequently 
a C∗(3,6,24p + 6) system is obtained. �
5. Concluding remarks

In this note we determined the spectrum of 6-cycle decompositions and 9-cycle decompositions of nearly complete 
3-uniform hypergraphs K (3)

v − I . This problem is now completely solved. On the other hand it would be of interest to 
find decompositions satisfying some further structural requirements. Besides the 2-split systems discussed in Section 4 we 
would like to mention cyclic systems as well. In a cyclic system, with the vertex set Zv , the mapping i �→ i + 1 (mod v) 
is an automorphism of the decomposition. The missing triplets are (i, i + v/3, i + 2v/3), because i �→ i + 1 has to be an 
automorphism of the complement of K (3)

v − I , too. Concerning cyclic systems we formulate the following open problems.

Conjecture 1.

(i) For every v ≡ 0, 3, 6 (mod 12), v ≥ 6, there exists a cyclic 6-cycle decomposition of K (3)
v − I .

(ii) For every v ≡ 0, 6, 12 (mod 24), v ≥ 12, there exists a cyclic 2-split 6-cycle decomposition of K (3)
v − I .

(iii) For every v ≡ 0 (mod 3), v ≥ 9, there exists a cyclic 9-cycle decomposition of K (3)
v − I .

(iv) For every v ≡ 0 (mod 6), v ≥ 18, there exists a cyclic 2-split 9-cycle decomposition of K (3)
v − I .

Examples of cyclic 9-cycle decompositions have already been given in Lemmas 8, 11, and 13 above. In further support of 
Conjecture 1, in the two subsections below we list the base cycles generating cyclic systems C∗(3,6, v) and C∗(3,9, v) for 
all feasible values of v ≤ 30. Those systems have been found via a combination of intuitively pre-defined base cycles and 
partial computer search. In order to facilitate checking that those are decompositions indeed, detailed tables are presented 
in the arXiv version [16] of this paper.

Remark 19. Under the mapping i �→ i + 1 the number of orbits of triplets other than (i, i + v/3, i + 2v/3) is 1
6 v(v − 3). This 

is not divisible by 6 if v = 12p + 6, and not divisible by 9 if v = 9p + 6. In those residue classes, one “exceptional” base 
cycle has an automorphism i �→ i + v/2 for 6-cycles and i �→ i + v/3 for 9-cycles.

5.1. Base cycles of cyclic 6-cycle decompositions

The cyclic system C∗(3,6,6) has 1 base cycle:
8
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(0,1,2,5,4,3) (exceptional).1

The cyclic system C∗(3,6,12) has 3 base cycles:
(0,1,2,4,5,8), (0,1,5,8,3,6), (0,1,9,3,5,7).

The cyclic system C∗(3,6,15) has 5 base cycles:
(0,1,2,4,5,8), (0,1,5,3,8,6), (0,1,7,3,6,10), (0,1,9,14,7,11),
(0,3,12,6,2,8).

The cyclic system C∗(3,6,18) has 8 base cycles:
(0,1,2,9,10,11) (exceptional),
(0,1,3,4,7,9), (0,1,5,3,8,10), (0,1,6,5,2,12), (0,1,7,3,9,13),
(0,2,7,13,3,8), (0,3,7,17,4,11), (0,3,12,8,15,6).

The cyclic system C∗(3,6,24) has 14 base cycles:
(0,1,2,4,5,8), (0,1,5,3,8,6), (0,1,7,3,6,9), (0,1,10,3,5,11),
(0,1,12,3,6,13), (0,1,14,3,6,15), (0,1,16,3,6,17), (0,1,18,3,6,20),
(0,2,10,5,1,19), (0,2,12,7,16,20), (0,2,14,7,3,16), (0,4,12,17,3,7),
(0,4,17,23,7,16), (0,5,13,19,7,14).

The cyclic system C∗(3,6,27) has 18 base cycles:
(0,1,3,5,24,26), (0,3,4,8,23,24), (0,4,6,1,21,23), (0,5,6,12,21,22),
(0,6,9,1,18,21), (0,7,3,8,24,20), (0,8,1,10,26,19), (0,10,2,11,25,17),
(0,11,1,8,26,16), (0,12,2,16,25,15), (0,13,1,4,26,14), (0,1,9,4,13,16),
(0,2,13,5,18,22), (0,2,16,23,5,18), (0,3,16,6,21,17), (0,4,12,19,7,21),
(0,6,17,23,12,19), (0,6,18,4,23,7).

