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A B S T R A C T

The modeling and control of networks of kinetic systems, also called chemical reaction networks (CRNs),
containing distributed delays are considered in this paper. The nodes in the network are sub-CRNs with nonneg-
ative nonlinear dynamics, while the interconnections are modeled as linear connecting CRNs. Distributed delays
appearing in the system are described as physically motivated connecting sub-CRNs with asymptotically stable
linear compartmental dynamics. A control model is given for the studied system class, where the manipulable
inputs are selected inlet concentrations, and the control goal is to achieve global stability by ensuring the
complex balanced property of the closed loop system. Besides stabilization, the tracking of prescribed setpoints
is also solved using a suitable decentralized feedforward-feedback combination. The operation of the proposed
method is illustrated through a network containing three sub-CRNs and several linear interconnections.
1. Introduction

Chemical reaction networks (abbreviated as CRNs) cover a large
set of nonlinear polynomial nonnegative systems, and their associated
directed graph structure (i.e., the reaction graph) can be successfully
used in dynamical analysis and even in control design [1,2]. Kinetic
models are also universal in the sense that a wide class of possibly
complex nonlinear dynamics can be directly transformed or embedded
into kinetic form [3,4]. Although kinetic systems are also applied in
ecological or transport systems modeling, their primary application
areas are biochemical, chemical, and process systems.

CRNs with complex hierarchical structure. In biochemical systems, one
often has to face a large number of chemical species reacting over a
complicated network of biochemical reactions. Therefore, sub-network
based approaches have been successfully used for the simplification of
dynamical analysis (see, e.g. [5,6]) Moreover, such complex chemical
reaction networks taking place e.g. in a living cell, often have parts
that occur in different compartments, i.e. (balance) volumes that are
connected by transport channels. In [7], delayed compartmental sys-
tems (which form a special subset of kinetic systems) are studied by
representing distributed delays as compartmental subsystems without
lags and thus forming a network with a hierarchical structure. Net-
worked kinetic systems with sub-CRNs in different compartments in
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the context of systems biology have also started to gain attention (see
e.g. a recent paper [8]), where the connections between compartments
with different spatial arrangements and their effect on the reaction rate
laws are analyzed. A systematic model-reduction method based on the
removal of appropriately selected subnetworks of CRNs is proposed
in [9], where it is also proved that under certain topological condi-
tions, the reduced network preserves the steady state of the original
model. A network decomposition method for stability analysis is given
in [10], where a general CRN is decomposed into a complex balanced
subnetwork and several one or two-species subnetworks.

Delayed dynamical systems and CRNs. It is well-known that the explicit
modeling of time delays is often necessary to describe dynamical pro-
cesses with sufficient precision [11]. Some examples are traffic models
with delayed reactions of drivers, communication delays in control
systems, or delayed growth of bacteria and other populations [12].
In many cases, for example in several biological applications, the use
of distributed delay is more realistic from a modeling point of view
than a constant point-wise (also referred to as discrete) delay [13].
In such cases, the delay depends on the weighted average over past
values of the state variables. It has been long noticed in chemical
reaction networks, in particular enzyme kinetics, that the reaction rate
of enzyme-catalyzed reactions deviates from the mass action law such
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that there is a time delay between the availability of the reactants
and the starting of the reaction itself. Therefore, the usual notion of
CRNs has been extended by introducing delays into the dynamics of
the reactions (see e.g. [14] or [15]), where examples of such kinetic
schemes can also be found. Besides the above-mentioned slow ini-
tialization steps, other mechanisms, such as the fixed lifetime of the
enzyme–substrate complex that leads to the product with this fixed
delay (see [16]) or slow inter-cellular convection can also be considered
as the cause of the apparent delays. In addition, the usual transport
mechanisms (convection, diffusion, and transfer) that are linear and
obey conservation laws can also cause apparent delays in CRNs.

Although the presence of delays may destabilize otherwise stable
systems, one can show that complex balanced CRNs with arbitrary
time delays remain at least locally asymptotically stable [17,18]. These
results were extended in [19] using the notion of linear conjugacy.
Persistence has a key role in proving global stability of CRN dynam-
ics [20] which is also true in the delayed case [21]. In [22], important
conditions were given for the persistence of complex balanced CRNs
with time delay using semilocking sets. A graph theoretical condition
is given in [23] for the stability of linearized delay networks, which is
independent both of rate constants and delay parameters.

Stability and control of CRNs. It was shown in several publications
that the entropy-like Lyapunov function candidate, called the ‘pseudo-
Helmholtz’ function [24] can be used as a control Lyapunov function
when designing stabilizing feedback for kinetic and nonnegative sys-
tems. A linear input structure representing inflow control is assumed
in [1], and it is shown that any positive equilibrium can be globally
stabilized with appropriate linear state feedback if the number of inde-
pendent inputs is large enough. A straightforward approach for control
is to transform a dynamical system into a (robustly) stable kinetic
system via feedback. In this framework, a nonlinear state feedback
control design method based on optimization is proposed in [25] for
the stabilization of polynomial systems with linear input structure that
results in a closed loop system with a complex balanced or weakly
reversible realization. This methodology was extended for general poly-
nomial systems with time delay in [25]. A balanced shaping method for
finding stabilizing state feedbacks for open mass action systems is given
in [26], where the stability of the closed loop system is also proved
using the pseudo-Helmholtz Lyapunov function.

Networks of dynamic systems. In many control applications, it is useful
to divide a large-scale system [27] into interconnected subsystems [28].
The partitioning can be done using natural principles, or it can yield
from engineering design. The control of cyclically interconnected non-
linear systems was discussed in [29]. A review of distributed control ap-
proaches for interconnected chemical processes was performed in [30].
The synchronization of passive nonlinear networks having discrete
delays in the interconnections was discussed in [31]. Networked CRNs
with special conservative network structures enable the development of
efficient distributed controller design based on passivity analysis [32].
The synchronization conditions for a general class of networks of
nonlinear systems were presented in [33] with biochemical network
applications.

Aim and research highlights. The aim of this paper is to give a networked
ontrol model for interconnected nonnegative systems described as
RNs containing distributed delays and to propose a novel approach

or setpoint tracking nonlinear control.
The main contributions of this study can be summarized as follows:

• A modeling approach is introduced for interconnected CRNs
in which the delays in interconnections are distributed. In the
model, the delay effects are approximated by physically moti-
vated asymptotically stable linear time-invariant compartmental
dynamic systems.
2
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• A comprehensive stabilizing nonlinear feedback design is pro-
posed to ensure the stability of networks of CRNs with distributed
delay.

• It is shown that, by suitably extending the stabilizing control
for CRN networks, the states of the CRNs can be driven into
prescribed setpoints.

2. Delayed dynamical systems and chemical reaction networks

We briefly summarize the most important basic notions on delayed
dynamical systems and chemical reaction networks in this section.

2.1. Dynamical models with distributed delay

The general form of delayed differential equations (DDEs) is given
by

𝐱̇(𝑡) = 𝐹 (𝐱(𝑡), 𝐱𝑡) (1)

here 𝐱 ∈ R𝑛 is the state variable, 𝐱𝑡 is the delay function, and 𝐹 ∶
𝑛 × R𝑛 ⟶ R𝑛. The simplest possibility is a constant delay of 𝜏 > 0
hen 𝐱𝑡 = 𝐱(𝑡 − 𝜏). In the case of distributed time delays, the delay

unction is written as

𝑡 = ∫

∞

0
𝑔(𝑠)ℎ(𝐱(𝑡 − 𝑠))𝑑𝑠 = ∫

𝑡

−∞
ℎ(𝐱(𝑠))𝑔(𝑡 − 𝑠)𝑑𝑠 (2)

here ℎ ∶ R𝑛 ⟶ R𝑛, and 𝑔 ∶ R+
0 ⟶ R is the delay kernel which is

ssumed to be at least piecewise continuous [13]. Without the loss of
enerality, we can assume that ∫ ∞

0 𝑔(𝑠)𝑑𝑠 = 1.
Although the convolution in Eq. (1) is not the same as the causal

onvolution used for computing the output of LTI (Linear Time-Invariant
ystems, asymptotically stable linear subsystems of nonlinear models
an be described as distributed delays as follows (see [34], Section 7
or the details). Consider the model

𝐱̇ = 𝑓 (𝐱, 𝐱𝐼 ) (3)

̇ 𝐼 = 𝐴𝐱𝐼 + 𝐵𝐱 (4)

here 𝐱(𝑡) ∈ R𝑛, 𝐱𝐼 (𝑡) ∈ R𝑚, 𝑓 ∶ R𝑛 ⟶ R𝑛 is a smooth function,
∈ R𝑚×𝑚 is Hurwitz stable, and 𝐵 ∈ R𝑚×𝑛. Then the linear subsystem

4) can be substituted by the distributed delay term given by

𝐼 (𝑡) = ∫

𝑡

−∞
𝐺(𝑡 − 𝑠)𝐱(𝑠)𝑑𝑠 (5)

here 𝐺(𝑠) = (𝑠𝐼 − 𝐴)−1𝐵 is the transfer function matrix of the linear
ubsystem (4).

