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aInstitute for Computer Science and Control, 13-17. Kende street, Budapest, H-1111,
Hungary

bFaculty of Information and Bionics, Pázmány Péter Catholic University, 50/A Práter
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Abstract

Visual monitoring of vital parameters of premature infants has become a heav-

ily researched topic in recent years. Respiration rate (RR) is one of the most

essential vital sign of newborns, therefore non-contact measurement of respi-

ration is also a strongly studied area. Most of the published algorithms are

able to provide better results if a suitable ”region of interest” (ROI) detection

takes place before the estimation of RR. This ROI is typically generated with a

data-driven segmentation method. However, modern deep learning-based ROI

detection algorithms require several thousands of annotated samples for train-

ing. Data collection and annotation is a long and tedious process. In this work,

we propose a motion periodicity based solution to automatically detect the res-

piration mask containing the belly or the back of neonates. The places of the

automatically generated masks showed a 96% agreement with the places of the

manually marked regions. We showed that by using these automatically gen-

erated respiration masks for training U-Net variants we can not just avoid the

manual labelling, but also reach greater accuracy in the ultimate RR calcula-

tion. We concluded, that it is possible and worthwhile to automatically generate
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annotated dataset for deep learning based ROI detectors in the mentioned field.

Keywords: automatic annotation, semantic segmentation, breath rate,

respiration rate, NICU monitoring, non-contact, remote, camera

1. Introduction

Non-contact monitoring of the respiration rate of newborns is a crucial and

heavily researched topic [1], [2], [3], [4], [5], [6]. The respiration or breathing

monitoring plays a critical role in the neonatal intensive care units (NICU) for

tasks like detecting breathing abnormalities in the incubator at a very early age.

The ”obstructive sleep apnea” (OSA) is very frequent and can be a symptom

of many disorders. The nasal occlusion can lead to switch to mouth breathing

at the 40% of infants, which results in OSA [7]. Respiratory distress occurs in

6.4% of the cases [8]. Monitoring the breathing of premature babies also plays

an important role in predicting certain diseases. For example, some articles have

already shown a relationship between reflux and OSA [9]. One key feature to

detect is apnea, the transient cessation of breathing [10]. It can also help deter-

mine the amount and quality of sleep that the neonates get, which is important

for their development [11].

1.1. The problem of ROI detection for RR estimation

Several articles mention that ROI detection increases the performance of RR

estimation algorithms [12], [13], [14], [15], [16], [17]. A review of RR estimation

algorithms can be found in [1], which also overviews the applied ROI detection

algorithms, which are typically data-driven nowadays and some of those are

even convolutional neural network (CNN) based.

However, deep learning based ROI detection algorithms require a huge num-

ber of annotated images. Data collection and annotation is a long and tedious

process and require dedicated software and human resources. In article [6] we

previously introduced the concept of using a U-Net based neural network to
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detect the torso as ROI for RR estimation. It was a challenge for us to anno-

tate the right amount of data to train this neural network. It is desirable to

automate the annotation process.

1.2. The proposed algorithm

In this paper we propose the Automatic Labeling Algorithm (ALA) for au-

tomatic annotation. This motion periodicity based algorithm was designed to

mark those parts of the torso, which are actively moving during respiration.

These areas, called Respiration ROI (R-ROI), are usually the lower parts of the

belly or the back (slightly above and partially including the diaper area).

The working of ALA is based only on the area and periodicity of the move-

ments shown in the image and doesn’t require any human annotation. There

are several benefit of using it. First of all, we can avoid the laborious manual

data annotation. Moreover, we get an annotated database which is potentially

better than human annotation when used as the bases of the training set for

the segmentation network part of the respiration extraction pipeline. The rea-

son is that a human annotator would mark the belly or back areas on static

images without sensing the spatial-temporal dynamics of breathing, while our

ALA solution analyzes a longer part of the video flow for generating the labels

benefiting accuracy at the end of the pipeline. The RR measurement led to bet-

ter performance when the ROIs are generated by a U-Net trained with the ALA

generated annotation and evaluated on the database we collected (see Table 2).

