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Inverses of Rational Functions∗

Tamas Dozsaa

Abstract

We consider the numerical construction of inverses for a class of rational
functions. We propose two inverse algorithms, which can be used to simulta-
neously identify every zero of a rational function or polynomial. In the first
case, we propose a generalization of an inverse algorithm based on our previ-
ous work and specify a class of rational functions, for which this generalized
algorithm is applicable. In the second case, we provide a method to con-
struct Blaschke-products, whose roots match the roots of a polynomial or a
rational function. We also consider different iterative methods to numerically
calculate the inverse points and discuss their properties.

Keywords: rational functions, Blaschke-products, fixed point iterations,
winding numbers

1 Introduction

Rational functions play a crucial role in many theoretical and engineering applica-
tions. Rational orthogonal systems, such as the Malmquist-Takenaka system were
proven to be well suited for several biological signal processing tasks [8, 13]. The
transfer functions of linear systems are also rational, making the study of ratio-
nal functions essential in system identification [12, 14]. Special types of rational
functions, such as Blaschke-products also form the basis of many theoretical appli-
cations such as the Riesz-Nevanlinna factorization of Hardy-spaces [13], hyperbolic
wavelet construction [12] and the construction of bi-orthogonal systems [6].

Our objective in this paper is to describe and numerically produce all solutions
of the implicit equation

f(φ) = Γ ⊂ C, (1)
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where f ∈ R belongs to a class of rational functions and Γ is a simple smooth
curve. The proposed methods aim to generalize our previous results for Blaschke-
products described in [4, 5]. In [5], we provided sufficient conditions on Γ for the
distinct, continuous solutions φk, k = 1, . . . , n to uniquely exist if f is an n-factor
Blaschke-product. Furthermore, we proposed an inverse algorithm, which can be
used to find all solutions of (1).

The rest of this paper is organized as follows. In Section 2 we provide sufficient
conditions on Γ for the existence of distinct continuous solutions to (1), if f is
rational. In Section 3, we specify the class of considered rational functions R, and
propose a generalization of the inverse algorithm in [5] to produce the inverses
of any f ∈ R. Alternatively, one can construct a Blaschke-product, whose zeros
match the zeros of the function in question and apply the algorithm proposed in
[5] as-is. This approach and its properties are discussed in Section 3.5. In Section
4 we consider different numerical iterative methods and highlight their advantages
for use with the proposed, generalized inverse algorithm. Finally, we summarize
our results in Section 5.

2 Inverses of Analytic Functions along a Curve

In this section we will discuss the inverses of functions along a curve. Let f be
an analytic function on the region Ω ⊂ C and denote by Ω′ := f(Ω) its range.
Furthermore, let K := {z ∈ Ω : f ′(z) = 0} be the set of critical points and
K ′ = f(K) their image with respect to f . We note that, if f is a polynomial every
point in K falls into the convex hull of the roots of f [11], while if f happens to be
a Blaschke-product, all of its critical points fall into the hyperbolic convex hull of
its zeros [11].

The analytic function f can be locally inverted in any z0 ∈ Ω \ K [7, 11]. In
other words, for any W0 ⊂ Ω′ neighborhood of the point w0 = f(z0), we can find
an U0 ⊂ Ω neighborhood of z0, such that f : U0 → W0 is injective (one-to-one
function). Our proposed algorithms rely on a generalization of this statement to
curves. Let

Γ := {γ(s) : s ∈ J = [α, β]} ⊂ Ω′ (2)

be a simple smooth curve with γ parameterization. That is, γ : J → Γ is a
continuously differentiable bijection, for which γ′(s) 6= 0 (s ∈ J). We say that the
smooth function φ : J → f−1(Γ) is the inverse function of f along the curve Γ in
notation

f(φ) = Γ, (3)

if, f(φ(s)) = γ(s) (s ∈ J) holds. We will use the following theorem regarding the
solutions of (3).
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Theorem 1. Suppose Γ ∩K ′ = ∅. Then,

1. For any z0 ∈ f−1(Γ), equation (3) has a solution that passes through z0:
∃φ : φ(s0) = z0, f(φ(s)) = γ(s) (s ∈ J).

2. If any two solutions of (3) have a common point, then these solutions coin-
cide: φ1(s0) = φ2(s0) =⇒ φ1(s) = φ2(s) (s ∈ J).

