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Summary: We introduce an extension of the classical support vector machine classification algorithm with adaptive
orthogonal transformations. The proposed transformations are realized through so-called variable projection operators. This
approach allows the classifier to learn an informative representation of the data during the training process. Furthermore,
choosing the underlying adaptive transformations correctly allows for learning interpretable parameters. Since the gradients
of the proposed transformations are known with respect to the learnable parameters, we focus on training the primal form the
modified SVM objectives using a stochastic subgradient method. We consider the possibility of using Mercer kernels with the
proposed algorithms. We construct a case study using the linear combinations of adaptive Hermite functions where the
proposed classification scheme outperforms the classical support vector machine approach. The proposed variable projection
support vector machines provide a lightweight alternative to deep learning methods which incorporate automatic feature
extraction.
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1. Introduction

Classical machine learning approaches often rely
on predefined feature extraction steps applied to the
data before the training of the classification or
regression algorithms. Commonly used feature
extraction steps range from simple statistical methods
like principal component analysis (PCA) [5] to more
sophisticated adaptive transformations [1, 6, 7, 8, 19].
Many classification tasks can be successfully solved
this way (for example in biological signal processing
[6, 7]), however the main limitation of this classical
approach is that the resulting representation of the data
and the weights of the underlying classifier are
optimized separately. Practically this means that
ensuring an appropriate representation requires apriori
information about the structure of the data.
The introduction of convolutional neural networks

[9, 10] addresses this limitation by binding the
optimization of data representation to the training of
the classifier’s weights. Feature extraction in this case
is done in an adaptive manner and the resulting data
representation is optimal for the classification task.
This idea gave rise to many popular machine learning
algorithms especially in image processing [10].
The application of such approaches to real life

problems suffers from the fact that the learned weights
of the convolution kernels have no physical meaning
[1]. The recent introduction of model based neural
network architectures, especially the so-called VP-Net
[1] aims to remedy this problem. In a VP-Net, the first
few layers (VP-Layers) of a neural network implement
adaptive orthogonal transformations. Similarly, to
convolutional networks, these layers learn informative
features of the data. Training a VP-Net however, often
involves the optimization of less parameters than in the
case of convolution layers. Another advantage of
VP-Net is that if the underlying orthogonal

transformations were chosen correctly, then the
learned parameters of the VP-layers can be interpreted.
VP-Net has already been shown to be an appropriate
classifier choice for some problems arising in
biological signal processing [1, 11] and autonomous
vehicle control [8].
In this work, we investigate the possibility of

extending the popular SVM classification algorithm
with adaptive orthogonal transformations similarly to
the idea of VP-Net. Such an extension can be useful in
cases, where computational capacity is limited [8], or
the classification task does not require the construction
of deep neural networks.
The rest of this paper is organized as follows. In

Section 2, we discuss the general form of the adaptive
orthogonal transformations which will be used to
perform automatic feature extraction. In Section 3 we
extend the SVM objective functions using these
transformations. In Section 4 we discuss the training of
the introduced classifiers using stochastic subgradient
descent. Section 5 discusses a numerical experiment.
Finally, in Section 6 we draw our conclusions and
discuss future steps.

2. Variable Projection Operators

We are going to assume that our data consists of
 ∈  vectors. Our aim is to represent  by  ≪ 
numbers:

  P  ΦΦ, (1)

where Φ ∈ ,  ∈ , Φ refers to the
Moore-Penrose pseudoinverse of the matrix Φ and
,, are natural numbers. Thus, we represent the
data  with the vector Φ ∈  and (1) defines
the projection of  onto the column space ofΦ. The
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columns of Φ consist of discrete samplings of a
(usually complete and orthonormal) function system in
the Lebesgue space . The function system that
defines Φ depends on the parameter vector  in a
nonlinear fashion and the operator P is referred to
as a variable projection operator [2, 19]. Clearly, the
feature extraction scheme (1) depends on the
parameter . A common procedure to obtain a good
representation is to solve

min
∈

;  min
∈

||  ||
. (2)

Provided that the partial derivatives of the
functions generating the columns of Φ are known
with respect to , (2) can be solved using a gradient
based method [2, 19].
We note that solving the optimization task (2)

allows for several adaptive representations for the
vector . Suppose the columns of Φ consist of
smooth functions. Then, once the parameter vector 
that minimizes (2) has been determined, one could
replace  with its smooth approximation P or the
residual transformation   P. In some
applications [6, 8] such data representations are
preferable, however in this work, for simplicity, we are
only going to discuss the extension of SVM classifiers
with the transformation  → Φ.