The reason why we do not use the ALA algorithm itself as ROI detector before

the RR calculation is explained in the ”Discussion” section below.

2. Related works

Novel algorithms for non-contact RR monitoring have been developed re-

cently that use footage from infants in open incubators [18], [19]. Numerous

similar algorithms are reviewed in [1].
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While authors of [20] and [21] examine the problem of video-based RR moni-

toring using footage from adults and not infants. In the case of these algorithms,

the ROI will be located around the person’s chest.

Maurya et al. overviewed the various sensors, respiration rate estimation

algorithms, and methods, and the applied ROI detectors as well [1]. They also

mention deep learning-based neural architectures for ROI detectors that are used

for respiration analysis. In [17], the authors showed a comparison of different

ROI detectors and concluded that CNN-based ones are best fit for the task.

Jorge et al. conclude that findings ”illustrate the opportunities in non-contact

vital sign monitoring as a result of the robust subject segmentation provided by

CNNs” [12]. Nagy et al. also examined how much improvement ROI detection

provides to performance [6]. It can be clearly seen that researchers are motivated

to use CNN for robust ROI segmentation for monitoring physiological signs and

there are efforts to step toward deep learning based segmentation.

Specifically, we can find articles in the literature, in which the authors are

dealing with movement area and periodicity based ROI or object detection: [22],

[23], [24], [25].

Naturally, we can also find many examples in the literature about automatic

annotation similar to our method, we proposed in this article. Of course, these

are not always camera-based methods and problems. In [26], [27], and [28], an

automatically annotated or synthetic dataset was used to train neural networks

to solve semantic segmentation problems that are related to medicine. There

are also articles from synthetic dataset generation in the medical field: [29], [30],

[31], [32]. As well as [33], in which the authors generated annotated healthy and

abnormal electrocardiograms for arrhythmia detection.

Another example is [34] where the authors use CNN to analyze the appear-

ance and, in parallel, uses optical flow to analyze the motion of the objects in

order to segment moving objects on the video. Article [35] presents how the

deep learning based optical flow estimation performs in different problems like

unsupervised, and semi-supervised learning.

It can be seen that automatic annotation or annotated data set generation
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is a frequently used procedure that researchers prefer to use when they need

large amounts of annotated data. However, it is novel in the RR measurement

according to our search in the literature. Moreover, the ALA algorithm is special

in that it spans through from the dynamic label generation to train a static

network, which finally, efficiently analyzes a dynamic scene by an intra-frame

method.

The ROI detectors presented in [12], [14] and [13] perform really well indeed

and are based on deep learning. However, the algorithms presented in these

articles have been trained on large, human-annotated data set. The main con-

tribution of our manuscript is that it shows a method to generate annotated

dataset for R-ROI detection, that does not require any human resources and

thus avoid inter-observer variability too.

3. Methodology

3.1. The Automatic Labeling Algorithm (ALA)

We propose a motion extension and periodicity based labeling algorithm to

generate an automatically annotated dataset. The Automatic Labeling Algo-

rithm (ALA) can be divided into two main parts which will be broken down

into further parts later. These two main parts are the following:

• R-ROI detection

• R-ROI tracking

Detection of the R-ROI is done by analyzing the motion pattern and the

periodicity of the motion. However, we don’t detect the R-ROI in every frame.

Once it is found, we can track it as long as it can be seen on the video. If

something – e.g. the hands of a doctor – obscures the R-ROI, the tracking will

be lost. In this case, we can turn back to the detection part again, re-initiate the

coordinates of the center point and resume tracking. The automatic annotation

and the marking of the R-ROI is done continuously during the tracking. An

overview of this can be seen in Figure 1.
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3.2. Detection

One of the main assumptions of our method is that if the camera watches a

neonate in the incubator – as described at the experimental setup below Figure

6 –, and the infant is breathing normally, we can determine the position of the

R-ROI, based on the periodicity of the respiration type motion.