A proof of Theorem 1 can be found in [5]. This relies on the existence and
uniqueness theorem for differential equations. An alternative way to prove the
theorem can be found in [11] (2.1, pp. 25).

If f is a rational function, then it has a finite number of critical points. Fur-
thermore, supposing Γ ∩ K ′ = ∅, the equation f(φ) = Γ has a finite number of
φ1, . . . , φm, m ∈ N solutions. Based on Theorem 1, the ranges Γj := φj(J) ⊂
f−1(Γ) (j = 1, . . . ,m) of these solutions, are distinct smooth curves.

3 An inverse algorithm for rational functions
In this section we discuss how to find the inverse curves Γj (j = 1, . . . ,m). We
propose a generalization of the inverse algorithm introduced in [5], where f was
assumed to be a finite Blaschke-product:

B(z) := ε

m∏
k=1

z − ak
1− akz

(z ∈ D, ak ∈ D, k = 1, . . . ,m, m ∈ N, ε ∈ T). (4)

These special rational functions, as defined in (4), have many applications such as
the construction of rational orthogonal systems [6]. Our algorithm proposed in [5]
had two main ideas. First, we showed that if f is an m-factor Blaschke-product
and we choose a point w ∈ T, then every solution zi ∈ T of

f(zi) = w (i = 1, . . . ,m) (5)

can easily be identified. In this work, we introduce a class of rational functions R
and generalize this idea for f ∈ R in Section 3.3. The second idea of the algorithm
in [5] was that given the initial solutions in (5), a successive application of Newton’s
iteration can be used to produce every inverse of the Blaschke-product f along the
curve Γ ⊂ D ∪ T.

The main contribution of this paper therefore is a generalization of the inverse
algorithm introduced in [5] for a wide class of rational functions. We begin by com-
paring the proposed algorithm’s properties to well-established root finding methods
in Section 3.1. We will discuss a generalization of this iterative method for arbitrary
analytic functions in Section 3.2. Furthermore, we are going to propose a method
to identify every zero of the rational function f ∈ R in Section 3.4. Finally, we
will investigate an alternative root finding algorithm involving the construction of
Blaschke-products in Section 3.5.
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3.1 Comparison with existing approaches

If f is a rational function, then for any w ∈ C, the implicit equation

f(z) = w (6)

can be rewritten as the polynomial root finding problem

P (z) = H(z)− w ·Q(z) = 0, (7)

where H and Q are polynomials such that f(z) = H(z)
Q(z) . Many well-established

numerical algorithms exist for solving such problems. In this section we will com-
pare the proposed method to the well-known algorithms [1, 3]. Comparison with
these methods makes sense, because both the proposed inverse algorithm for ra-
tional functions and [1, 3] were created to produce every solution of (6) and (7)
simultaneously.

The Graeffe-Dandelin-Lobachesky method detailed in [3] introduces an iteration
which squares the zeros of a polynomial in each step. This separates the roots by
magnitude, then the Vieta-relations can be exploited to get good estimates on the
absolute values of the roots. These estimates can either serve as a starting point
for some other root finding algorithm, or one of numerous strategies can be applied
to estimate the angles of the zeros as well.

Another well-known and popular algorithm for finding every zero of a poly-
nomial is Aberth’s method [1]. This algorithm is cubically convergent for simple
zeros and can be interpreted as an improvement of the Durand-Kerner method
[10]. Aberth’s method updates an initial estimate of the roots in each step of the
iteration. The iteration can encounter problems in the case when both the zeros
of the polynomial and the initial approximations are distributed in a symmetrical
fashion.