3. VP-SVM Objectives

Given a training set with  number of examples
 , ,  ∈ , ∈ 1,1, the purpose of
an SVM classifier is to identify a hyperplane which
separates the examples . In the simplest (linear) case,
the hyperplane is given by its normal vector  ∈ ,
whose components are found through an optimization
process known as training. Most commonly, the
training of SVM classifiers is posed as a linear
programming problem and convex optimization tools
are used to find the optimal hyperplane [12-14]. In real
life applications, SVM classifiers often rely on Mercer
kernels [3, 4, 12, 13]. These allow us to transform the
data examples  to a high dimensional reproducing
kernel Hilbert space (RKHS), where a separating
hyperplane might more easily be identified. In this
(nonlinear) case, dual formulations of the
above-mentioned linear programming problem are
solved using convex optimization. When training such
nonlinear SVM classifiers, the dual problems are
preferable, as they allow to express the
above-mentioned transformations as inner products of
the examples .
For the proposed VP-SVM classifiers, we consider

gradient based algorithms for training. This is because,
the adaptive transformations (2) by which we enhance
the SVM objectives are optimized using gradient based
methods. Fortunately, extensive literature exists on
how to train SVM objectives with such methods [3, 4],
focusing mostly on the primal form of the optimization
problem. For this reason, we take as starting points the

SVM objectives discussed in [3]. It is well-known [3],
that the primal form of the linear SVM classifier
objective can be reduced to minimizing the following
expression with respect to  and :

 ∑ max0,1      ||||
   , (3)

where  ∈ ,,  ∈ .
As mentioned before, several strategies [3, 4] exist

for solving the optimization problem (3), however for
simplicity, in this work we focus on obtaining a
solution using a subgradient based method (see
Section 4). An adaptive feature extraction step can be
easily added to (3) by

 ∑ max0,1  Φ   
  

 ||||  ,
(4)

where this time  ∈  and  is a regulatory term
to ensure a good representation of the data and to avoid
the problem of vanishing (sub)gradients with respect
to :

 ≔



∑

||||


||||



   (5)

In (5),  ∈  is a penalty parameter for the
regulatory term. In Section 4 we provide the
subgradients of (4) with respect to . These can be
calculated provided that the partial derivatives ofΦ
are known [1, 2].
One of the main advantages of support vector

machines is their ability to be used with Mercer kernels
[3]. Even though in this case, usually the dual form of
the SVM objective is considered, popular algorithms
exist which optimize the primal objective as well
[3, 4]. In this work, we consider the objective presented
in [3]:

min
∈ℋ

λ||||ℋ
  ∑ max0,1 


   , (6)

where λ  1/,ℋ is a reproducing kernel Hilbert
space and by the representer theorem [20] we can look
for the solution  in the form

  ∑ β,

    ∈ R, (7)

provided that the inner product ⋅,⋅ of ℋ is known.
We omitted the bias parameter  from (6) to simplify
the expression, but it could easily be incorporated as
well. Because of (7), supplementing the objective (6)
with orthogonal transformations naively would yield a
problem that has a complexity of  for every
update of the parameters. This is because evaluating
the term ||||ℋ

 using (7) requires us to calculate the
inner products , for every possible index , .
To overcome this, we propose using instead the
modified objective

min
∈,∈

∑ max0,1   ∑ β,

   

    , (9)
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where  is the regulatory term from (5) and 
denotes the transformed vectorΦ. This notation
will be used throughout the rest of the paper. Similarly,
to the linear case, this regulatory term is responsible
for ensuring that the projections P approximate
the examples  well, while keeping the problem of
vanishing gradients at bay. In our experiments
(Section 5) we show that problems can be constructed
when the simplified data representation through the
proposed method allows for easier separation
of the classes.