The cyclic system C∗(3,6,30) has 23 base cycles:
(0,1,2,15,16,17) (exceptional),
(0,2,3,15,27,28), (0,3,4,15,26,27), (0,4,6,15,24,26), (0,5,1,15,29,25),
(0,6,7,15,23,24), (0,7,2,15,28,23), (0,1,6,3,10,15), (0,1,8,10,2,20),
(0,2,10,5,14,17), (0,2,13,5,19,14), (0,3,9,16,1,10), (0,4,10,29,13,23),
(0,4,12,25,7,21), (0,10,21,6,24,13), (0,5,12,9,14,15), (0,18,10,12,19,20),
(0,3,12,7,15,17), (0,25,9,1,12,14), (0,9,24,1,7,10), (0,10,24,13,19,23),
(0,14,26,9,17,21), (0,19,7,22,3,13).

5.2. Base cycles of cyclic 9-cycle decompositions

The cyclic system C∗(3,9,9) has 1 base cycle:
(0,1,2,7,6,4,8,5,3). (Cf. Lemma 8.)

The cyclic system C∗(3,9,12) has 2 base cycles:
(0,1,2,4,5,8,10,3,6), (0,1,7,11,2,9,10,6,8).

The cyclic system C∗(3,9,15) has 4 base cycles:
(0,1,2,5,6,7,10,11,12) (exceptional),
(0,1,3,4,8,2,5,7,9), (0,1,6,3,10,2,12,4,7), (0,1,10,14,6,12,2,5,11).

The cyclic system C∗(3,9,18) has 5 base cycles:
(0,1,2,4,5,8,3,6,7), (0,1,5,3,9,4,2,10,8), (0,1,9,4,8,10,3,6,13),
(0,1,10,3,7,14,17,2,11), (0,3,13,17,5,10,14,4,9).

The cyclic system C∗(3,9,21) has 7 base cycles:
(0,1,2,4,5,8,3,6,7), (0,1,5,3,9,4,2,10,8), (0,1,9,4,8,10,3,6,12),
(0,1,10,3,7,11,2,6,13), (0,1,11,3,8,13,2,4,14), (0,3,6,18,4,13,1,5,14),
(0,3,13,7,12,20,6,17,11).

The cyclic system C∗(3,9,24) has 10 base cycles:
(0,1,2,8,9,10,16,17,18) (exceptional),
(0,1,3,4,7,2,5,6,10), (0,1,6,5,13,2,3,11,12), (0,1,14,3,5,7,11,2,15),
(0,1,17,3,5,10,2,6,19), (0,2,8,5,1,7,9,16,12), (0,2,10,7,1,12,5,14,19),
(0,3,9,15,1,4,14,20,10), (0,3,12,15,4,22,13,5,17), (0,4,9,16,1,11,18,5,13).

1 Interestingly enough, here the mapping i �→ i + v/2 reverses the vertex order along the base cycle, but nevertheless it is an automorphism. The point 
is that the “reflection through the 1–4 line,” i �→ 2 − i (mod 6), is a further automorphism of this cycle.
9
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The cyclic system C∗(3,9,27) has 12 base cycles:
(0,1,3,6,10,17,21,24,26), (0,2,6,1,7,20,26,21,25), (0,3,4,10,1,26,17,23,24),
(0,4,9,1,8,19,26,18,23), (0,5,7,13,2,25,14,20,22), (0,6,10,18,1,26,9,17,21),
(0,7,9,19,5,22,8,18,20), (0,8,9,18,4,23,9,18,19), (0,10,3,15,1,26,12,24,17),
(0,11,1,22,8,19,5,26,16), (0,12,9,1,16,11,26,18,15), (0,13,4,19,20,7,8,23,14).

The cyclic system C∗(3,9,30) has 15 base cycles:
(0,1,3,6,7,23,24,27,29), (0,2,6,1,7,23,29,24,28), (0,3,7,12,1,29,18,23,27),
(0,4,10,1,8,22,29,20,26), (0,5,7,13,6,24,17,23,25), (0,6,13,1,4,26,29,17,24),
(0,7,8,16,1,29,14,22,23), (0,8,10,19,2,28,11,20,22), (0,9,10,20,2,28,10,20,21),
(0,11,3,16,28,2,14,27,19), (0,12,1,5,20,10,25,29,18), (0,13,1,11,8,22,19,29,17),
(0,14,2,17,3,27,13,28,16), (0,3,13,22,8,18,21,5,16), (0,6,15,25,8,18,4,13,19).
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