The advantages of the rational inverse algorithm proposed in this manuscript
over the above mentioned well-known polynomial root finding methods are twofold.
First, in order to acquire the form (7) from (6), one assumes that the values of the
polynomials H and Q can be accessed separately. If the value of f is available in a
sufficient number of points, one could apply interpolation to achieve this, however at
the cost of possibly introducing numerical errors (especially in real life applications
in the presence of noise). The second advantage of the proposed method is that it
makes no assumptions on the order of f . The root finding algorithms [1, 3] require
us to have apriori information about the order of the polynomial whose roots we
are trying to identify. In contrast, the algorithm presented here can produce every
solution to (6), regardless of the number of solutions, provided that f belongs to
a certain class of rational functions. For some applications however this condition
is naturally satisfied. For example our algorithm could presumably be applied to
identify the zeros (and thus poles) of the transfer function of an all-pass filter [2]
without knowing the order of the transfer function.

Finally, we would like to mention that our approach in considering rational
functions for inverse problems instead of polynomials is not without precedent. In
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fact, the classical Bernoulli-method [10] constructs a special rational function and
identifies its so-called dominant pole in order to determine a zero of a polynomial.

3.2 Finding the inverses given an initial solution
Henceforth, denote by Dr(z0) := {z ∈ C : |z − z0| < r} and Dr(z0) := {z ∈ C :
|z− z0| ≤ r} the open and closed neighborhoods of z0 and let Ω = DR(0). Suppose
the function f is analytic on Ω = DR(0). Furthermore, let

Mj := max
z∈Ω
|f (j)(z)|. (8)

In order to produce the inverse curves Γj ⊂ Ω (j = 1, . . . ,m) introduced in
Section 2, we need to find neighborhoods which separate the curve Γ ⊂ Ω′ = f(Ω)
from K ′ and the Γj curves from each other. Let

ρ(H,L) := inf{|z − w| : z ∈ H,w ∈ L} (9)

denote the distance between sets H,L ⊂ C and

Γr := {w ∈ Ω′ : ρ(w,Γ) < r} (10)

denote the neighborhood of the curve Γ with a radius of r. In addition, let Kc
r =

Ω \ ∪κ∈KDr(κ) be the complement of the r radius neighborhood of the critical
points. If Γ ∩ K ′ = ∅, then Γ can be separated from K ′ in the following sense.
There exists a number r1 > 0 such that

ρ(Γr1 ,K
′) > r1. (11)

By (11),

ρ(L,K) ≥
√
r1/M2 =: r2, (12)

where L := f−1(Γr1). Indeed, if κ ∈ K, w = f(z) ∈ Γr1 , then

|f(z)− f(κ)| = |f(z)− f(κ)− f ′(κ)(z − κ)| ≤M2|z − κ|2.

From here, (12) is a consequence of

ρ(Γr1 ,K
′) ≤M2ρ

2(K,L).

Since by Theorem 1, the inverse curves Γj are pairwise distinct, there exists r0

for which

Γjr0 ⊂ L, Γjr0 ∩ Γkr0 = ∅, j 6= k, 1 ≤ j, k ≤ m, L := f−1(Γr1). (13)

Furthermore let

m1 := max
z∈Kc

r

|1/f ′(z)| ≥ max
z∈L
|1/f ′(z)|. (14)
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We note, that the constants m1 and Mj only depend on Γ and f .
In order to solve the equation f(φ) = Γ, suppose we already acquired for some

w0 = γ(s0) ∈ Γ point the solutions z0,j = φj(s0) ∈ Γj (j = 1, . . . ,m). We are going
to discuss iterative methods, with which we can determine the inverses z ∈ Γj of
w ∈ Γ, provided w is close enough to w0. The solution z ∈ Γj can be found on the
disk Dr(z0,j), as the fixed point of an iteration generated by the function

h(v) = v − (f(z0 + v)− w) · g(z0 + v) (|v| < r). (15)

