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Abstract:
This paper presents a novel observer design method that combines the Linear Quadratic (LQ)
and ultra-local model-based approaches. Firstly, the LQ observer design is performed, which
uses the nominal model of the system. Then, the ultra-local model-based solution is introduced.
The results of the LQ observer are augmented with the ultra-local model, which aims to increase
the accuracy of the estimation process even for systems with high nonlinearities. During the
implementation process, in the nominal observer the parameter uncertainties are not taken into
account. These effects are also considered with the application of the ultra-local model. The
design process is carried out for an automated vehicle-related observation problem, the lateral
velocity estimation. Finally, the whole observer algorithm is implemented in high-fidelity vehicle
dynamics simulation software to show its effectiveness.
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1. INTRODUCTION AND MOTIVATION

Nowadays, the main focus of the automotive industry is on
the development of fully automated, autonomous vehicles.
One of the main challenges of autonomous vehicles is their
control system, which must guarantee accurate trajectory
tracking and the stable motion of the car even in dangerous
situations such as emergency lane change or braking. In
order to develop a reliable, high-performance-level control
algorithm several states of the vehicle must be accurately
known. However, some signals, such as the lateral velocity
of the vehicle cannot be measured directly or require high-
precision, expensive sensors. These devices would make
a significant increase in mass production costs thus they
should be replaced with other technical solutions.

In the last decades, several algorithms have been devel-
oped, which aim to estimate the non-measurable or costly
measurable states of the vehicles. These solutions can be
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divided into two main groups: 1. Model-based estimation
algorithms, 2. Data-based solutions.

The first group includes the classical methods, which are
based on a mathematical model of the considered system.
One of the widespread solutions is the Linear Quadratic
(LQ)-based observer design Akbari et al. [2012]. This tech-
nique requires a state-space representation of the system,
which is given, in general, in LTI form. LQ observers can
give a high-performance level when the dynamics of the
system are within its linear range. In the case of highly
nonlinear systems, such as vehicle systems, other methods
can be used e.g., robust techniques (H∞, Linear Parameter
Varying (LPV)). Using the H∞ technique, several param-
eter uncertainties and the nonlinearities of the system can
be handled Chadli et al. [2010]. Moreover, the stability of
these algorithms can be proven analytically. However, its
performance level drops when the model contains signifi-
cant nonlinearities.

In order to avoid the modeling process, new techniques
started to take place in the field of observers. These solu-
tions make up the second group: the data-driven observers.
In general, these methods involve a machine learning al-
gorithm to provide an estimate of the selected signal. For
example, a neural network is a widely used technique e.g.
Du et al. [2010]. Regression techniques are also suitable for
estimation problems Fenyes et al. [2018]. The main advan-
tage of the machine learning methods is that no accurate
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model is needed for the observer design. On the other
hand, these techniques require a large amount of data to
provide good results and generalization level. However, in
some cases, the required data is not available or it does
not cover the whole operating range of the system and
the parameters of the system can also change during its
lifetime. Another pitfall of machine-learning techniques is
stability since there is no elaborate method to prove it.
Therefore these methods cannot be used in safety-critical
systems, such as autonomous vehicles.

Although both groups of methods have their own advan-
tages, all of them have pitfalls such as uncertain models in
the case of classical solutions, or the large dataset, which
is necessary for data-driven methods.

In the last decade, a new technique has been developed,
which is called Model Free Control (MFC) Fliess and
Join [2013]. This method does not require an accurate
model of the system but an identification process is solved
using the ultra-local model-based approach. This model is
continuously updated during the operation of the control
system, in this way, it can cope with highly nonlinear
systems. This solution can also be fruitful for observer
design. For instance Al Younes et al. [2015] proposes
a Model Free observer design method for a quadrotor.
However, there are some issues with the implementation
of the ultra-local model-based control caused by the time-
delays of the system. Therefore, a new formulation of the
computation of the ultra-local model has been proposed
in Hegedus et al. [2022], which is called the error-based
ultra-local model.

The contribution of the paper is a novel observer design
technique for autonomous vehicles. The proposed solution
combines the error-based ultra-local model and LQ tech-
nique to provide high-performance level and robustness
against changes in parameters. The effectiveness and op-
eration of the proposed algorithm are illustrated through
a vehicle-oriented estimation problem: lateral velocity.