Figure 1: The automatic annotation algorithm (ALA). The input is a video stream, a series

of consecutive frames, and the output is a series of binary images where the R-ROI of the

infants is masked. The connection of the detection and the tracking is shown in the figure.

The steps for ”R-ROI Detection” and tracking are detailed below.

An overview of the periodicity-based R-ROI detection is shown in Figure 1,

which summarizes the steps of this process too, under ”Detection”:

1. Motion Estimation

2. Area-based Filtering

3. Motion Signal Extraction

4. Periodicity-based Filtering
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5. Spatio-temporal Filtering

The detection is accepted as a respiration-related region of the belly or back

only if all of the filtering steps above return with positive result, meaning that

the current examined motion period is respiration-related and not filtered out by

spatial filters either. Otherwise, the current period is discarded and no detection

will be made in the current detection step.

3.2.1. Motion Estimation

Several algorithms exist that are able to quantify various motions on video

frames like optical flow, Deep Flow [36] or certain block-matching algorithms

[37] that perform very well in in estimating the intensity and direction of the

various movements. However, in this application, we do not need to estimate the

direction of the movements. We applied the morphology and frequency analysis

of the difference images for motion estimation because it directly provides a

1-channel motion intensity array in rotation invariant way.

For the detection of the R-ROI we calculated the square difference of the

consecutive images (D) to quantify the motion in the frames, that can be cal-

culated by using Eq. (1) for all of the pixels. The square amplifies the stronger

motions – attenuating the weaker ones. In fact, it highlights the most intense

movements. On the difference image we were able to apply a motion area-based

detection in order to find the R-ROI.

D(x, y, n) = (I(x, y, n)− I(x, y, n− 1))2, (1)

where I(x, y, n) means the grayscale pixel intensity in coordinates (x,y) at the

nth frame, and D(x, y, n) is the (x, y) pixel value of the difference image at the

nth frame.

3.2.2. Area-based Filtering

If the neonate’s respiration is normal, calm, and no other motion can be

detected, we can use a threshold on the difference image to get a binary mask.
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After thresholding, a morphological dilation is applied, and then the algorithm

searches for the largest blob on the frame, which is considered to be the R-ROI.

For the detection of the largest connected region we used the Spaghetti

algorithm [38] which combines a block-based mask with state prediction to solve

the ”connected components labelling” problem. After as we mentioned above,

the algorithm searches for the largest blob on the frame.

LR(x, y) =

1, if l(x, y) = L

0, otherwise

(2)

where l(x,y) is the label that is generated by the Spaghetti algorithm for (x,y)

place from the current square difference and L is the label that can be associated

to most of the pixels (which means it is the label of the largest region).

In this way, the largest connected region is selected. After this, a lower and

an upper threshold for the area of the regions is applied and those frames are

omitted which contain an unrealistically small or large detected region. In other

words, Thlower <
∑M,N

x,y=1,1 LR(x, y) < Thupper must be fulfilled.

3.2.3. Motion Signal Extraction

Area-based filtering works well when there are respiration movements only

on the video. However, when the infant is active, the different limb movements

can generate bigger or same size difference patterns. This is the reason why we

use time domain filtering like periodicity-based filtering as well. For that, we

need to generate a one dimensional motion signal, by applying PCA [39]. We

use a sliding window which contains 300 frames including the current frame.

First, each frame is flattened into a vector, and then these 300-long vectors are

used as the rows of a large matrix:

X ∈ Ra×b (3)

where a=300 and b is the number of pixels on the individual frames and X con-

tains the values of the pixels of flattened frames in the sliding window mentioned
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above.

The PCA transforms our data to a new coordinate system in a way that the

data projection with the greatest variance comes to lie on the first coordinate,

the projection with the second greatest variance on the second coordinate, and

so on. After, we use the PCA result that is related to the first component, which

provides a 1-dimensional motion signal (sM ) containing 300 data points.

3.2.4. Periodicity-based Filtering

Detecting only the moving area is not enough to achieve reliable performance

in distinguishing respiratory motion patterns from movements of other objects

(limbs) with comparable area size. Another feature that is characteristic of

respiratory motion patterns is the frequency of the respiratory motion signal.