Indeed, if g does not vanish, then

h(v) = v ⇐⇒ f(z) = w (z := z0 + v), (16)

and since |z − z0| = |v| < r, based on (13), z falls on Γj , provided r < r0.
In order to find v which satisfies (16), we are going to show for some functions

h, that they are contraction mappings. That is, for any |vk| < r (k = 1, 2),

|h(v1)− h(v2)| < q · |v1 − v2| (17)

for some constant q ∈ [0, 1). In Section 4, we provide specific examples of h and
show that there exist 0 < r ≤ r0 and 0 < r < r1, such that

z0 ∈ Γj , f(z0) = w0, w ∈ Γ, |w − w0| ≤ r =⇒ h : Dr → Dr (18)

and h also possesses the property described in (17). Such mappings h satisfy the
conditions of the Fixed-point theorem and therefore iterations of the type vk+1 :=
h(vk) will converge to the solution (16). Using these iterations, we can invert the
function f in the wk := γ(sk) ∈ Γ points, where sk belongs to the partitioning
s0 = α < s1 < . . . < sN = β (J = [α, β]). If the partitioning is dense enough,
beginning from some initial solution z0 ∈ Γj satisfying f(z0) = w0 ∈ Γ, we can find
the rest of the solutions zk ∈ Γj for which f(zk) = wk, (k = 1, . . . , N) recursively.
These zk solutions are the limits of fixed point iterations.

3.3 Finding an initial solution
In this section we introduce an algorithm to produce every initial solution z0,j =
φ(s0) ∈ Γj , (j = 1, . . . ,m). The proposed algorithm is a generalization of the
method introduced in [5], where similar ideas were used to produce these solutions
if f is an m-factor Blaschke-product (4).

We begin by specifying the class of rational functions R, for which the discussed
ideas are applicable. For a rational function f , let Zf and Pf denote the set of its
zeros and poles respectively. Let R be the class of rational functions, for which

R∗ := max{|ξ| : ξ ∈ Zf} < R∗ := min{|ζ| : ζ ∈ Pf}. (19)

Polynomials and Blaschke-products obviously belong to R. We will make use of the
notion of the Nyquist-plot, which for a function f belonging to R can be defined
by (20).
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fTR := f(TR)

(TR := {z = R · eit, t ∈ I = [−π, π)}, R∗ < R < R∗, f ∈ R).
(20)

Our reason for considering the class of functions R is summarized by the next
theorem.

Theorem 2. If f ∈ R, then the Nyquist-plot fTR can be written in the form

f(Reit) = A(t)eiθ(t) (t ∈ R),

where A is a positive continuous function and θ : R → R is a strictly increasing
function. Furthermore θ satisfies θ(t+ 2π) = θ(t) + 2mπ (t ∈ R), where m denotes
the number of f ’s zeros with multiplicities.

Proof. The winding number

Ind(u, fTR) =
1

2πi

∫
fTR

1

z − u
dz (u ∈ C)

specifies the integer number of times the Nyquist-plot travels around the point u
in a counter clockwise manner [7, 9, 11]. Cauchy’s argument principle [7, 9, 11],
makes a connection between the poles and zeros of f and the winding number of
the Nyquist-plot at u = 0:

Ind(0, fTR) = Zf,TR − Pf,TR ,

where Zf,TR and Pf,TR denote the number of zeros and poles that fall inside TR.
From this and the above mentioned interpretation of the winding number, choosing
f ∈ R guarantees that in the Nyquist-plot

f(R · eit) = A(t)eiθ(t) (t ∈ R)

the argument function θ : R → R is strictly increasing and satisfies θ(t + 2π) =
θ(t) + 2mπ (t ∈ R).

We note that for Blaschke-products (4) A(t) = 1 (t ∈ R). Figure 1 illustrates
the Nyquist-plots of some examples of rational functions.
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(a) The curve TR with R = 1 (top left), its image f(TR) with respect to f ∈ R (top right),
θ(t) mod 2π and A(t) (bottom).
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(b) The curve TR with R = 1 (top left), its image f(TR) with respect to f 6∈ R (top right),
θ(t) mod 2π and A(t) (bottom).