.2. Dynamical models of CRNs

A CRN obeying the mass action law is a closed system where
hemical species 𝑋1, 𝑋2,… , 𝑋𝑛 take part in chemical reactions. An
lementary reaction step 𝑅 has the form

𝜅
GGGGGA𝐶 ′,

where 𝐶 and 𝐶 ′ are the source and product complexes, that are linear
ombinations of the species 𝐶 =

∑𝑛
𝑖=1 𝜂𝑖 𝑋𝑖 and 𝐶 ′ =

∑𝑛
𝑖=1 𝜂

′
𝑖 𝑋𝑖 where

, 𝜂′ ∈ N
𝑛
+ are called stoichiometric coefficients, and N

𝑛
+ denotes the set

of 𝑛-dimensional vectors with nonnegative integer entries. The positive
real number 𝜅 is the reaction rate coefficient. Therefore, a CRN can be
escribed by the set of stoichiometric coefficients/complexes  ⊂ N

𝑚
+

and the set of reactions  ⊂  ×  × R+:

𝐶𝑅𝑁 = (,) ,  = {(𝐶,𝐶 ′, 𝜅) ∣ 𝐶,𝐶 ′ ∈ } (6)

he set of species  contains all the species 𝑋𝑖, 𝑖 = 1,… , 𝑛 that are

resent in the complexes .
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Let us introduce the following notations. For any matrix 𝑀 , 𝑀𝑖,⋅
nd 𝑀⋅,𝑗 denotes the 𝑖th row and 𝑗th column of 𝑀 , respectively. For
, 𝑦 ∈ R𝑛 and 𝑌 ∈ R𝑛×𝑚, 𝑥𝑦 = ∏𝑛

𝑖=1 𝑥
𝑦𝑖
𝑖 , and

𝑌 =
⎡

⎢

⎢

⎣

𝑐𝑥𝑌⋅,1
⋮

𝑥𝑌⋅,𝑚

⎤

⎥

⎥

⎦

efinition 1 (Complex Variable). A complex variable 𝜑 associated to the
omplex 𝐶 ∈  of a CRN with the stoichiometric vector 𝜂 is a reaction
onomial

(𝐱) = 𝐱𝜂 (7)

here 𝐱𝑖 is the concentration of the 𝑖th specie in the specie set  .

The reaction rate 𝜌𝑘 of the reaction 𝑅𝑘 obeying the so-called mass
ction law can be described as

𝑘(𝐱) = 𝜅𝑘𝐱𝜂
(𝑘)

= 𝜅𝑘𝜑𝑘(𝐱), (8)

here 𝐱(𝑡) ∈ R
𝑛
+ is the concentration vector of species, and 𝜂(𝑘) is

he stoichiometric vector corresponding to the source complex of the
eaction 𝑅𝑘.

The dynamics of a mass action CRN can be described by a system
f ordinary differential equations as follows

̇ (𝑡) =
𝑟
∑

𝑘=1
𝜅𝑘 𝐱(𝑡)𝜂

(𝑘) [
𝜂′(𝑘) − 𝜂(𝑘)

]

= 𝑌 𝐴𝜅𝜑(𝐱) , (9)

here 𝑟 is the number of reactions, 𝑌 ∈ N
𝑛×𝑚
+ is the complex composi-

ion matrix composed from the stoichiometric coefficient vectors, and
𝜅 ∈ R

𝑚×𝑚
+ is the Kirchhoff matrix of the reaction graph. The entries of

he vector function 𝜑 are the complex variables of each complex 𝐶 ∈ 
of the CRN.

Reaction graph. Similarly to [35] and many other authors, we can
represent the set of individual reaction steps by a weighted directed
graph called reaction graph. The reaction graph consists of a set of
vertices and a set of directed edges. The vertices correspond to the
complexes, while the directed edges represent the reactions, i.e. if we
have a reaction between 𝐶 ∈  and 𝐶 ′ ∈  then there is an edge in the
reaction graph between the complexes 𝐶 and 𝐶 ′ with the corresponding
weight 𝜅.

2.3. CRNs with delays

By a delayed reaction, we mean that the consumption of reactants is
immediate, while product formation is delayed in time. If one assumes the
presence of delays in chemical reactions, then the usual CRN structure
can be extended with elements describing the properties of the delays.

For distributed time delays we associate a kernel function 𝑔 to the
reaction step and associate it as an additional weight (besides the
reaction rate coefficient 𝜅) to the reaction in the reaction graph, as

𝐶
𝜅, 𝑔

GGGGGGGA𝐶 ′

This way the dynamics can be described by delayed differential
equations (DDEs) of the form (1). When the reaction steps have dis-
tributed time delays with kernel/distribution function 𝑔𝑘, satisfying
∫ ∞
0 𝑔𝑘(𝑠) 𝑑𝑠 = 1 the model (9) becomes

𝐱̇(𝑡) =
𝑟
∑

𝜅𝑘

[

∫

∞
𝑔𝑘(𝑠)𝐱(𝑡 − 𝑠)𝜂

(𝑘)
𝑑𝑠 ⋅ 𝜂′(𝑘) − 𝐱(𝑡)𝜂(𝑘)𝜂(𝑘)

]

(10)
3

𝑘=1 0 n
2.4. Open CRNs

The usual way of describing open CRNs is to introduce a zero com-
plex with 𝜂 = 𝟎, where 𝟎 is the zero vector of appropriate dimension. In
order to have a more general way of connecting CRNs into a network
we generalize this concept and enable to have a linear time-invariant input
from the environment to a CRN [36].

Then the state equations of the open CRN system in the non-delayed
case are in the following form

𝐱̇(𝑡) =
∑

(𝜂,𝜂′ ,𝜅)∈
𝜅 𝐱(𝑡)𝜂

[

𝜂′ − 𝜂
]

+ 𝐹𝐮 = 𝑌 𝐴𝜅𝜑(𝐱) + 𝐹𝐮 , (11)

where 𝐮 is the input vector 𝐮(𝑡) ∈ R
𝑝
+ and 𝐹 ∈ R

𝑛×𝑝
+ is a nonnegative

matrix.
Note that the element-wise nonnegativity of the input vector and the

coefficient matrix 𝐹 ensures the nonnegativity of the state variables for
nonnegative initial conditions.

The vector of output variables is defined as:

𝐲 = 𝐻𝐱 (12)

where 𝐻 is a rectangular matrix with non-negative entries.
This way an open CRN has an input-affine state equation with

polynomial non-linearities in the state transformation term, and linear
input and output transformation terms.

3. Networked representation of CRNs with delays

Networked systems are described by specifying the network nodes
and their connections. In networked kinetic systems the network nodes
are independent sub-CRNs and the interconnections are defined by
linear connecting CRNs or static connections that are described below.

3.1. Sub-CRNs as CRN subsystems

The network nodes in a networked kinetic system are required to
be open CRNs themselves. Let us assume that a sub-CRN 𝐶𝑅𝑁 (𝑗) =
((𝑗),(𝑗)) with its complexes (𝑗) and reactions (𝑗) is considered as
the 𝑗th subsystem-node of a networked kinetic system that is a CRN
(,) itself, such that (𝑗) ⊆  and (𝑗) ⊆ .

Then the state equation of 𝐶𝑅𝑁 (𝑗) is in the following form (see
Eq. (11))

𝑑𝐱(𝑗)
𝑑𝑡

= 𝑌 (𝑗)𝐴(𝑗)
𝜅 𝜑(𝑗)(𝐱(𝑗)) +

∑

𝓁∈
(𝑗)
𝐼

𝐹 (𝑗)
𝓁 𝐮(𝑗)𝓁 (13)

where 𝐱(𝑗) is the concentration vector of the species in  (𝑗)
(𝑗)

.

The set of generalized input neighborhood 
(𝑗)
𝐼 of this sub-CRN is

efined as


(𝑗)
𝐼 = {𝐶 ∣ ∃

(

𝐶,𝐶 ′, 𝜅
)

∈ (𝑗), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐶 ′ ∈ (𝑗)}

and 𝐮(𝑗)𝓁 ∈ R𝑚𝑗 are the vectors of input concentration variables that are

he complex variables associated to the complexes in 
(𝑗)
𝐼 .

An important special case is when convective material flows, de-
cribed as first order chemical reactions realize the connections be-
ween sub-CRNs. Then it is enough to give the set of subsystem indices
he output of which is the input of the 𝑗th CRN (𝐶𝑅𝑁 (𝑗)). Then the
nput neighborhood set  (𝑗)

𝐼 is defined as follows:
(𝑗)
𝐼 = {𝓁 ∣ ∃

(

𝐶,𝐶 ′, 𝜅
)

∈ (𝑗), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐶 ′ ∈ (𝑗) 𝑎𝑛𝑑

𝐶 = 𝑋(𝓁)
𝜄 ∈ (𝓁)} (14)

In order to be able to handle sub-CRNs relatively separately, the
otion of independent sub-CRN should be introduced.
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Definition 2 (Independent Sub-CRNs). A sub-CRN ((𝑗),(𝑗)) is indepen-
dent of another sub-CRN ((𝓁),(𝓁)) of the same CRN with complex set
 if their complexes (𝑗) and (𝓁) do not have any common species, i.e.

 (𝑗)
(𝑗)

∩  (𝓁)
(𝓁)

= ∅ .

Independent sub-CRNs will also be called CRN subsystems.

Remark 1. It is important to remark that independent sub-CRNs often
appear in complex kinetic systems. Chemical reactions taking place
in different compartments, or reaction chains describing the gradual
formation of a reaction complex are common examples.

Linear connecting CRN subsystems. Linear sub-CRNs will serve as dy-
namic connecting elements between sub-CRNs.

Definition 3 (Linear CRN Subsystems). Let us assume a CRN subsystem
given by its complexes (𝑗) and reactions (𝑗). We call a CRN subsystem
a linear CRN subsystem if each complex in (𝑗) is a one-specie complex.

The dynamics of linear sub-CRNs can be described by LTI state
space models of the following form since their reaction rates are
single-variable linear functions:

𝑑𝐱(𝑗)
𝑑𝑡 = 𝐴(𝑗)

𝜅 𝐱(𝑗) + 𝐵(𝑗)𝐮(𝑗)

𝐲(𝑗) = 𝐶 (𝑗)𝐱(𝑗),
(15)

here 𝐱(𝑗)(𝑡) ∈ R𝑛, 𝐴(𝑗)
𝜅 is a Metzler compartmental matrix, 𝐵(𝑗) is a

onnegative matrix, while 𝐶 (𝑗) is a binary matrix with all its column
ums equal to 1. It is easy to see that 𝑌 (𝑗) = 𝐼 and 𝜑(𝑗) is the identity
apping in this case.