The paper is structured as follows: Section 2 presents the
error-based ultra-local model and gives a short introduc-
tion to LQ observer design, then details the combined
design approach. In section 3, the vehicle-oriented example
is presented including the main steps. The effectiveness
of the proposed algorithm is demonstrated in the vehicle
simulation software, CarSim in Section 4 Finally, the con-
clusion of the paper is summarized in Section 5.

2. OBSERVER DESIGN USING ULTRA-LOCAL
MODEL

2.1 Error-based ultra-local model

The error-based ultra-local model was inspired by the
original ultra-local model presented in Fliess and Join
[2013]. The original ultra-local model is computed from
the input signal (u) of the system, and νth derivative of
the output (y). In the case of the error-based ultra-local
model, two ultra-local models are considered. The first one
is computed from the measured signals, and the second one
is derived from a nominal model. The error-based model
(∆) is computed as an error of two models, as:

y(ν) = F + αu (1a)

y
(ν)
ref = Fnom + αunom,ref (1b)

y(ν) − y
(ν)
ref︸ ︷︷ ︸

e(ν)

= F − Fnom︸ ︷︷ ︸
∆nom

+αu− αunom,ref︸ ︷︷ ︸
αũ

(1c)

e(ν) = ∆nom + αũ (1d)

The ultra-local models have one tuning parameter (α),
which can be adjusted to the actual application purpose.
When the error-based ultra-local model is used for con-
trolling a system, an additional baseline controller is con-
sidered (C(s)) in order to eliminate the steady-state error.

ũMFC =
−∆nom,est + C(s)e

α
, (2)

However, in case of observer design, only the error-based
ultra-local part is needed, which means C(s) = 0. More
details on the error-based ultra-local model can be found
in Hegedus et al. [2022].

2.2 Linear Quadratic Observer

Linear Quadratic Observer design is based on the state-
space representation of the considered system, which can
be written, in general form, as:

ẋ = Ax+Bu (3a)

y = Cx (3b)

where A, B, C are state matrices, x is the state-vector, y
is the output of the system, u is the control input.

The goal of the observer design to minimize the error
between the estimated states x̂ and the real states x:

e = x− x̂, |e| → min! (4)

The estimated state-vector x̂ can be computed as:

˙̂x = Ax̂+Bu+ L(Cx̂− y) (5)

where L is the gain-vector, which contains the optimized
gains for the observer

This gain-vector can be computed by minimizing the
following cost function:

J =
1

2

∫ ∞

0

(xTQx+ uTRu)dt (6)

where x gives the state vector u is the control input and
Q and R are weighting matrices.

3. VEHICLE-ORIENTED APPLICATION

In the followings, the proposed observer design is presented
for a vehicle-oriented estimation problem, lateral velocity.
The observer design consists of the following main steps:

(1) The determination of the nominal model.
(2) Selection of the required derivative order (ν).
(3) Computation of the nominal reference signals

(unom,ref ,y
ν
ref )
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(4) Tuning of the parameter α.
(5) Design of LQ observer based on the nominal model.
(6) Finally, the estimated states can be computed as:

˙̂x = Ax̂+B(u−∆) + L(y − ŷ)

The structure of the observer algorithm is illustrated in
Figure 1.

System

Model

L

State observer

Error-based ultra-local model

Combined observer 

Fig. 1. The structure of the proposed observer

3.1 Determination of the nominal model

In this paper, the one-track bicycle model is used during
the modeling phase of the lateral vehicle dynamics (Raja-
mani [2005]). The basic idea behind this model is that the
front and rear wheels are replaced by one wheel each placed
on the longitudinal axis of symmetry of the vehicle. The
model consists of two main equations: lateral acceleration
and yaw motion.

ψ̈Iz = Cf (δ − β − ψ̇lf
vx

)lf − Cr(−β +
ψ̇lr
vx

)lr, (7a)

aym = Cf (δ − β − ψ̇lf
vx

) + Cr(−β +
ψ̇

vx
), (7b)

ay = ÿ + vxψ̇ (7c)

where ψ̇ denotes the yaw-rate and Iz is the yaw-inertia
of the vehicle. Moreover, Ci gives the cornering stiffness
of the tires of the front and rear axes and β is the side-
slip angle. Moreover, li gives distance from the axes to
CoG (center of gravity) and vx is the actual longitudinal
velocity. The lateral position of the vehicle is given by y
and δ road wheel angle.

3.2 Selection of derivative order and computation of the
reference signal

The goal of the observer design is to estimate the lateral ve-
locity (vy). Since the first derivative of the lateral velocity
is the lateral acceleration, which is a directly measurable
signal, ν is set to ν = 1. Note that the measured lateral
acceleration (ay) has an additional component from the

yaw-motion see: (7)(c), v̇y is computed as v̇y = ay − vxψ̇.
The reference signals (unom,ref ,y

ν
ref ) can be computed

using a model predictive approach as detailed in Fenyes
et al. [2022].