Figure 1: 1a: Nyquist-plot of a rational function belonging to R. The argument
function θ is made up of 2 strictly increasing parts. 1b: Nyquist-plot of a rational
function not in R. Now the winding number is 1 and the Nyquist-plot makes a
single revolution around 0. Blue points denote the zeros (and their images) of the
functions, magenta points denote the poles.
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From Theorem 2 it follows, that if f ∈ R, each set

Iτ := {t = θ−1(θ(τ) + 2jπ) : t ∈ [−π, π), j ∈ Z} (τ ∈ [−π, π)) (21)

has exactly m members. Furthermore, for any fixed τ we can easily produce the set
Iτ numerically (i.g. by interval halving). Then, we can identify m initial solutions
by

f(Reitj ) = f(z0,j) = A(tj)e
iθ(τ) = w0,j (tj ∈ Iτ , j = 1, . . . ,m). (22)

3.4 Identifying every zero

In this section we discuss an application of the proposed inverse algorithm to find
every zero of f ∈ R. Then, we can give a parametric representation of the boundary
of the star-like domain f(DR) as

FR = {A∗(τ)eiθ(τ) : τ ∈ [−π, π)}, (23)

where A∗(τ) := maxt∈Iτ A(t). The point w ∈ f(DR) is said to be an internal self
intersecting point of the diagram f(TR), if there exist t1, t2 ∈ I, t1 6= t2 that satisfy
f(Reit1) = f(Reit2) = w. If f ∈ R, then the S set of internal self intersecting
points is finite. In order to find the zeros of f , we are going to produce the inverses
along the line segments

Γ := [0, w0,j ] = {γ(s) := (1− s)w0,j : 0 ≤ s ≤ 1}, (24)

that connect 0 with the initial points w0,j (j = 1, . . . ,m). We only consider the
inverses along the line segments for which

[0, w0,j ] ∩ (K ′ ∪ S) = ∅ (25)

holds. Let F ∗R denote the set of possible w0,j endpoints, with which the segment
[0, w0,j ] satisfies (25). The set FR\F ∗R is a finite set. We bring attention to the fact,
that if the initial inverse points were determined according to Section 3.3, then the
points w0,j all fall on the same line segment (j = 1, . . . ,m). Henceforth we assume
that the elements of Iτ are indexed in a way so that the points w0,j = A(tj)e

iθ(τ)

satisfy |w0,1| < |w0,2| < . . . < |w0,m| and therefore

[0, w0,1] ⊂ [0, w0,2] ⊂ . . . ⊂ [0, w0,m]. (26)

Suppose that f has only simple roots. Consider the functions φj : [0, A(tj)] →
f−1(Γ) starting from the origin going backwards. That is, as a first step we define
the inverse images of the segment [0, w0,1], which start from the m zeros of f . Now
φ(A(t1)) = z0,1 = Reit1 . Taking the inverse images of the segment [w0,1, w0,2]
starting from the point φj(t1) (j = 2, . . . ,m), we get m − 1 smooth curves, fur-
thermore φ1(A(t2)) = z0,2 = Reit2 . Continuing this method finally brings us to
consider the inverse of [w0,m−1, w0,m] starting from the point φm(tm−1), which gives



62 Tamas Dozsa

us a smooth curve ending in φ1(A(tm)) = z0,m = Reitm . Thus, we showed that
the functions φj considered over the intervals [0, A(tj)] are smooth solutions of the
equation f(φ) = [0, w0,j ]. Furthermore, these solutions connect the z0,j points on
the boundary with the zeros of f . Our numerical experiments show, that if a zero
of f has a multiplicity greater than 1, then the number of φj solution trajectories
ending in this root matches the multiplicity. Figures 2 and 3 illustrate the above
described root finding algorithm.
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Figure 2: LEFT: The domain DR (bordered by black circle), the zeros (blue points)
and the poles (purple points) of f ∈ R, initial inverse points (red points on the
circle), and the inverse curves Γ1 and Γ2 (green curves). RIGHT: The range f(DR)
bordered by the Nyquist-plot (black curve), w0,1 and w0,2 (red points), the inverted
line segments [0, w0,1] and [0, w0,2] (light blue segments)

3.5 Construction of equivalent Blaschke-products

We now detail an alternative approach to identify the zeros of polynomials. Namely,
we will construct Blaschke-products (4), whose zeros match the zeros the polyno-
mial in question, then apply the inverse algorithm introduced in [5] to identify
these. Suppose first that P is a polynomial of degree m. We can then consider the
reciprocate polynomial Pr:

Pr(z) := zmP (1/z) (z ∈ C). (27)
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(a) LEFT: The complex unit circle, containing the roots (blue points) of a Chebyshev-
polynomial. The inverse curves found by the proposed inverse algorithm are colored
green. RIGHT: The Nyquist-plot f(TR) and the line segments [0, w0,j ] (j = 1, . . . , 5) to
be inverted. Here, [0, w0,j ] ∩ S = ∅.