4. Training the VP-SVM Classifiers

We note that the proposed VP-SVM objectives (4)
and (9) are not differentiable everywhere. Because of
this, we can only utilize subgradient based methods to
perform the minimization task. The subgradients of a
function : →  are defined at the point  as the set
of vectors  ∈  for which

      , (10)

for all  in the domain of . If the function  is convex
and differentiable, then the subgradient coincideces
with the gradient. The above-mentioned objective
functions are subdifferentiable with respect to the
learnable parameters. In addition,  is a minimizer
point of a convex function  if and only if 0 ∈ ∂,
or in other words 0 is a subgradient of  at . This
property allows for the construction of optimization
algorithms using the notion of subgradients.
In [4] an efficient subgradient based algorithm is

presented to minimize the objective functions (3) and
(6). The adaptation of this algorithm to train VP-SVM
will be part of our future work, however in this study
we used the stochastic subgradient descent (SSGD)
[14] method for training. In each step of the training
process, we randomly select a single example ,
calculate the subgradient of the objective function with
respect to the learnable parameters, then update the
parameters. This in practice means that the objective
functions being minimized change from the form
presented in section 3. For example, instead of
calculating the subgradients of objective (3), in single
step of SSGD we would subdifferentiate the modified
loss

 ⋅  ⋅max0,1     |||| , (11)

where  denotes the total number of examples and  is
a hyper-parameter that controls the tradeoff between
the margin and the hinge loss. Again, the bias
parameter was omitted for simplicity. We can modify
the proposed linear VP-SVM objective (4) similarly by

, ≔  ⋅  ⋅max0,1   
 ||||  ,,

(12)

where for better scalability we also change the
regularization term (5) to

, ≔ α ⋅
||||



||||
 (13)

The subgradients of (12) exist with respect to
 and , and can be expressed as

,


 
   ⋅  ⋅  ,    0

, 
, (14)

where  ≔ 1   and

,


 
 ⋅  ⋅  ⋅





,


,    0

,


, 

, (15)

In (15), the gradients







and

,



can be calculated provided that the partial derivatives
of Φ are known with respect to  [1, 2]. For the
exact formulas we refer to [1]. Once (14) and (15) have
been calculated, the stochastic subgradient descent
algorithm updates the parameters with

 →   γ ⋅
,


and

 →    ⋅
,



(16)

If the learning rate  is sufficiently small, then the
above-described stochastic subgradient descent
algorithm is guaranteed to converge [14].
Similarly, to the linear case, the proposed nonlinear

version of the VP-SVM objective (9) can be trained
using the SSGD algorithm. In this case, the objective
to be optimized can be expressed as

, ≔  max0,1  ∑ β,

    

,,
(17)

where , is defined by (13). The subgradients of
(17) with respect to the learnable parameters are
given as

, 


 
  ,,    0

0, 
, (18)

and

,


 

,


   ∑ β

,




   ,    0

,


, 

(19)

In (18) and (19) the subgradients are determined by
the magnitude of

 ≔ 1  ∑ β , 

  

Furthermore, in (19) the partial derivatives with
respect to  clearly depend on the choice of the kernel
⋅,⋅. If, for example one chooses the popular radial
basis kernel function defined as

,  ≔ 
||  ||



 ,
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then  ,  ≔ Φ ,Φ becomes








 = 
 







and
,




can be given as

-






 ⋅ 2 ⋅ Φ   ⋅


 ⋅




For a fixed kernel, in each step of the SSGD
algorithm the parameters  and  can be updated
similarly to the linear case (16) once the subgradients
(18) and (19) have been calculated.