In order to describe dynamic connections in a networked kinetic
ystem that connect CRN subsystems as nodes, we will use linear CRN
ubsystems with additional dynamic properties.

efinition 4 (Linear Connecting CRN Subsystems). A linear CRN subsys-
em with an LTI state space realization (15) is called a linear connecting
RN subsystem if it is asymptotically stable, and jointly controllable
nd observable (i.e., its minimal state space dimension is 𝑛).

As linear connecting CRN subsystems are asymptotically stable
ositive LTI systems, they are BIBO stable both in the SISO and MIMO
ases.

ynamic properties. It is important to notice that networked kinetic
ystems possessing overall mass conservation have bounded state tra-
ectories (assuming bounded inputs) for all of its CRN subsystems,
ncluding linear connecting CRN subsystems.

.2. Interconnection of CRNs

Consider a connection from the 𝑘th CRN subsystem to the 𝑗th CRN
ubsystem, where dim𝐮(𝑗) = 𝑝𝑗 and dim 𝐲(𝑗) = 𝑚𝑗 .

.2.1. Static connections
If the connection of the subsystems is assumed to be static, then it

an be described by the equation
(𝑗) = 𝐋(𝑗𝑘)𝐲(𝑘) (16)

here 𝐋(𝑗𝑘) is a constant interconnection matrix for the connection from
ubsystem 𝑘 to subsystem 𝑗. The interconnection matrix is a rectangular
atrix 𝐋(𝑗𝑘) ∈ R𝑝𝑗×𝑚𝑘 such that an elementary connection from the output
(𝑘)
𝓁 to 𝐮(𝑗)𝜆 is

(𝑗)
𝜆 = 𝐿(𝑗𝑘)

𝜆𝓁 𝐲(𝑘)𝓁 (17)

here the scalar 𝐿(𝑗𝑘) is the connection gain.
4

𝜆𝓁
.2.2. Dynamic connections with distributed delay
One can generalize the above static elementary connection by

dding a distributed time delay with a distribution or kernel function
to the connection. Then an elementary connection with distributed

ime delay can be written as the following integral equation:

(𝑗)
𝜆 (𝑡) = 𝐿(𝑗𝑘)

𝜆𝓁 𝑔(𝑘𝑗)𝜆𝓁

[

𝐲(𝑘)𝓁 (𝑡)
]

= 𝐿(𝑗𝑘)
𝜆𝓁

[

∫

0

−∞
𝑔(𝑗𝑘)𝜆𝓁 (𝑠)𝐲(𝑘)𝓁 (𝑡 − 𝑠) 𝑑𝑠

]

(18)

here the distribution function or weighting kernel 𝑔(𝑗𝑘)𝜆𝓁 ∶
−∞, 0] → [0,∞), 1 ≤ 𝑘 ≤ 𝑟, is a piecewise continuous function
atisfying
0

−∞
𝑔(𝑗𝑘)𝜆𝓁 (𝑠) 𝑑𝑠 = 1 .

hen this delayed connection is characterized by its gain 𝐿(𝑗𝑘)
𝜆𝓁 and delay

ernel function 𝑔(𝑗𝑘)𝜆𝓁 .

.2.3. Dynamic connections realized by SISO linear connecting CRN sub-
ystems

In this subsection, we consider the simple case, when we assume
o have an independent connecting linear CRN subsystem (the 𝑗th
RN subsystem) that has only one input, and one output, i.e. it is a
ISO subsystem. The LTI state-space model of this CRN subsystem is in
q. (15).

Let this CRN subsystem connect one of the outputs (the 𝜆th) of the
th CRN subsystem to one of the inputs (the 𝓁th) to the 𝑘th one realizing
n elementary connection 𝐿(𝑖𝑘)

𝜆𝓁 . In that case, we have the following
seudo-reaction realizing this elementary connection

(𝑖)
𝜆

𝜅
GGGGGA Linear connecting CRN subsystem(𝑗)

GGGA𝐶 (𝑘)
𝓁 . (19)

e are interested in the input–output behavior of the SISO LTI system
15) that can be obtained by using its impulse response function ℎ(𝑗) in
he following form

(𝑗)(𝑡) = ∫

𝑡

0
ℎ(𝑗)(𝑡 − 𝜏)𝑢(𝑗)(𝜏)𝑑𝜏 , ℎ(𝑗)(𝑡) = 𝐶 (𝑗)𝑒𝐴

(𝑗)
𝜅 𝑡𝐵(𝑗). (20)

emark 2. When we apply structural reduction [37], we simplify the
eaction graph (19) by replacing the CRN subsystem with a distributed
elay reaction such that

(𝑖)
𝜆

𝜅(𝑗), 𝑔(𝑗)
GGGGGGGGGGGGA𝐶 (𝑘)

𝓁 ,

where the delay distribution function 𝑔(𝑗) is given by using the impulse
esponse function of the linear connecting CRN subsystem as follows

(𝑗)(𝑟) =
ℎ(𝑗)(−𝑟)

∫ ∞
0 ℎ(𝑗)(𝜏)𝑑𝜏

, (21)

nd

𝜅(𝑗) = 𝜅 ∫

∞

0
ℎ(𝑗)(𝜏)𝑑𝜏. (22)

.3. Physically motivated dynamic linear connecting CRN subsystem models

In the general case, it may be difficult to find a suitable finite di-
ensional realization (𝐴(𝑘)

𝜅 , 𝐵(𝑘), 𝐶 (𝑘)) of a linear connecting subsystem
iven the delay kernel function 𝑔(𝑘) of a given elementary distributed
elay connection. This subsection shows how classical linear CRN
odels help to construct such realizations.

rreversible homogeneous chain of linear reactions. The simplest case is
hen one considers a linear CRN with 𝑝 intermediate species given by

he reaction graph
𝜅

GGGGGA𝑉
𝑎

GGGGGA𝑉
𝑎

GGGGGA …
𝑎

GGGGGA𝑉
𝑎

GGGGGA𝐶 ′. (23)
1 2 𝑝
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The above linear CRN gives rise to the well-known ‘‘linear chain
trick’’ [38] that associates to it an equivalent delayed CRN model that
contains only a single reaction with distributed delay

𝐶
𝜅, 𝐺𝑎,𝑝

GGGGGGGGGGGA𝐶 ′

The kernel function 𝐺𝑎,𝑝 of the reaction is the so-called Gamma
unction with rate parameter 𝑎 and shape parameter 𝑝 in the form

𝐺𝑎,𝑝(𝑠) =
𝑎𝑝𝑠𝑝−1

(𝑝 − 1)!
𝑒−𝑎𝑠

The dynamic DDE model of the above delayed CRN is in the
ollowing form:

̇ (𝑡) = 𝜅
[

∫

∞

0
𝐺𝑎,𝑝(𝑠)𝐱(𝑡 − 𝑠)𝜂 𝑑𝑠 𝜂′ − 𝐱(𝑡)𝜂 𝜂

]

where 𝐱 is the concentration vector, 𝜂 and 𝜂′ are the stoichiomet-
ric coefficient vectors of the source 𝐶 and product 𝐶 ′ complexes,
respectively.

Let us model the dynamics of the CRN (23) with an LTI state space
model, where the input acts only on the first state variable, and the
output is the last state variable, i.e. 𝑦(𝑡) = 𝑥𝑁 (𝑡). It is easy to see that
the state space model matrices 𝐴𝜅 , 𝐵, 𝐶 are as follows [18]:

𝐴𝜅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑣 0 0 ... 0
𝑣 −𝑣 0 0 ... 0
0 𝑣 −𝑣 0 0 ... 0
... ... ... ... ... ... 0
0 ... ... ... 𝑣 −𝑣 0
0 ... ... ... 0 𝑣 −𝑣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

𝐶 =
[

0 0 ... 0 1
]

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜅
0
...
0

⎤

⎥

⎥

⎥

⎥

⎦

(25)

Remark 3. It is important to note that the state matrix in Eq. (24) is a
Metzler-compartmental matrix, which implies the BIBO stability of the
system. Moreover, the system is jointly controllable and observable, so
it is a linear connecting CRN subsystem.

It is also easy to see, that the kernel (impulse response) function of
this CRN subsystem is

ℎ(𝑡) = −1[𝐻(𝑠)] = 𝜅 𝑣𝑁

(𝑁 − 1)!
𝑡𝑁−1𝑒−𝑣𝑡 (26)

t is seen that ℎ(𝑡) = 𝐺𝑣,𝑁−1(𝑡), i.e. that kernel function is a Gamma
istribution function.

rreversible inhomogeneous chain of linear reactions. Here we consider
n inhomogeneous one-directional (from the 𝑘th subsystem to the 𝑗th
ne) SISO dynamic connection. This may correspond e.g. to a flow with
arying velocity 𝑎𝑖 along the pipe caused by its varying cross section
ontaining a single component with concentration 𝑥𝑖 from one tank

to the other, where 𝑖 = 1,… , 𝑁 corresponds to the position of a flow
element in the pipe.

The state space model matrices (𝐴𝜅 , 𝐵, 𝐶) are as follows:

𝐴𝜅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑎1 0 0 ... 0
𝑎1 −𝑎2 0 0 ... 0
0 𝑎2 −𝑎3 0 0 ... 0
... ... ... ... ... ... 0
0 ... ... ... 𝑎𝑁−2 −𝑎𝑁−1 0
0 ... ... ... 0 𝑎𝑁−1 −𝑎𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(27)

𝐶 =
[

0 0 ... 0 1
]

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

𝑎0
0
...

⎤

⎥

⎥

⎥

⎥

(28)
5

⎣

0
⎦

It is important to note that the state matrix (27) is also a Metzler-
compartmental matrix, which implies the BIBO stability of the system.
Moreover, the system is jointly controllable and observable, so it is a
linear compartmental connecting subsystem.