(b) LEFT: The complex unit circle, containing the roots (blue points) of a Chebyshev-
polynomial. The inverse curves found by the proposed inverse algorithm are colored
green. RIGHT: The Nyquist-plot f(TR) and the line segments [0, w0,j ] (j = 1, . . . , 5) to
be inverted. Here, [, w0,j ] ∩ S 6= ∅.

Figure 3: Internal self intersecting points S

Using (27), we can construct the m-factor Blaschke-product B:

B(z) :=
P (z)

Pr(z)
=

m∏
i=k

z − ak
1− zak

, (28)

where ak, (k = 1, . . . ,m) are the zeros of P including multiplicities. Then, the
algorithm described in [5] can be applied to find the zeros ak, (k = 1, . . . ,m).

4 Fixed point iterations
In this section we are going to give some concrete examples for the contraction
mappings (15) and consider their properties. More precisely, we suppose that for
a rational function f ∈ R, we already have an initial inverse point z0 satisfying
f(z0) = w0. We are going to show that the proposed iterations satisfy (18) and (16),
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hence they produce the inverse at a point w ∈ Γ as explained in 3.2, provided w is
close enough to w0.

4.1 A linearly convergent iteration
Our first example is a linearly convergent iterative method. Let

h(v) := v − f(z0 + v)− w
f ′(z0)

(|v| < r), (29)

where 0 < r is assumed to satisfy r < r0, in accordance with (18) and (13). We
are going to show that there exists r1 > r > 0 such that if |w − w0| < r and r is
sufficiently small, then h : Dr → Dr is a contraction mapping. Then, according to
Section 3.2, for the limit

v∗ = lim
k→∞

vk, vk+1 := h(vk), v0 = 0 (30)

f(v∗ + z0) = w will hold. Notice, that h has the following properties:

1. h′(0) = 0,

2. |h′′(v)| ≤M2 ·m1 (|v| ≤ r),

where M2 and m1 only depend on f and Γ as defined in (14) and (8). Choosing
v1, v2 ∈ Dr, we get:

|h(v1)− h(v2)| ≤ max
s∈[v1,v2]

|h′(s)| · |v1 − v2| ≤M2 · r · |v1 − v2|. (31)

Furthermore, if v ∈ Dr

|h(v)| ≤ |h(v)− h(0)|+ |h(0)| ≤M2 · r · |v|+ |w − w0| ·m1. (32)

From (31) and (32), choosing r := min{r0, 1/(2M2)} and w such that |w − w0| =
min{ r

2m1
, r1} hold guarantees that h : Dr → Dr is a contraction:

|h(v1)− h(v2)| ≤ 1

2
|v1 − v2|, |h(v)| ≤ r (v, v1, v2 ∈ Dr).

Convergence of (30) then follows from the Fixed-point theorem and the inverse
property h(v) = v ⇐⇒ f(z0 + v) = w is guaranteed by the considerations in 3.2.
We can also apply the Fixed-point theorem to get the error estimate

|vn − v∗| ≤ 2−n+1 (n ∈ N). (33)

We note that a slight modification of h yields the iteration

h̃(v) := v − f(z0 + v)− w
f ′(z0 + v)

(|v| ≤ r ≤ r0) (34)

which shows locally quadratic convergence. The iterative method generated by (34)
can be interpreted as a Newton-iteration aimed at finding a zero of the function
g(v) := f(z0 + v)− w0.
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4.2 Identifying the zeros of Blaschke-products without ac-
cess to derivatives

Suppose we are trying to identify the zeros of f ∈ R, where f is an m-factor
Blaschke-product (4). Suppose furthermore that every solution of f(z0,k) = w0 (k =
1, . . . ,m) has already been acquired for some w0. In this section we are going to
construct a polynomial P based on the initial solutions z0,k, whose zeros match
the zeros of f . We can then apply the generalized inverse algorithm proposed
in this paper to identify the zeros of P , thus identifying the zeros and poles of
f . In addition, we are going to show, that when solving the implicit problems
P (z) = wj (j > 0), we can express the derivative P ′(z0) in (29) using the solutions
from previous steps of the algorithm. This in turn means that when f is an m-
factor Blaschke-product, one can find all of its zeros using the proposed inverse
algorithm with a variation of the iteration (29), where we can express the needed
derivative values from previous solutions.