3.3 Tuning the parameter α

In the literature, there is no elaborate method to determine
the optimal value of α. The determination of the tuning

value is solved using an iterative algorithm. As pointed
out by (Polack et al. [2019]), when α → ∞, the effect
of the ultra-local model decreases and, in contrast, when
α → 0, the ultra-local model becomes the major factor
of the system. The computational process is based on a
previously saved dataset, which contains the estimated
(v̂y,i) and also the accurate value of the lateral velocity.
The following optimization process can be formed, for
determination of α with high performance-level:

min
α

n∑
i=1

(vy,i − v̂y,i)
2. (8)

The main steps of the iterative algorithm are the following:

(1) Design a nominal observer using the nominal model.
(2) Set the value of α to a high value.
(3) Using the nominal observer and the actual value of α,

evaluate the algorithm for a predefined test scenario
(4) Compute the value of the error between the reference

value and the output of the system en, where n
denotes the nth iteration step.

(5) If en ≥ en−1 or n > Nmax, quit the iteration.
(6) Decrease the value of α then jump to Step 3.

3.4 LQ observer design

The goal of the observer design to minimize the error
between the estimated and the measured lateral velocities:

e = vy − v̂y, |e| → min! (9)

This performance can be guaranteed by appropriately
chosen weighting matrices. In case of lateral velocity
estimation, the matrices are chosen to Q = diag(1000, 10),
R = 1.

4. SIMULATION RESULTS

In this section, simulation result is presented to show the
efficiency and the operation of the proposed observer de-
sign approach. The whole algorithm has been implemented
in MATLAB/Simulink and CarSim environment. During
the simulations, a B-class passenger car is used. Note that,
the longitudinal velocity (vx) is fixed to vx = 10m/s during
the linear quadratic observer design.

In the first simulation, the vehicle is driven along the
formula one track of Hungary. The track contains several
sharp bends, where the lateral velocity can reach a high
value. Furthermore, the longitudinal velocity of the vehicle
varies as illustrated in Figure 2(a). The velocity profile
consists of two main parts: the first one is the rapid
changing part t = {0−200s} and a slow changing part t =
{200− 400s} in order to cover the whole operating range

of the vehicle. Moreover, the measured signals (ay, ψ̇) are
corrupted with white noises, whose variances: σ2

ay = 0.04

and σ2
ψ̇
= 0.01.

Figure 2(b) shows the lateral acceleration of the vehicle
during the test scenario. It can be seen, that maximum of
ay is around 8m/s2, which is close to the physical limit of
the vehicle.
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(a) Longitudinal velocity
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(b) Lateral acceleration

Fig. 2. Longitudinal velocity of the vehicle

The estimated and the measured lateral velocities are
depicted in Figures 3. Note that, this signal is shown
without the applied sensor noises. In the first section
of the simulation, both observers provide good results,
however in the second half, the nominal LQ observer
has a significant error. At that section, the longitudinal
velocity exceeds the nominal value (vx = 10m/s) for a
long period of time, therefore the LQ observer cannot
provide good results. However, it can be seen, when
the velocity is close to the nominal value (t = 300s)
the observer provides accurate results. In contrast, the
combined observer algorithm estimate the lateral velocity
in the whole simulation with low error. The last figure
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(a) t = 0− 200s
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(b) t = 200− 400s

Fig. 3. Estimated and measured lateral velocities

demonstrates the control inputs of the observer. The blue
line illustrates the computed error-based ultra-local model
(∆) while the red line is the steering angle provided by
the simulation software. In general, the ultra-local model
has a higher amplitude, which aims to compensate for the
unknown and unmodeled part of the system.
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Fig. 4. Inputs of the observers

5. CONCLUSION

In this paper, a novel combined observer design method
has been proposed using the linear quadratic and the ultra-
local model approaches. The LQ observer was designed on
a nominal model, which was not expected to be accurate.
The ultra-local model-based part was able to approximate
the unmodeled dynamics of the system and to eliminate its
effect, which resulted in a more accurate estimation of the
observed state. The proposed observer design algorithm

has been implemented to a vehicle-oriented estimation
problem: lateral velocity. The effectiveness and the oper-
ation of the presented algorithm have been demonstrated
through an simulation example using CarSim.
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