Assuming that all rate constants 𝑎𝑖 > 0 are different, the kernel func-
tion of the equivalent distributed delay model is a sum of exponential
functions [18]:

𝑔(𝑠) =
𝑁
∑

𝑖=1

(

𝑎𝑖
𝑁
∏

𝑗=1,𝑖≠𝑗

𝑎𝑗
𝑎𝑗 − 𝑎𝑖

)

𝑒𝑎𝑖𝑠, (29)

where the coefficients are positive constant elements of the matrix 𝐴𝜅
n Eq. (27).

Recent results on the generalization of the ‘linear chain trick’ to
ore complex delay models [39] also motivate the ODE (Ordinary
ifferential Equation) based modeling of distributed delay terms in
etworks of biochemical systems.

emark 4. It is important to remark, that for control purposes it is ad-
antageous to have a non-delayed CRN model of the networked kinetic
ystem to be controlled. Therefore, we may artificially introduce SISO
inear connecting subsystems to replace distributed delayed chemical
eactions, as it will be seen in Section 4.1

.4. A simple example

A simple example will serve to illustrate the notions and notations
bove. This example illustrates a possible decomposition of an overall
RN system into independent CRN subsystems, while several other
ecompositions also exist.

verall CRN. Consider a CRN (,) given with its reaction graph
epicted in Fig. 1. The reactions to/from the environment are denoted
y idle edges, such that specie 𝑋4 is fed into the system, and specie 𝑋7

leaves it.

Decomposition. One can conveniently perform the decomposition using
the reaction graph of the overall CRN. The aim is to form a partition
of the complexes such that the species of each complex subset are
mutually disjoint, so independent sub-CRNs are formed.

Let us identify three CRN subsystems: CRN(1), CRN(2) and CRN(3)

s depicted with rectangles in the figure. The rationale behind this
ecomposition is to find the linear connecting CRN subsystem part of
he overall CRN, that is CRN(2).

The next step is to form the input neighborhood set 
(𝑗)
𝐼 of a CRN

subsystem CRN(𝑗). This is done by finding the inward directed reactions
to the CRN subsystem in question: every reactant complex of such a
reaction is put into the input neighborhood set.

Then the three sub-CRNs are pairwise independent with the follow-
ing model ingredients:

• CRN(1) = ((1),(1)) with (1) = {(𝑋3 + 𝑋2), 𝑋1, 𝑋3}, and 
(1)
𝐼 =

{𝑋3𝐼};
• CRN(2) = ((2),(2)) with (2) = {𝑈1, 𝑈2, 𝑈3, 𝑈4}, and 

(2)
𝐼 = {𝑋1},

that is a linear connecting CRN subsystem;
• sub-CRN(3) = ((3),(3)) with (3) = {(𝑋5 + 𝑋6), 𝑋7}, and 

(3)
𝐼 =

{𝑈4};

The overall system has one input 𝑥3𝐼 and one output 𝑥7.
It is easy to see, that subsystem CRN(2) is a SISO linear connecting CRN

subsystem. We remark that this CRN subsystem is structurally similar to

the well-known McKeithan network [40].
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Fig. 1. Reaction graph of the simple example.
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4. Control of interconnected CRNs with dynamic linear connect-
ing elements

In this section, such a model of CRN networks with dynamic con-
nections is introduced that is suitable for control design.

First, the extended subsystem is defined which includes a CRN sub-
ystem and the dynamic connecting elements at its inputs. With this
odeling approach, the investigation of the CRN network is more
anageable since the extended subsystems have static interconnec-

ions. The reasonable assumption that the inflow rates are equal to
he outflow rates in each subsystem is considered during modeling and
ontrol design, that implies the overall mass (and the overall volume
ith constant physico-chemical properties) to be constant.

Second, the CRN subsystems are extended with additional control
nflows and outflows. The concentrations of the inflow species are
ssumed to be adjustable by a control mechanism as a function of a
redefined control goal.

The aim of the control is to ensure that the states being the chemical
oncentrations of each CRN can be driven to prescribed equilibrium
tates regardless of the delayed flows among the CRN subsystems. The
ontrol algorithm is going to be formulated in such a way that the entire
ontrolled CRN network with delays is detailed balanced and stable.

.1. The control-oriented model of CRN network

In order to facilitate the control design of networked kinetic systems
control-oriented model is developed in this subsection where we as-

ume that the connections between the kinetic subsystems are realized
y physically meaningful linear transport (i.e. convection, diffusion,
hase transfer) between the subsystems possibly allowing distributed
ature (see Section 3.3).

.1.1. Extended CRN subsystems
Let us consider a network of 𝑁 open CRN subsystems whose dy-

amic behavior is described by the model (11). The state vector of each
RN is composed of chemical concentration values of 𝑛 ∈ N>1 species
𝐱(𝑗) = (𝑥(𝑗)𝓁 ) ∈ R𝑛

≥0).
A number of 𝑚 ≤ 𝑛 species is transferred among these CRN subsys-

ems. The outflows of an open CRN are linked to the inflows of another
pen CRN through possibly dynamic elements that can be modeled
sing LTI systems as in Eq. (15) because of the linear nature of the
onnecting transfer mechanisms.

Because of this linearity, we use the input neighborhood set of the
th CRN ( (𝑗)

𝐼 ) introduced in Section 3.1 in Eq. (14). It contains those
RNs whose outputs are connected to the 𝑗th extended subsystem.

Similarly, the output neighborhood set of the 𝑗th CRN ( (𝑗)
𝑂 ) con-

ains those extended subsystems, which inputs contain the output of
he 𝑗th CRN.

The LTI systems implement the transport of the species among the
RNs. The 𝓁th linear subsystem (𝐿𝑇𝐼 (𝑗)𝓁 ) transports the 𝓁th species to

(𝑗)
6

𝑅𝑁 .
The model of 𝑗th extended subsystem in the network includes the
ynamic nonlinear model of 𝐶𝑅𝑁 (𝑗) (CRN subsystem) and the model
f the linear connecting elements (𝐿𝑇𝐼 (𝑗)𝓁 , 𝓁 = 1…𝑚) at its inputs:

𝑅𝑁 (𝑗) ∶

⎧

⎪

⎨

⎪

⎩

𝑦(𝑗)𝓁 = 𝐻 (𝑗)
𝓁 𝐱(𝑗), 𝓁 = 1…𝑚,

𝐱̇(𝑗) = 𝑌 (𝑗)𝐴(𝑗)
𝜅 𝜑(𝑗)(𝐱(𝑗)) +

∑𝑚
𝓁=1 𝐹

(𝑗)
𝓁 𝑦(𝑗)𝐼𝓁 −𝐻 (𝑗)𝐱(𝑗),

𝐱(𝑗)(0) = 𝐱(𝑗)0 ,

(30)

here 𝑦(𝑗)𝓁 , 𝑦(𝑗)𝐼𝓁 ∈ R>0, the output matrix is

(𝑗)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐻 (𝑗)
1
…
𝐻 (𝑗)

𝓁
…
𝐻 (𝑗)

𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, and

𝑇 𝐼 (𝑗)
𝓁 ∶

⎧

⎪

⎨

⎪

⎩

𝑦(𝑗)𝐼𝓁 = 𝐶 (𝑗)
𝓁 𝐱(𝑗)𝐼𝓁

𝐱̇(𝑗)𝐼𝓁 = 𝐴(𝑗)
𝓁 𝐱(𝑗)𝐼𝓁 +

∑

𝑖∈ (𝑗)
𝐼

𝐵(𝑗)
𝑖𝓁 𝑦

(𝑖)
𝓁 , 𝐱(𝑗)𝐼𝓁(0) = 𝐱(𝑗)𝐼𝓁0,𝓁 = 1…𝑚.

(31)

n the dynamics of 𝐶𝑅𝑁 (𝑗), species outflows are also considered. The
utflow is defined by the linear output term 𝐻 (𝑗)𝐱(𝑗).

The inputs of 𝐿𝑇𝐼 (𝑗)𝓁 are the 𝓁th outputs of the CRNs in  (𝑗)
𝐼 .

The matrices 𝐵(𝑗)
𝓁 , 𝐻 (𝑗)

𝓁 and 𝐹 (𝑗)
𝓁 are defined as:

(𝑗)
𝓁 = (0…0 ℎ𝓁𝑗

⏟⏟⏟
𝓁th

0…0) (32)

(𝑗)
𝓁 = (0…0 𝑓𝓁𝑗

⏟⏟⏟
𝓁th

0…0)𝑇 (33)

(𝑗)
𝑖𝓁 = (𝑏(𝑗)𝑖𝓁 0 … 0)𝑇 (34)

The dimensions of the state-, input- and output matrices are consid-
red as:

𝑌 (𝑗) ∈ N𝑛×𝑝𝑗
≥0 , 𝐴(𝑗)

𝜅 ∈ R𝑝𝑗×𝑝𝑗 , 𝜑(𝑗)(𝐱(𝑗)) ∈ R𝑝𝑗×1
≥0 , 𝐻 (𝑗)

𝓁 ∈ R1×𝑛
≥0 , 𝐻 (𝑗) ∈

𝑚×𝑛
≥0 , 𝐴(𝑗)

𝓁 ∈ R𝑚𝑗×𝑚𝑗 , 𝐵(𝑗)
𝑖𝓁 ∈ R𝑚𝑗×1

≥0 , 𝐶 (𝑗)
𝓁 ∈ R1×𝑚𝑗

≥0 , 𝐹 (𝑗)
𝓁 ∈ R𝑛×1

≥0 .
Motivated by the physical examples presented in Section 3.3, we

ssume that 𝐴(𝑗)
𝓁 is Metzler and Hurwitz.