5. Experiments

We demonstrate the utility of the proposed VP-
SVM classifier (9) through an example problem. In our
case study, the training examples  ∈ 

  1,… ,  consisted of the linear combinations of
the first two so-called adaptive Hermite functions [17].
These functions are closely related to the classical
Hermite orthogonal polynomials [15, 16]. Namely, let

ℎ,  ∈ 

denote the k-th Hermite polynomial. These form a
complete orthogonal system in the weighted Lebesgue
space 

, where the weight function is given as
  

. We can then introduce the so called
Hermite functions by

φ ≔
 ℎ ⋅ / ⋅ √π/2!  ∈ ,  ∈ 

(20)

The functions defined in (20) form a complete
system in  and are orthonormal with respect to
the usual inner product:

φ ,φ   φφ

  δ

These functions and their subsequent
generalizations form the basis of many signal
processing applications [1, 6, 8, 11, 17, 18]. To
properly describe the training set for our case study, we
need to mention the affine argument transformations
of (20)

φ
, ≔

 √λφλ  τ , τ ∈ , λ  0,  ∈ ,
(21)

known as adaptive Hermite functions [17]. Adaptive
Hermite functions have been especially useful for
modeling quasi-periodic signals with quasi-compact
support.

We constructed each example for our dataset by
fixing the affine parameters  ≔ λ, τ and taking the
linear combinations of the first two adaptive Hermite
functions:

 ≔ ,φ  ,φ,
, , c, ∈ ,   1,… , 

(22)

where φ is an equidistant sampling of (21). The
parameter  ≔ λ, τ remained constant for every
example , and two classes were introduced through
linear parameters , and c,. This was done in a way,
that the points given as , , , were randomly
chosen from two concentric circles as shown in Fig. 1.

Fig. 1. LEFT:  training examples generated by adaptive
Hermite functions. RIGHT: Corresponding ,, ,

parameters from (22).

In the VP-SVM, the columns of the matrix Φ
also contained the adaptive Hermite functions (21).
The idea in this case was to demonstrate, that if the
correct  ≔ λ, τ are learned during the training
process, then the examples shown on left side of Fig. 1
become more easily separable (the right side of Fig. 1).
We minimized the objective function (17) using the
methods described in Section 4. We compared the
accuracy of VP-SVM on the set with a classical
nonlinear SVM classifier also trained using SSGD.
Both classifiers used an RBF kernel with the same σ
parameter. Accuracy scores on the training and on the
test, sets are shown in Fig. 2 during each epoch of the
training.
By Fig. 2, the above-described experiment

provides a proof of concept for the utility of the
proposed VP-SVM classification algorithm. Since
many anomalies detection and classification tasks have
been studied, where features are extracted by
orthogonal transformations [6, 8, 19], we are hopeful
that the proposed algorithms can also be used to solve
real world problems. VP-SVM provides a lightweight
model-based machine learning approach for
classification problems. This can be especially useful
when model driven machine learning methods have
been shown to provide good results, however the
available computational capacity does not allow for
using deep neural networks [8].
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Fig. 2. TOP: training accuracies of VP-SVM (orange)
and SVM (blue) using RBF kernels. BOTTOM: accuracy
scores on unseen (validation) data at different epochs.

6. Conclusion

By utilizing variable projections, we proposed
novel extensions of the usual SVM objectives. We
discussed a training scheme using stochastic
subgradient method for the proposed classifiers. We
demonstrated the efficiency of our method through a
simulated test scenario. The proposed VP-SVM
extends the classical SVM classifiers with an
automatic feature extraction scheme defined by
adaptive orthogonal transformations. The learned
parameters of the feature extraction can be
interpreted [1].
The latter property is of utmost importance when

applying the proposed classification scheme to
biomedical signal processing tasks (such as illness
recognition), which will be part of our future work. In
addition, VP-SVM provides a lightweight alternative
to similar deep learning-based feature learning and
classification schemes such as [1, 10]. Using VP-SVM
can be helpful in situations where computational
capacity is limited [8].
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