Newborns usually breath within the 25 RPM - 68 RPM frequency band [40].

The motion signal in the above-mentioned sliding window is filtered according

to whether or not its frequency falls into the frequency range of 25 RPM to

68 RPM. For the calculation of frequency, we used the FFT spectrum of the

previously mentioned motion signal and selected the frequency with the largest

peak.

RPM = x[max
f

{FFT (sM )}], (4)

where sM is the 1-dimensional motion signal extraction calculated from the

previously mentioned sliding window, whereas x is a vector that contains the

frequency bins of the FFT spectrum.

If the highest peak is not in the said frequency range, there is no detection

and the particular frame is discarded, because we cannot guarantee that the

selected moving region belongs to a belly or a back with respiratory movement.

In other words, RPM must be in the range of [Freqlower, F requpper] or there is

no detection. The choice of the frequency limits of this range originates in the

physiologically relevant range (40–120 BPM).
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3.2.5. Spatio-temporal Filtering

After the periodicity filtering, we applied spatio-temporal filtering, which

limits the maximal displacement of the selected area. In a calm period, we can

assume that the geometrical center of the largest region does not jump suddenly

far from the initial center. Therefore, we applied another time window which

contains the centers of the largest regions, (if they are detectable), calculated on

the consecutive frames. If none of the elements of this window are farther from

the initial center than a predefined threshold parameter, the current difference

image is accepted. If the largest connected region is accepted as an R-ROI-

related pattern, we refresh the tracked center with the geometric center of this

pattern and start tracking it. In other words, Equation 5 have to be fulfilled to

get a valid detection.

∀ci ∈ c, d(ci − c0) < Thst (5)

where i < n, d is the ”euclidean distance”, c is a vector that contains n=300

peaces of 2D center points (ci ∈ R2).

3.3. R-ROI Tracking

After detection, we use sparse optical flow [41], [42] to track the R-ROI.

In our case, the algorithm follows one point that is the geometric center of

the largest region of the accepted difference image. During tracking, we draw

a mask around the tracked center points that marks the place of the R-ROI,

more specifically, the part of the R-ROI where respiratory movements can be

observed.

A big advantage of optical flow is that it is relatively robust for illumination

changes and shadows, and has a relatively low computational cost. It can track

the point even if the neonate is moving strongly. However, it can lose the tracked

point if the neonate’s arm or an object crosses the path of the tracked point or

if somebody – e.g. nurses – reaches into the picture when tending to the baby.

In this case we go back to the detection phase as shown in Figure 1.
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We considered using all of the original camera images and the automati-

cally annotated, binary masks as input-label image pairs. However, as it turned

out, the consecutive images are very close in time, hence they are very sim-

ilar. Therefore, we picked one image pair in every 10 seconds to create our

automatically labeled dataset (see Figure 2).

Figure 2: The algorithm draws mask around the tracked center points. For the automatically

labelled dataset, these masked images saved in every 10 seconds.

3.4. Training

In this work, we used motion-based R-ROI detection and tracking to generate

an automatically annotated dataset, with which we can train a more robust

deep learning-based algorithm. We trained the U-Net [43] architecture that is

a proven, well performing deep learning structure designed to solve semantic

segmentation problems. It is easy to implement, fast, and requires relatively

few labeled images – in our experience, a few thousand. We used a variant of

UNet++ [? ] which performed better than the traditional U-Net. Also, the

original architectures have kernels with a limited visual field, whereas we want

to use a larger field of view at the smallest resolution, as the position of the

limbs and head can be very informative when we are searching for the R-ROI.

Therefore, instead of the traditional 3x3 convolutional kernels, we rather used

5x5 kernels. The architecture was modified in a way shown in Figure 3. Our

U-Net variant is fed with 150x150 sized RGB images and returns with binary
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masks, where the R-ROI of the infant is marked.