On the other hand, the inflow rates are considered to be equal
o the outflow rates both in the CRNs and LTI connecting subsys-
ems (constant volume assumption in each extended subsystem). The
orresponding modeling assumptions are:

• The row sum of the matrix below is zero:
(

𝐹 (𝑗)
1 𝐶 (𝑗)

1 …𝐹 (𝑗)
𝓁 𝐶 (𝑗)

𝓁 …𝐹 (𝑗)
𝑚 𝐶 (𝑗)

𝑚 −𝐻 (𝑗)
)

(35)

This condition shows that the cumulative inflow rate in the
open 𝐶𝑅𝑁 (𝑗) subsystem is equal to the outflow rate from this

subsystem.
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w

𝐗

4

r

E
n
t

P
a

𝐁

w

𝐁

e

c

⎛

⎜

⎜

⎝

⏟

• The column sum of the matrix below is zero:

⎛

⎜

⎜

⎜

⎜

⎝

−𝐻 (𝑗)
𝓁

…
𝐵(𝑖)
𝓁 𝐻 (𝑗)

𝓁
…

⎞

⎟

⎟

⎟

⎟

⎠

(36)

where 𝑖 ∈  (𝑗)
𝑂 . The property shows that the outflow rate of the

𝓁th specie from the 𝑗th CRN subsystem is equal to the cumulative
inflow rate of the same specie into the extended subsystems that
belong to  (𝑗)

𝑂 .
• The row sum of the matrix below is zero:

(𝐴(𝑗)
𝓁 … 𝐵(𝑗)

𝑖𝓁 𝐻
(𝑖)
𝓁 …

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
dim( (𝑗)

𝐼 )

) (37)

where 𝑖 ∈  (𝑗)
𝐼 . This propriety stands for the inflows of 𝐿𝑇𝐼 (𝑗)𝓁 . If

this condition holds, all the states of the linear connecting element
will be equal to the weighted sum of 𝓁th input states from  (𝑗)

𝐼
in steady state.

• The column sum of the matrix below is zero:
(

𝐹 (𝑗)
𝓁 𝐶 (𝑗)

𝓁

𝐴(𝑗)
𝓁

)

(38)

According to this property, the outflow rate from 𝐿𝑇𝐼 (𝑗)𝓁 is equal
to the inflow rate of the 𝓁th species into 𝐶𝑅𝑁 (𝑗).

The state dynamics of the extended subsystem can be formulated as
n open CRN model. This is illustrated in the following example.

xample 1. Let an extended subsystem as it is shown in Fig. 2. In this
xample, 𝑚 = 2 and the neighboring subsystems are  (𝑗)

𝐼 = {𝑓, 𝑔}. Its
ynamic model can be formulated as an open CRN model, the inputs
f which are represented by the outputs of the neighboring CRNs. In
he view of the general Eqs. (30) and (31), the state dynamics of the
xtended subsystem reads as:

𝐱̇(𝑗)

𝐱̇(𝑗)𝐼1

𝐱̇(𝑗)𝐼2

⎞

⎟

⎟

⎟

⎠

⏞⏟⏞⏟
𝐗̇(𝑗)

=

⎛

⎜

⎜

⎜

⎝

𝑌 (𝑗) 𝑂 𝑂 𝐼

𝑂 𝐼 𝑂 𝑂

𝑂 𝑂 𝐼 𝑂

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐘(𝑗)

×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐴(𝑗)
𝜅 𝑂 𝑂 𝑂

𝑂 𝐴(𝑗)
1 𝑂 𝑂

𝑂 𝑂 𝐴(𝑗)
2 𝑂

𝑂 𝐹 (𝑗)
1 𝐶 (𝑗)

1 𝐹 (𝑗)
2 𝐶 (𝑗)

2 −𝐻 (𝑗)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑗)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜑(𝑗)(𝐱(𝑗))

𝐱(𝑗)𝐼1

𝐱(𝑗)𝐼2

𝐱(𝑗)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(𝑗) (𝑗)
7

𝐀𝜅
𝛷 (𝐗 )
+

⎛

⎜

⎜

⎜

⎜

⎝

𝑂 𝑂 𝑂 𝑂

𝑂 𝑂 𝑂 𝐵(𝑗)
1𝑓𝐻

(𝑓 )
1

𝑂 𝑂 𝑂 𝐵(𝑗)
2𝑓𝐻

(𝑓 )
2

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐁(𝑗)
𝑓

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜑(𝑓 )(𝐱(𝑓 ))

𝐱(𝑓 )𝐼1

𝐱(𝑓 )𝐼2

𝐱(𝑓 )

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝛷(𝑓 )(𝐗(𝑓 ))

+

⎛

⎜

⎜

⎜

⎜

⎝

𝑂 𝑂 𝑂 𝑂

𝑂 𝑂 𝑂 𝐵(𝑗)
1𝑔𝐻

(𝑔)
1

𝑂 𝑂 𝑂 𝐵(𝑗)
2𝑔𝐻

(𝑔)
2

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐁(𝑗)
𝑔

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜑(𝑔)(𝐱(𝑔))

𝐱(𝑔)𝐼1

𝐱(𝑔)𝐼2

𝐱(𝑔)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝛷(𝑔)(𝐗(𝑔))

(39)

𝑂 denotes the zero matrix with appropriate dimension.
Generally, the open CRN model of an extended subsystem can be

ritten in the following compact form:

̇ (𝑗) = 𝐘(𝑗)𝐀(𝑗)
𝜅 𝛷(𝑗)(𝐗(𝑗)) +

∑

𝑖∈ (𝑗)
𝐼

𝐁(𝑗)
𝑖 𝛷(𝑖)(𝐗(𝑖)), (40)

.1.2. Global model of the CRN network
By employing the extended subsystem model (40), the state space

ealization of the entire dynamic network can be formulated.

xample 2. Consider the network presented in Fig. 3. The input
eighbor sets are  (1)

𝐼 = {3},  (2)
𝐼 = {1},  (3)

𝐼 = {2}. By Eq. (40)
he state space realization of the networks has the form:

⎛

⎜

⎜

⎜

⎝

𝐗̇(1)

𝐗̇(2)

𝐗̇(3)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝐘(1)𝐀(1)
𝜅 𝑂 𝐁(1)

3

𝐁(2)
1 𝐘(2)𝐀(2)

𝜅 𝑂

𝑂 𝐁(3)
2 𝐘(3)𝐀(3)

𝜅

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝛷(1)(𝐗(1))

𝛷(2)(𝐗(2))

𝛷(3)(𝐗(3))

⎞

⎟

⎟

⎟

⎠

(41)

roposition 1. The matrices 𝐁(𝑗)
𝑖 , introduced in (40), can be factorized

s:
(𝑗)
𝑖 = 𝐘(𝑗)𝐁(𝑗)

𝐸𝑖 , (42)

here the matrix 𝐁(𝑗)
𝐸𝑖 has the form:

(𝑗)
𝐸𝑖 =

(

𝐁(𝑗)
𝑖
𝑂

)

(43)

The affirmation above can be shown by direct computation. For an
xample, refer to 𝐘(𝑗) and 𝐁(𝑗)

1 in Eq. (39).
In the view of this proposition, the dynamic network model (41)

an be rewritten in the form:

𝐗̇(1)

𝐗̇(2)

𝐗̇(3)

⎞

⎟

⎟

⎠

⏞⏞⏟⏞⏞⏟
̇

=
⎛

⎜

⎜

⎝

𝐘(1) 𝑂 𝑂
𝑂 𝐘(2) 𝑂
𝑂 𝑂 𝐘(3)

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐘

⎛

⎜

⎜

⎜

⎝

𝐀(1)
𝜅 𝑂 𝐁(1)

𝐸3
𝐁(2)
𝐸1 𝐀(2)

𝜅 𝑂
𝑂 𝐁(3)

𝐸2 𝐀(3)
𝜅

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐗 𝐀𝜅
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Fig. 3. CRN network example with dynamic connections.
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⎛

⎜

⎜

⎝

𝛷(1)(𝐗(1))
𝛷(2)(𝐗(2))
𝛷(3)(𝐗(3))

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝛷(𝐗)

(44)

y the proprieties (36) and (38) yields that the row sums of the matrix
(1)
𝜅 are zero.

Generally, it can be affirmed that the model of the CRN network
ith linear connecting elements can be formulated as a CRN model:

̇ = 𝐘𝐀𝜅𝛷(𝐗). (45)

.2. Control of CRN network

.2.1. Complex balancedness
Let 𝐱∗ = (𝑥∗𝓁) ∈ R𝑛

>0 be an equilibrium state of the kinetic system
9). The kinetic system is called complex balanced if

𝜅𝜑(𝐱∗) = 𝟎. (46)

t is known that, if (46) is satisfied for an equilibrium point, then it is
ulfilled for all the other equilibrium points of the model [41]. Hence
he complex balance is a property of the whole CRN and not only of
he equilibrium point. If a CRN is complex balanced, then the system
9) is at least locally stable in the equilibrium point 𝐱∗ with a known
ntropy-like logarithmic Lyapunov function which is independent of
he rate coefficients of the system [4]. If the reaction graph of a complex
alanced system contains one connected component (which we can
ssume in our case) then the stability is global with respect to the
onnegative orthant [42].

emark 5. In the case of linear CRNs (𝜑(𝐱) = 𝐱, 𝑌 = 𝐼) the vector
∗ = 𝛼𝟏, 𝛼 > 0 is an equilibrium point, and 𝐴𝜅𝐱∗ = 𝟎 if 𝐴𝜅 is row
onservation matrix (i.e. the sum of the elements in each row is zero).