In Section 3.3 we saw that if we choose the right side of f(z) = w0 carefully,
then every solution can be found with a simple numerical method (i.e. by interval
halving). If, for example the disk DR contains every zero of a polynomial H,
then for any w0 = H(Reit0) value, every zero of Q(z) := H(z) − w0 can be easily
identified. These could be used as the initial solutions for the proposed algorithm
in 3.2. We can, however have other uses for the z1, . . . , zm (pairwise different) zeros
of Q as well. Namely, since H ′ = Q′, we can use the Q(z) = qm ·

∏m
k=1(z − zk)

form of Q to calculate the derivatives of H. Here qm denotes the leading coefficient
of Q. Provided we have access to qm, we can easily construct the derivative values
needed for the linearly convergent iteration (29) using the initial solutions.

We are going to extend this idea to m-factor Blaschke-products. Namely, we
are going to construct an m degree polynomial P with a leading coefficient pm = 1,
whose zeros match the zeros of the Blaschke-product. Then, the proposed inverse
algorithm and the above idea can be used to identify these zeros. Suppose f is a
Blaschke-product and for some w0 ∈ T , all m solutions to f(z) = w0 have already
been found. Since

f(z) =

m∏
k=1

z − ak
1− akz

(ak ∈ D, z ∈ D ∪ T),

the solutions z1, . . . zm coincide with the roots of the m degree polynomial

Pw0(z) :=

m∏
k=1

(z − ak)− w0 ·
m∏
k=1

(1− akz) =

m∑
k=0

pw0,k · zk. (35)

From (35), the leading coefficient is pw0,m = 1 − w0 · (−1)m
∏m
k=1 ak. Notice,

that since f was a Blaschke-product, the leading coefficient can also be written as
pw0,m = 1 − w0 · f(0). This means, we can write the polynomial Pw0

using the
solutions z1, . . . , zm to f(z) = w0 as
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Pw0
(z) =

(
1− w0 · f(0)

) m∏
k=1

(z − zk). (36)

Now consider the equation f(u) = −w0. If w0 ∈ T, then the ideas discussed in
3.3 can be used to identify all m solutions to this. These u1, . . . , um solutions are
also the zeros of the polynomial

P−w0(u) =

m∏
k=1

(u− ak) + w0 ·
m∏
k=1

(1− aku), (37)

which by the above can be written using the solutions to f(u) = −w0 as

P−w0(z) =
(

1 + w0 · f(0)
) m∏
k=1

(z − uk). (38)

By equations (36) and (38) we can query the values of Pw0
and P−w0

using the
solutions and f(0), while by equations (35) and (37)

P (z) =
1

2
(Pw0

(z) + P−w0
(z)) =

m∏
k=1

(z − ak). (39)

In (39), P (z) is an m degree polynomial with a leading coefficient pm = 1, whose
zeros ak (k = 1, . . . ,m) match the zeros of the original Blaschke-product f .

4.3 Secant method
We now discuss an alternative to (29), where we replace the derivatives in (29) with
divided differences. For v ∈ Dr, let (15) take the form

h(v) := v − f(z0 + v)− w
f [z0 + v, z0]

= v − v · (f(z0 + v)− w)

f(z0 + v)− f(z0)
, lim
v→0

h(v) =
w − w0

f ′(z0)
, (40)

where f ∈ R, f(z0) = w0 ∈ Γ, |w − w0| < r and r < r0 in accordance with (18).
We are going to show, that such r and r exist for (40). Then, by the ideas in 3.2
the limit

v∗ = lim
k→∞

vk, vk+1 := h(vk), 0 < |v0| < r

satsifies f(v∗ + z0) = w.
Consider the Taylor-series of f around z0:

f(z0 + v) = f(z0) + f ′(z0) · v +

∞∑
k=2

f (k)(z0)

k!
· vk. (41)