Our generated dataset contained 6000 images extracted from recordings of

10 different infants. Each recording is about 24-hours long and around 600

annotated images were saved by the algorithm from each, according to a pre-set

parameter. The generated dataset was partitioned as follows:

• training set: 4200 images from 7 infants

• validation set: 600 images from 1 independent infant

• (holdout) test set: 1200 images from 2 independent infants

Figure 3: The modified UNet++ architecture working on different spatial resolution than the

traditional ones. The input image is of size 150x150 pixels. Note, that we used bigger kernels

of size 5x5 instead of the traditional ones (3x3).

In the training we used mean squared error (MSE) as the loss function

and an Adam optimizer was used to train the network. We applied ”online

augmentation” and early stopping with the validation set as well. We also used

”Comet-ML” (Comet.ml, NY, USA) for the visualization of loss, epoch loss,

and for hyperparameter tuning.
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3.5. Respiration Calculation

In article [6] we introduced a respiration monitoring algorithm which uses a

traditional U-Net as ROI detector, which was trained with hand annotated R-

ROI images. The algorithm contains a sliding window, in which a dense optical

flow [44] wave extractor and a peak detection-based calculator estimates the

respiration rate. The flow-chart of the algorithm is illustrated in Figure 4. An

implementation of the referred algorithm can be found in the following GitHub

repository: [45].

ROI detection

U-Net for torso

Respiration
Extraction

Farneback's Dense
Optical Flow

Signal masking

filtering overactive
and non-measurable

periods

Respiration
Rate Estimation

peak detection-based

Motion Signal
Extraction

motion decomposition:

- apply PCA

- select first component


Top Level
Classification

Block RPM

Figure 4: Overview of the Respiration-rate-estimator algorithm published in [6]. This solution

applies a U-Net for ROI detection and generates RR from a stack of consecutive images.

3.6. Top Level Classifier

In article [6], we also present another module called ”TopLevelClassifier”,

whose task was to identifies the current care status and measure the infant’s

activity. This module can not only quantify the baby’s activity, but can also

detect if the baby is in the incubator. Specifically, whether there is a baby in the

input image. As well as being able to detect if care or other intervention happens

and the caregiver’s hand or another motion object appears in the image. This

top level classification achieved 97.9 % sensitivity and 97.5 % specificity on the

data set introduced in [6].

If we run the top-level classifier on the input video before using the ALA

algorithm, or even if we run it in parallel with it, we will also have information
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about whether the baby is in the incubator or if something (like the caregiver’s

hand) is disturbing the measurement.

4. Results

To understand the evaluation and for better readability, we describe our dif-

ferent, named datasets and architectures. The used datasets during the process:

• Dman : Dataset where the labeling was done manually by human annota-

tors.

• Dala : Dataset where the labeling was done automatically by ALA.

Additionally, we trained the following models that are evaluated below:

• A traditional U-Net trained on the Dman set. (U -Net0)

• A traditional U-Net trained on the Dala set. (U -Net1)

• And a UNet++ [? ] trained on the Dala set. (UNet++)

Note, that unlike common segmentation tasks, our primary goal is not pixel-

level accuracy. Rather, our ultimate goal is RR measurement accuracy, although

we examine the segmentation performance as well in this section.

Evaluation was done on two levels. First, the segmentation performance

was characterized, and in the second step, the RR measurement accuracy was

analyzed.

4.1. Segmentation performance analyses

Here we defined a morphological similarity measure which shows how much

a U-Net generated mask is similar to a ALA generated mask.

Sgeo(MU ,MA) =
number of pixels in (MU ∩MA)

number of pixels in (MA)
, (6)
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where MU indicates the binary mask generated by U -Net1, while MA is the

binary mask generated by ALA. Sgeo is the ratio of the blue and the red+blue

pixels in Figure 5.