.2.2. Control problem
Generally, it cannot be assumed that the CRN subsystems possess

omplex balanced property. On the other hand, in many biochemical
ystems, it is desirable to have different prescribed equilibrium states
n the CRN subsystems of the network. To tackle this problem, the CRN
ubsystems are extended with additional control flows that are designed
n function of the desired equilibrium states and measured states.

ontrol inputs. The state-space model (30) is extended as:

̇ (𝑗) = 𝑌 (𝑗)𝐴(𝑗)
𝜅 𝜑(𝑗)(𝐱(𝑗)) +

𝑚
∑

𝓁=1
𝐹 (𝑗)
𝓁 𝑦(𝑗)𝐼𝓁 −𝐻 (𝑗)𝐱(𝑗) + 𝐵(𝑗)

𝑐
(

𝐱(𝑗)𝑐 − 𝐱(𝑗)
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐮(𝑗)𝑐

(47)

here 𝐵(𝑗)
𝑐 ∈ R𝑛×𝑛

≥0 is the control input matrix, and
(𝑗) (𝑗) (𝑗) 𝑛×1 (𝑗) 𝑛
8

𝑐 = 𝐱𝑐 −𝐱 ∈ R implements the control input. The term 𝐱𝑐 ∈ R≥0
epresents the species concentration vector which is considered to be
djustable by a control mechanism.

It is important to remark, that the last, additional input term in
q. (47) corresponds to the situation when an additional inflow-outflow
air of constant mass flowrate 𝐵(𝑗)

𝑐 is used for control purposes with
djustable inflow concentration 𝐱(𝑗)𝑐 in order to keep the constant
verall mass condition in each CRN subsystem. Here 𝐵(𝑗)

𝑐 𝐱(𝑗)𝑐 is the
omponent mass inflow and 𝐵(𝑗)

𝑐 𝐱(𝑗) is the balancing component mass
utflow of the subsystem.

ontrol objective. Let the set of prescribed equilibrium states as:

𝐱(1)∗, … , 𝐱(𝑗)∗, … 𝐱(𝑛)∗}. (48)

esign a decentralized control 𝐮(𝑗)𝑐 for each CRN subsystem such that
he entire CRN network with delayed connections is stable, and the
teady state value of 𝐱(𝑗) is equal to 𝐱(𝑗)∗.

By decentralized control, we mean that the control inputs 𝐮(𝑗)𝑐 may
nly depend on the states of the 𝑗th CRN subsystem.

.2.3. Control design
Let the controlled CRN subsystem be defined by the relation (47).

he control will be designed in three steps.

(1) First, kinetic state feedback is designed to ensure the complex
balanced property of the CRN subsystems.

(2) Second, the control is extended by logarithmic feedback to en-
sure setpoint tracking in the CRN subsystems.

(3) Third, the control is further extended by a feed-forward term
which is meant to compensate for the setpoint differences in the
neighboring CRN subsystems.

.2.4. Reference Kirchhoff matrix to ensure complex balancedness
The Kirchhoff matrix (𝐴(𝑗)

𝜅𝑟𝑒𝑓 ) for 𝐶𝑅𝑁 (𝑗) will be constructed such to
nsure the complex balanced property of the CRN subsystem.

This reference Kirchhoff matrix can be designed by applying the
ollowing algorithm:

• INPUTS: 𝐱(𝑗)∗ ∈ R𝑛
>0, 𝜑

(𝑗)(⋅) ∶ R𝑛
≥0 → R𝑝𝑗

≥0
• Let 𝑃𝑗 = diag

(

𝜑(𝑗)(𝐱(𝑗)∗)
)

∈ R𝑝𝑗×𝑝𝑗
≥0 .

• Let a free design parameter (rate coefficient) 𝛾 (𝑗) ∈ R>0.
• Let 𝐴(𝑗)

0 ∈ R𝑝𝑗×𝑝𝑗 such that 𝐴(𝑗)
0𝑖𝑖 = −1 and 0 ≤ 𝐴(𝑗)

0𝑖𝑗 ≤ 1 otherwise,
and both the row and column sums of it are zero.

• Compute

𝐴(𝑗)
𝜅𝑟𝑒𝑓 = 𝛾 (𝑗)𝐴(𝑗)

0 𝑃−1
𝑗 ∈ R𝑝𝑗×𝑝𝑗 . (49)

(𝑗)
• OUTPUT: 𝐴𝜅𝑟𝑒𝑓
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With the design parameter 𝛾 (𝑗) > 0, the transient performances (such
as reaction rates) of the reactions can be adjusted.

The obtained reference Kirchhoff matrix has the following propri-
eties:

• 𝐴(𝑗)
𝜅𝑟𝑒𝑓𝜑

(𝑗)(𝐱(𝑗)∗) = 𝟎.
• The column sums of 𝐴(𝑗)

𝜅𝑟𝑒𝑓 are zero.

Example 3. Let equilibrium sate: 𝐱(𝑗)∗ = (𝑥(𝑗)∗1 𝑥(𝑗)∗2 𝑥(𝑗)∗3 )𝑇 ∈ R3
>0 and

the vector of monomial functions:

𝜑(𝑗) ∶ R3
≥0 → 𝑅2

≥0 𝜑(𝑗)(𝐱(𝑗)) =
(

𝑥(𝑗)1 𝑥(𝑗)2

𝑥(𝑗)3

)

(50)

The diagonal matrix 𝑃𝑗 has the form:

𝑃𝑗 =

(

𝑥(𝑗)∗1 𝑥(𝑗)∗2 0

0 𝑥(𝑗)∗3

)

. (51)

Let 𝛾 (𝑗) > 0 and

𝐴(𝑗)
0 =

(

−1 1

1 −1

)

. (52)

In this case, the reference Kirchhoff matrix has the form:

𝐴(𝑗)
𝜅𝑟𝑒𝑓 =

⎛

⎜

⎜

⎜

⎝

− 𝛾(𝑗)

𝑥(𝑗)∗1 𝑥(𝑗)∗2

𝛾(𝑗)

𝑥(𝑗)∗3

𝛾(𝑗)

𝑥(𝑗)∗1 𝑥(𝑗)∗2

− 𝛾(𝑗)

𝑥(𝑗)∗3

⎞

⎟

⎟

⎟

⎠

. (53)

.2.5. Kinetic state feedback
Let the reference Kirchhoff matrix for the 𝑗th CRN subsystem 𝐀(𝑗)

𝜅𝑟𝑒𝑓
hich was designed using the method presented in Section 4.2.4.

Consider the kinetic feedback in the form [25]:

𝑐1 = 𝐾 (𝑗)
𝜑 𝜑(𝑗)(𝐱(𝑗)) (54)

here 𝐾 (𝑗)
𝜑 ∈ R𝑛×𝑝𝑗 is the controller gain matrix.

To ensure the complex balancedness of the 𝑗th CRN subsystem, in
he view of the Eq. (47), 𝐾 (𝑗)

𝜑 can be designed by using the equation:

(𝑗)𝐴(𝑗)
𝜅 + 𝐵(𝑗)

𝑐 𝐾 (𝑗)
𝜑 = 𝑌 (𝑗)𝐴(𝑗)

𝜅𝑟𝑒𝑓 . (55)

The equation above is solvable iff

(𝑗)
𝑐 𝐵(𝑗)†

𝑐 𝑌 (𝑗)
(

𝐴(𝑗)
𝜅𝑟𝑒𝑓 − 𝐴(𝑗)

𝜅

)

= 𝑌 (𝑗)
(

𝐴(𝑗)
𝜅𝑟𝑒𝑓 − 𝐴(𝑗)

𝜅

)

, (56)

ee e.g. [43]. Here 𝐵(𝑗)†
𝑐 denotes the Moore–Penrose inverse of 𝐵(𝑗)

𝑐 .
ote that if 𝐵(𝑗)

𝑐 has full rank, e.g. 𝐵(𝑗)
𝑐 = 𝐼 , the condition above is

onclusively satisfied.
If the solvability condition holds, the solution is

(𝑗)
𝜑 = 𝐵(𝑗)†

𝑐 𝑌 (𝑗)
(

𝐴(𝑗)
𝜅𝑟𝑒𝑓 − 𝐴(𝑗)

𝜅

)

+
(

𝐼 − 𝐵(𝑗)†
𝑐 𝐵(𝑗)

𝑐
)

𝑍, (57)

here 𝑍 is arbitrary with an appropriate dimension.

.2.6. Logarithmic feedback for setpoint tracking
The control (54) ensures the stability of the CRN subsystems. To

nsure the convergence of a specific equilibrium point 𝐱(𝑗)∗ the control
nput can be extended with the logarithmic feedback [44]:
(𝑗)
𝑐2 = 𝐾 (𝑗)

𝑝
(

𝐿𝑛(𝐱(𝑗)∗) − 𝐿𝑛(𝐱(𝑗))
)

(58)

here the mapping 𝐿𝑛(⋅) applies the natural logarithm element-wise to
vector, and 𝐾 (𝑗)

𝑝 ∈ R𝑛×𝑛
>0 is a diagonal gain matrix.

For the discussion and setpoint tracking performances and the
9

ositivity of the controller above, see [44]. w
.2.7. Feedforward compensation for setpoint difference
If different setpoints for the different CRN subsystems are pre-

cribed, it has to be considered that the inflows from the neighboring
RNs could shift the equilibrium state of the CRN subsystem from the
rescribed value. To compensate for this, the control is extended with
feed-forward term.

The effect of the neighboring CRN subsystems on the steady states
as to be computed by taking into account the connecting elements
iven by (31).

By assuming that the states of the CRN subsystems from the neigh-
orhood set  (𝑗)

𝐼 have reached their setpoint values (𝐱(𝑖)∗), the output
f 𝐿𝑇𝐼 (𝑗)𝓁 in equilibrium reads as:

(𝑗)∗
𝐼𝓁 = −𝐶 (𝑗)

𝓁 𝐴(𝑗)−1
𝓁

∑

𝑖∈ (𝑗)
𝐼

𝐵(𝑗)
𝑖𝓁 𝐻

(𝑖)
𝓁 𝐱(𝑖)∗ (59)

ote that 𝐴(𝑗)
𝓁 is Hurwitz, hence it is invertible.