Equation (41) gives us
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f [z0 + v, z0] = f ′(z0) + ε(v) = f ′(z0) + v · ε1(v),

where ε1(v) =
∑∞
k=2

f(k)(z0)
k! vk−2. Notice that

ε(0) = 0, ε′(0) =
f ′′(z0)

2
(42)

hold.
Since

h(v) := v − f(z0 + v)− w
f ′(z0) + ε(v)

= v − f1(v) · g(v), (43)

where f1(v) = f(z0 + v)−w and g(v) = 1/(f ′(z0) + ε(v)), we can write the second
derivative function of h as

h′′ = f ′′1 g + 2f ′1g
′ + f1g

′′ = f ′′1 g − 2f ′1ε
′g2 + f1(−ε′′g2 + 2ε′2g3).

The derivatives f (j)
1 , ε(j) (j ≤ 2) are bounded on Ω. We are going to show, that

for sufficiently small r, the function 1/g is bounded from below on Γj . Indeed, for
z0 ∈ Γj ,

1/|g(v)| ≥ |f ′(z0)| − |v||ε1(v)| ≥ 1/m1 − |v|m2, (44)

where m2 := max|v|<r |ε1(v)| and m1 is defined in (14). From this, if |v| ≤ r :=
1

2m2m1
, then |g(v)| ≤ 2m1. It follows that h′′ is bounded from above:

|h′′(v)| ≤ m3 (|v| ≤ r). (45)

In order to show that h is a contraction mapping, we introduce the function

h1(v) = h(v)− v · h′(0). (46)

It is clear, that for h1,

h′1(0) = 0 (47)

holds. Using (47) and the mean value theorem, we get that for any v1, v2 ∈ Dr:

|h1(v1)− h1(v2)| ≤ max
v∈[v1,v2]

|h′1(v)||v1 − v2| ≤ m3 · r · |v1 − v2|. (48)

Now we can use (48) to show h is a contraction mapping. Let v1, v2 ∈ Dr, then

|h(v1)− h(v2)| = |(h1(v1) + h′(0)v1)− (h1(v2) + h′(0)v2)| ≤
m3 · r · |v1 − v2|+ |h′(0)||v1 − v2| = (m3 · r + |h′(0)|)|v1 − v2|

(49)

and
|h(v)| ≤ |h(v)− h(0)|+ |h(0)| ≤ (m3r + |h′(0)|)|v|+ |h(0)|. (50)
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If we now choose

r ≤ min{r0, 1/(4m3)}
|w − w0| ≤ r ≤ min{r1, 1/(2m

2
1M2), r/(2m1)},

then by (40) and (43)

|h(0)| ≤ |w − w0|m1 ≤ r/2, |h′(0)| ≤ |w − w0|M2m
2
1/2 ≤ r/4 (51)

and consequently

|h(v1)− h(v2)| ≤ |v1 − v2|/2, |h(v)| ≤ |v|/2 + r/2 ≤ r (|v| ≤ r). (52)

Equation (52) shows that h : Dr → Dr is a contraction mapping. Thus, by the
ideas in 3.2 and the fixed point theorem, the iteration generated by (40) can be
used to find the inverse of f at a suitable point w.

5 Conclusion

In this study, we examined the numerical construction of the inverseses of rational
functions along a curve. We considered the existence of continous solution curves
in Section 2. We then provided an iterative algorithm to produce these solutions
numerically in Section 3.2, given some initial solution points. We also proposed
a class of rational functions, for which we can easily identify the needed initial
solutions in Section 3.3. Furthemore, we proposed an algorithm with which the
inverses can be used to identify the zeros of rational functions in Section 3.4. We
gave an alternative algorithm for root finding in the case, when f is a polynomial,
whose main feature was the construction of special Blaschke-products in Section
3.5. Finally, we investigated fixed point iterations to be used with our iterative
algorithm and proved their convergence properties in Section 4.

The investigated algorithms give rise to a number of interesting applications,
such as the identification of transfer functions for SISO (single input, single output)
systems. We plan to explore these applications in future works.
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