Two kinds of statistics were calculated. First we evaluated how large a

percentage of the masks generated by the trained U -Net1 has an Sgeo ratio

higher than 0.5 and 0.9. The results can be seen in the first and second rows of

Table 1. The third row of Table 1 shows the average (avg) Sgeo similarity value

of the U -Net1 generated masks and the ALA generated masks. The relatively

low similarity value (0.787) compared to the high number of over 0.9 Sgeo masks

means that most of the time the network finds a correct, circular shaped ROI

similar to Dala labels, however, in a low number of cases it masks a different

area with a different shape, that results in a few very low Sgeo values. However,

it should be noted that in the ALA, the radius of the circular output mask

and the circular shape were chosen freely following the size of the infant on

the video. Therefore, a perfect match cannot be expected. Additionally, after

visual inspection of these masks, we found that even in these cases parts of the

torso with respiration-like motion was marked. This actually shows the good

generalization capability of the trained U -Net1, because it works from on single

frames, and still can identify those areas of the incubator scene, which are

typically performing respiratory-like movement. Therefore, we also evaluated

the U -Net1 generated masks by comparing them to the manual annotation

(Dman) where the whole torso of the infants were masked, to prove that the

predicted masks are indeed located almost entirely on the trunk. In the forth

row we can see that the U -Net1 trained on Dala achieves a high average Sgeo

percentage between its output and the manually annotated body masks (Dman).

Figure 5 shows the detection masks on typical frames.

4.2. RR performance analyses

In the second level of the evaluation, we examined how well the ROI de-

tection works in practice when we estimate the RR. For that we used our RR

estimator published in [6] first with the original U-Net (U -Net0) and then re-
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Figure 5: Results of the ROI detector where the detection was performed by a U -Net1 trained

on Dala. The output of (U -Net1) is green+blue, while the expected mask (generated by ALA)

is red+blue. (Blue is their intersection.) In the first row, you can see some good examples

where more than 50% of the detection (#blue pixels/#red+blue pixels) overlap with the

expected mask (96% of the images), while the second row shows some bad examples where

the overlap is less than 50%.

placing it with U -Net1, and finally with UNet++ the ones which we trained on

the automatically generated dataset (Dala). The respiration rate based evalua-

tion is summarized in Table 2 where the individual rows are the following:

1. shows how well the respiration-network can estimate the respiration rates

without ROI detection.

2. shows how well the respiration-network can estimate the respiration rates

using the traditional U -Net0 as ROI detector, which was trained onDman.

3. shows how well the respiration-network can estimate the respiration rates

using the traditional U -Net1 as ROI detector, which was trained on Dala.

4. shows how well the respiration-network can estimate the respiration rates
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Table 1: Evaluation of the U-Net-based ROI generation (U -Net1) where the network was

trained on training set from Dala. The first two rows are frame based statistics (number of

good frames/all frames). The third row shows the average of the particular Sgeo values. The

fourth row shows average Sgeo value as well, however here the similarity is calculated with

the manually generated labels with the entire torso belongs to Dman.

U-Net based ROI detector performance

Sgeo>0.5 with ALA masks 96%

Sgeo>0.9 with ALA masks 93.5%

Avg Sgeo with ALA masks 0.787

Avg Sgeo with manual whole torso masks 0.987

using the traditional UNet++ as ROI detector, which was trained onDala.

The mean absolute error (MAE) and root mean squared error (RMSE) were

calculated between the ECG ground-truth reference of the test set and the

outputs of the methods.

As it can be seen, the U -Net1 and UNet++ as ROI detectors significantly

exceed the performance of the manually annotated case and all of the neural

architectures provide better performance than the case where we did not use

any ROI detector. It is important to note, that for the evaluation we selected

a typical, 26-minutes long, continuous, period from the video record of the

independent holdout test set, where no caring or other intervention can be

observed, only the respiration and short limb movements.

Table 2: Evaluation of a U-Net-based ROI detection and breath rate monitoring algorithm in

which the neural network was trained on Dala.

Algorithm MAE RMSE

without ROI detector 1.488 RPM 1.808 RPM

U -Net0, trained on Dman 1.348 RPM 1.762 RPM

U -Net1, trained on Dala 1.223 RPM 1.507 RPM

UNet++ trained on Dala 1.094 RPM 1.348 RPM
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As mentioned above, we examined the generated masks manually and we

observed that all the predicted masks were located on places where breathing

was clearly detectable, on the torso. In other words, the detector found the

correct ROI for each frame. Nothing proves this better than the fact that the

network provides higher performance, if it is trained on Dala, as Table 2 shows.