To compensate for the effect of the inputs on the equilibrium state
f 𝐶𝑅𝑁 (𝑗), in the view of Eq. (30), the feedforward term of the control
(𝑗)
𝑓𝑓 has to be formulated such that
𝑚
∑

=1
𝐹 (𝑗)
𝓁 𝑦(𝑗)∗𝐼𝓁 −𝐻 (𝑗)𝐱(𝑗)∗ + 𝐮(𝑗)𝑓𝑓 = 𝟎. (60)

y this equation, the final form of the feedforward term of the control
ields as:

(𝑗)
𝑓𝑓 = 𝐻 (𝑗)𝐱(𝑗)∗ +

𝑚
∑

𝓁=1
𝐹 (𝑗)
𝓁 𝐶 (𝑗)

𝓁 𝐴(𝑗)−1
𝓁

∑

𝑖∈ (𝑗)
𝐼

𝐵(𝑗)
𝑖𝓁 𝐻

(𝑖)
𝓁 𝐱(𝑖)∗ (61)

The final form of the control input yields from (54), (58) and (61):
(𝑗)
𝑐 = 𝐮(𝑗)𝑐1 + 𝐮(𝑗)𝑐2 + 𝐮(𝑗)𝑓𝑓 (62)

The decentralized controller above ensures that each controlled
RN subsystem is complex balanced. As it was presented in Eqs. (35)–
38), the inflow rates are equal to the outflow rates in every CRN
ubsystem and we consider stable linear connecting elements. More-
ver, the control input was also formulated in such a way that it does
ot distort the balancedness of the sub-CRNs, see (47). Hence, the entire
ontrolled network is also balanced.

.3. The summary of the control

The control design, and the steps of the control algorithm of the
onnected open CRN subsystems are summarized below. The control is
mplementable using only local measurements.

• Let 𝐱(𝑗)∗, 𝐱(𝑖)∗ (𝑖 ∈  (𝑗)
𝐼 ), and 𝐾 (𝑗)

𝑝 be given.
• Compute 𝐴(𝑗)

𝜅 by using Eq. (49)
• Check condition (56)

For each 𝐶𝑅𝑁 (𝑗) repeat :

• INPUT: Measure 𝐱(𝑗)
• Compute 𝐮(𝑗)𝑐 by using Eqs. (62), (54), (58) and (61)
• OUTPUT: 𝐮(𝑗)𝑐

. Case study

.1. General description of the process

A case study consisting of three sub-CRNs and several linear inter-
onnections is considered. The process system is designed to extract
arbon dioxide (CO2) from flue gases using lime hydrate (Ca(OH)2).
his case study is a simplified version of the process used in industrial
ractice, during simulations fictive parameters were used.

The network presented in Fig. 4 consists of three operating units,

here the LTI connecting subsystems represent the effect of nonideal
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onvection [37] along the tubes connecting the operating units that are
erfectly stirred.

Unit 1 is for absorbing the carbon dioxide (specie 𝐴) in water that
s in great excess and produces dissolved H2CO3 (specie 𝐶), so we have
he reaction

𝑘(1)
←←←←←←←←←←←←←←←→ 𝐶 (63)

he water solvent is recycled from the extractors, i.e. from unit 3.
Thereafter units 2 and 3 realize a two-stage extractor where specie 𝐵

lime hydrate, Ca(OH)2) and specie 𝐶 (dissolved H2CO3) react to form
pecie 𝐷 (rag-stone, CaCO3) that is deposited, and also water. Here the
hemical reactions (taking into account that water is in great excess)
re in the simple form

+ 𝐶
𝑘(𝑗)
←←←←←←←←←←←←←←→ 𝐷 , 𝑗 = 2, 3. (64)

fter the second stage, the unreacted solvable species (𝐵 and 𝐶) are
ecycled together with the water.

The control inflow contains in unit 1 only specie 𝐴. In units 2 and
, only specie 𝐵 is in the control inflow.

The control aim is to set the outflow concentration of specie 𝐶 in
𝐶𝑅𝑁 (1) high enough to consume most of the specie 𝐴 (the carbon
dioxide) in the inflow gas. Then we set the outflow concentration
of specie 𝐶 in 𝐶𝑅𝑁 (2) and 𝐶𝑅𝑁 (3) gradually smaller such that the
resulting specie 𝐷 can be safely withdrawn as a solid from these units.
Meanwhile, we would like to maintain the stability of the overall
network against the disturbances caused by the delays and recycling.

5.2. Control-oriented model and control design

The controlled network corresponding to the process described in
the previous subsection is presented in Fig. 4.

The first subsystem consists of 𝐶𝑅𝑁 (1), it only has specie 𝐴 in its gas
hase controlled inflow. This gas phase flow leaves the unit with less
pecie 𝐴 contents. The liquid phase outflow from 𝐶𝑅𝑁 (3) also enters
his unit through linear connecting elements.

It is important to note, that both specie 𝐵 and specie 𝐶 are present
n the recycled inflow from 𝐶𝑅𝑁 (3), as shown in Fig. 4. However, only
eaction (63) takes place in 𝐶𝑅𝑁 (1), the specie 𝐵 reacts only in 𝐶𝑅𝑁 (2).

The second extended subsystem contains 𝐶𝑅𝑁 (2) with control in-
flow for specie 𝐵 and two linear connecting elements describing the
connections among 𝐶𝑅𝑁 (2) and its input neighbors.

The third extended subsystem contains 𝐶𝑅𝑁 (3) with control inflow
for specie 𝐵. The interconnections from 𝐶𝑅𝑁 (2) to 𝐶𝑅𝑁 (3) are also
included in this extended subsystem.

Without losing the generality during control design, it is assumed
that all the linear connecting subsystems 𝐿𝑇𝐼 (1)𝐶 , 𝐿𝑇𝐼 (2)𝐵 , 𝐿𝑇𝐼 (2)𝐶 , 𝐿𝑇𝐼 (3)𝐵
and 𝐿𝑇𝐼 (3)𝐶 have unit steady-state gains. Hence, in steady state, the
species concentrations at the connecting output of the connecting el-
10

ements are equal to the input concentration. p
ontrol-oriented modeling for 𝐶𝑅𝑁 (1). The dynamic model of the 𝐶𝑅𝑁 (1

ubsystem is given by

{

𝑥̇(1)𝐴 = −𝑘(1)𝑥(1)𝐴 + 𝑣𝐴𝑥
(1)
𝐴𝑐 − 𝑣𝐴𝑥

(1)
𝐴

𝑥̇(1)𝐶 = 𝑘(1)𝑥(1)𝐴 + 𝑣𝐶𝑦
(1)
𝐼𝐶 − 𝑣𝐶𝑥

(1)
𝐶

,

(

𝑥(1)𝐴 (0)

𝑥(1)𝐶 (0)

)

=

(

𝑥(1)𝐴0

𝑥(1)𝐶0

)

,

(65)

where 𝑦(1)𝐼𝐶 is the output of the linear connecting element (𝐿𝑇𝐼 (1)𝐶 ) of the
extended subsystem, 𝑘(1) > 0 is the reaction rate coefficient, the inflow
concentration 𝑥(1)𝐴𝑐 is also applied as control, 𝑣𝐴, 𝑣𝐶 > 0 are the in- and
outflow rate coefficients (in units [1∕𝑠], that are the real in- or outflow
rates divided by the volume).

Control design for 𝐶𝑅𝑁 (1). Consider that 𝑥(1)∗𝐶 represents the prescribed
setpoint for specie 𝐶. The control goal is to ensure that lim𝑡→∞ 𝑥(1)𝐶 =
𝑥(1)∗𝐶 > 0 in addition to stable dynamics.

Assuming that the controlled dynamics is stable, the steady states
satisfy:

𝑣𝐶 (𝑥
(1)∗
𝐶 − 𝑥(3)∗𝐶 ) = 𝑘(1)𝑥(1)∗𝐴 , (66)

where 𝑥(1)∗𝐶 is prescribed in the control goal, and 𝑥(3)∗𝐶 < 𝑥(1)∗𝐶 is the
steady state value of 𝐶 in 𝐶𝑅𝑁 (3).

The reference Kirchhoff matrix (𝐴(1)
𝑘𝑟𝑒𝑓 ) is formulated as in Sec-

tion 4.2.4, see Eq. (49). The state of the specie 𝐶 is not directly
influenced by the control input, so the first row in 𝐴(1)

𝑘𝑟𝑒𝑓 is kept the
same as in the original Kirchhoff matrix:

𝐴(1)
𝑘𝑟𝑒𝑓 = 𝑣𝐶 (𝑥

(1)∗
𝐶 − 𝑥(3)∗𝐶 )

[

−1 1

1 −1

]⎡

⎢

⎢

⎢

⎣

1
𝑥(1)∗𝐴

0

0 1
𝑥(1)∗𝐶 −𝑥(3)∗𝐶

⎤

⎥

⎥

⎥

⎦

=

[

−𝑘(1) 𝑣𝐶
𝑘(1) −𝑣𝐶

]

. (67)

he equilibrium states satisfy the steady-state Eq. (66).

The control is formulated as in Eq. (62):

1 ∶ 𝑥(1)𝐴𝑐 =
𝑣𝐶
𝑣𝐴

(𝑥(1)𝐶 − 𝑥(3)∗𝐶 ) + 𝑘(1)𝑝

(

𝑙𝑛(𝑥(1)∗𝐴 ) − 𝑙𝑛(𝑥(1)𝐴 )
)

+ 𝑥(1)∗𝐴 (68)

here 𝑘(1)𝑝 > 0, and 𝑥(1)∗𝐴 = 𝑣𝐶 (𝑥
(1)∗
𝐶 − 𝑥(3)∗𝐶 )∕𝑘(1) according to Eq. (66).

he first term ensures the complex balancedness of the controlled
ystem, and the second term guarantees the setpoint tracking. The
eedforward term compensates for the control inflow.

ontrol-oriented modeling for 𝐶𝑅𝑁 (2). In this unit, specie 𝐴 is not
resent; therefore reaction (63) does not take place here. The dynamic



Journal of Process Control 130 (2023) 103084L. Márton et al.

𝐴

𝐶

a
s

C

s

5

v
e

o

a

i

w

T

c
t
a

c

c
s
t

model corresponding to the reaction (64) has the form:

⎧

⎪

⎨

⎪

⎩

𝑥̇(2)𝐶 = −𝑘(2)𝑥(2)𝐵 𝑥(2)𝐶 + 𝑣𝐶𝑦
(2)
𝐼𝐶 − 𝑣𝐶𝑥

(2)
𝐶

𝑥̇(2)𝐵 = −𝑘(2)𝑥(2)𝐵 𝑥(2)𝐶 + 𝑣(2)𝐵 𝑦(2)𝐼𝐵 − 𝑣(3)𝐵 𝑥(2)𝐵 + 𝑣(2)𝑢 𝑥(2)𝐵𝑐

𝑥̇(2)𝐷 = 𝑘(2)𝑥(2)𝐵 𝑥(2)𝐶 − 𝑣(2)𝐷 𝑥(2)𝐷

,

⎛

⎜

⎜

⎜

⎝

𝑥(2)𝐶 (0)

𝑥(2)𝐵 (0)

𝑥(2)𝐷 (0)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑥(2)𝐶0

𝑥(2)𝐵0

𝑥(2)𝐷0

⎞

⎟

⎟

⎟

⎠

,

(69)

where 𝑦(2)𝐼𝐶 , 𝑦(2)𝐼𝐵 are the outputs of the linear connecting elements
(𝐿𝑇𝐼 (2)𝐶 , 𝐿𝑇𝐼 (2)𝐵 ) of the extended subsystem. 𝑘(2) > 0 is the reaction rate
coefficient, 𝑣(2)𝐵 , 𝑣(3)𝐵 , 𝑣(2)𝐷 > 0 are the flow rate coefficients, and 𝑣(2)𝑢 > 0
is the control inflow rate coefficient such that 𝑣(2)𝐵 + 𝑣(2)𝑢 = 𝑣(3)𝐵 .

Control design for 𝐶𝑅𝑁 (2). The control goal is to ensure that lim𝑡→∞ 𝑥(2)𝐶 =
𝑥(2)∗𝐶 beside stable dynamics, where 𝑥(2)∗𝐶 < 𝑥(1)∗𝐶 is the prescribed
concentration setpoint for specie 𝐶 in 𝐶𝑅𝑁 (2).

Note that only the dynamics of 𝑥(2)𝐵 is influenced directly by the
control.

By Eq. (69) the steady state concentration of the specie 𝐷 in the
controlled CRN satisfies

𝑥(2)∗𝐷 =
𝑣𝐶
𝑣(2)𝐷

(

𝑥(1)∗𝐶 − 𝑥(2)∗𝐶

)

, (70)

where 𝑥(2)∗𝐶 is prescribed in the control goal.
The steady-state value of the specie 𝐵 can also be computed in

function of the prescribed steady-state values of specie 𝐶:

𝑘(2)𝑥(2)∗𝐵 𝑥(2)∗𝐶 = 𝑣𝐶 (𝑥
(1)∗
𝐶 − 𝑥(2)∗𝐶 ). (71)

The reference Kirchhoff matrix is expressed as:

(1)
𝑘𝑟𝑒𝑓 =

[

−𝑘(2) 𝑣𝐷
𝑘(2) −𝑣𝐷

]

. (72)

The control is formulated as in (62):

2 ∶ 𝑥(2)𝐵𝑐 =
𝑣(2)𝐷

𝑣(2)𝑢

𝑥(2)𝐷 + 𝑘(2)𝑝

(

𝑙𝑛(𝑥(2)∗𝐵 ) − 𝑙𝑛(𝑥(2)𝐵 )
)

−
𝑣(2)𝐵

𝑣(2)𝑢

𝑥(3)∗𝐵

+
𝑣(3)𝐵

𝑣(2)𝑢

𝑥(2)∗𝐵 , (73)

where 𝑘(2)𝑝 > 0.
The control of the extended 𝐶𝑅𝑁 (3) subsystem can be formulated

nd designed in the same manner. Here, the prescribed concentration
tate for specie 𝐶 satisfies 𝑥(3)∗𝐶 < 𝑥(2)∗𝐶 .

onnections. Through the linear connecting elements, the species 𝐶
and 𝐵 circulate among the reactions as it is shown in Fig. 4. Each
element is considered to be described by an irreversible homogeneous
chain with four states, as it is presented in Section 3.3.

𝐿𝑇𝐼 (𝑗)𝐶 ∶

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥̇(𝑗)𝐼1

𝑥̇(𝑗)𝐼2

𝑥̇(𝑗)𝐼3

𝑥̇(𝑗)𝐼4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝑣𝐶 0 0 0

𝑣𝐶 −𝑣𝐶 0 0

0 𝑣𝐶 −𝑣𝐶 0

0 0 𝑣𝐶 −𝑣𝐶

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴(𝑗)
𝐶

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥(𝑗)𝐼1

𝑥(𝑗)𝐼2

𝑥(𝑗)𝐼3

𝑥(𝑗)𝐼4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑣𝐶
0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏟⏟
(𝑗)

𝑢(𝓁)𝐶
11

𝐵𝐶
a

Table 1
Initial states.
𝐱(𝑗)0 𝑗 = 1 𝑗 = 2 𝑗 = 3

𝑥(𝑗)𝐴0 50 – –
𝑥(𝑗)𝐵0 – 0.1 0.1
𝑥(𝑗)𝐶0 0 0 0
𝑥(𝑗)𝐷0 – 0 0

Table 2
Parameters for simulation.
Parameter 𝑗 = 1 𝑗 = 2 𝑗 = 3

𝑘(𝑗) 1 0.1 0.1
𝑣(𝑗)𝐴 1 – –
𝑣(𝑗)𝐶 1 1 1
𝑣(𝑗)𝐵 – 1 1.2
𝑣(𝑗)𝐷 – 1 1
𝑣(𝑗)𝑢 – 0.2 0.2

Table 3
Controller parameters for simulation.
Parameter 𝑗 = 1 𝑗 = 2 𝑗 = 3

𝑘(𝑗)𝑝 10 10 10
𝑥(𝑗)∗𝐶 10 5 2.5

𝑦(𝑗)𝐼 =
(

0 0 0 1
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶(𝑗)
𝐶

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥(𝑗)𝐼1

𝑥(𝑗)𝐼2

𝑥(𝑗)𝐼3

𝑥(𝑗)𝐼4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (74)

Here 𝑢(𝓁)𝐶 denotes the chemical concentration state of the specie 𝐶
from the corresponding input unit.

The linear connecting elements 𝐿𝑇𝐼 (𝑗)𝐵 , 𝑗 = 2, 3 are defined in the
ame way.

.3. Simulation results

The dynamic model of the CRN network presented in the pre-
ious subsections, see Fig. 4, was implemented in Matlab/Simulink
nvironment.

The subsystems and connecting elements were implemented based
n the models (65), (69), and (74).

The integration of the model was performed using the Dorm-
nd-Prince solver (’ode45’) with 1𝐸 − 3 tolerance.

The applied initial states of the dynamic CRN models are presented
n Table 1.

In every case, the initial states of the linear connecting elements
ere chosen as zero.

The parameters of the extended subsystem are chosen as shown in
able 2.

During the simulation experiment, the dynamic behavior of the
ontrolled network with the proposed decentralized control was inves-
igated. The control laws were implemented, as it is presented in (68)
nd (73).

Table 3 presents the chosen reference states for specie 𝐶, and the
ontroller parameters.

Figs. 5, 6, and 7 show the states of the controlled CRNs and the
ontrol signals. The network shows stable behavior and the states of the
pecies 𝐶 converge to their prescribed values. It can also be observed
hat the steady states of the other species satisfy the Eqs. (66), (70),
nd (71).
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t-
Fig. 5. The controlled states and control signal of subsystem 1.

6. Conclusion and future work

Handling of time delays is often necessary for the modeling and
control of dynamic systems. It is known that a large set of general
nonlinear systems (especially nonnegative systems) can be formally
represented in kinetic form as a set of complexes and abstract chemical
reactions. In this paper, the modeling and control of interconnected
kinetic systems containing distributed delays were considered. The
network structure consists of interconnected chemical reaction net-
works where the connections are either static or represented as linear
connecting CRNs. Distributed delays can also be described as linear sub-
CRNs. The manipulable inputs of the network are inlet concentrations,
and the control goal is the stabilization of a given positive setpoint.

Stability is achieved by ensuring the complex balanced property of
the controlled system using a reference Kirchhoff matrix prescribing
a preferred graph structure and interconnection weights, and an ap-
propriate nonlinear feedback. It is an important new result that the
stabilizing feedback design is not stated as an optimization problem,
but a necessary and sufficient algebraic condition is given for the com-
putability, which also characterizes all possible solutions. Therefore,
the computation of the feedback law requires straightforward matrix
operations which can be performed efficiently. The control Lyapunov
function of the partially closed loop system is an entropy-like loga-
rithmic function ensuring global stability in the positive orthant. The
kinetic state feedback is extended by an additional logarithmic feed-
back and a feedforward compensator which maintain global stability
and ensure precise setpoint tracking at the same time.

The proposed computation approach was illustrated through a case
study containing 3 sub-CRNs and 5 LTI connecting subsystems repre-
senting distributed delays caused by convection properties. The model
also contains material recycle loops which are known to potentially
complicate control design. It is shown that the computations are feasi-
ble, and simulation results show good control performance and simple
12
Fig. 6. The controlled states and control signal of subsystem 2.

tunability of the proposed method. Future work will be focused on the
selection of feasible solutions and the tuning of controller parameters
to satisfy predefined performance requirements. It is also planned to ex-
amine the possibility of relaxing certain assumptions and the extension
of the approach to time-varying reaction rate coefficients.
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