4.3. Dataset

Figure 6: In the experimental setup the neonatal infant in NICU (1) was monitored with a

Basler acA2040-55uc RGB camera (3). At the same time, physiological signals were received

from the Philips IntelliVue MP20/MP50 monitors (2). The wave and rate data from the

monitors and the video images from the camera were saved in sync to a laptop (4).

Image data for automatic annotation was collected with an industrial camera

that monitored the incubators. Physiological signs were collected in sync as well.

The whole dataset was collected in the NICU of the Ist Dept. of Pediatrics,

II. Dept. of Obstetrics and Gynecology, of Semmelweis University, Budapest,

Hungary. The experimental setup for the data collection can be seen in Figure

6. You can read more about the data collection system in [6].
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The images from the camera were saved with a resolution of 500 × 500

pixels at 20 frames per second in raw format. For the sake of generality, the

records were taken from many different angles, and several recordings were made

of different infants. The distance between the ”Basler acA2040-55uc” camera

and the subject varied between 80 cm and 1,5 m. The demographics of the

participants, like age, weight, sex, etc., and whether they were given respiratory

support or any drugs are summarized in Table 3.

Table 3: Demographic properties of the population of participants

Subject 1 2 3 4 5 6 7 8 9 10

Recording time (hours) 96.7 5.5 39.4 27.4 51 105.5 50.1 36.4 56 38.2

Gender F M M F F M F F F M

Gestational age (weeks) 32 32+3 31+4 35+4 39 32 33 38+6 24+2 33+4

Birth weight (g) 2020 1840 1850 1870 3150 2120 2080 2840 760 2100

Postnatal age (days) 4 4 10 8 4 7 2 7 11 1

Actual weight (g) 1900 1850 1680 1820 2905 2040 1960 3150 750 -

Length (cm) 46 44 - 45 57 45 44 48 46 45

Head circumference

(cm)

32 29.5 - 32 34 30 32 33 22 -

Respiratory support no no no no no no no yes yes no

Any drugs no no no no yes no no yes yes yes

Fitzpatrick scale 2 3 2 2 2 2 2 2 2 2

5. Discussion

A significant limitation of ALA’s detection part, as a direct bases for a

training set is that in mission critical situations, like in the case of apnea, it fails

to provides valid detection and generate an R-ROI. In general, the periodicity-

based ROI detection works with dynamic motion data and does not always
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find respiration related regions, therefore it is not reliable in continuous R-

ROI detection. It fails in static situations, or it might fail when there is some

other periodic motion like a blinking lamp, moving shadows, caring or feeding

induced motions. However, in such situations it does not generate a label at all,

therefore those frames will not be used in training. In this way, it is capable

of automatically generating an annotated dataset from a set of common case

videos, which can be used to train a more robust deep learning-based ROI

detector (U-Net) which works by analyzing static image features and capable

of detecting ROI even if the subject is moving unrelated to respiration, or does

not move at all.

6. Conclusion

We have created a motion-based algorithm (ALA) for automatic labelling of

infants’ body parts with respiratory movements (R-ROIs). We trained a neural

architecture with these labels (Dala), which was then able to detect the R-ROI

satisfactorily on incubator videos. We also demonstrated that the Respiration

Rate calculation algorithm [6] performed better when its built-in neural R-ROI

detector was trained with the automatically generated labels than with the

manually drawn labels.

In this way, we have shown that our presented concept works. In other words,

the automatic annotation based on the extension and periodicity of the motion

of objects, and our training of a more robust neural network-based algorithm

on it, perform satisfactorily in the task of ROI detection for the respiration

monitoring of infants.

We believe that the elaborated concept can also be used for other problems

where we are looking for objects on a sequence of images that are moving with

a given motion extent and periodicity.

A future development could be that we modify and run the ALA on nightly

infrared recordings too, where colour data are not available. Also, there is

possibility to locate the ROI directly from the difference image for covered
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babies.
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