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Abstract
This paper considers a combination of the joint replenishment problem with single
machine scheduling. There is a single resource, which is required by all the unit-
time jobs, and a job can be started at time point t on the machine if and only if the
machine does not process another job at t , and the resource is replenished between
its release date and t . Each replenishment has a cost, which is independent of the
amount replenished. The objective is to minimize the total replenishment cost plus the
maximum flow time of the jobs. We consider the online variant of the problem, where
the jobs are released over time, and once a job is inserted into the schedule, its starting
time cannot be changed. We propose a deterministic 2-competitive online algorithm
for the general input. Moreover, we show that for a certain class of inputs (so-called
p-bounded input), the competitive ratio of the algorithm tends to

√
2 as the number

of jobs tends to infinity. We also derive several lower bounds for the best competitive
ratio of any deterministic online algorithm under various assumptions.
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1 Introduction

In this paper, we study a combination of the classical joint replenishment problem
(JRP) with machine scheduling, proposed recently by Györgyi et al. (2023). The joint
replenishment problem seeks an optimal replenishment policy of one or several items
required to fulfill a sequence of demands over time. When combined with machine
scheduling, a demand is fulfilled only after the required item is replenished, and, in
addition, processed on a machine for a given amount of time. The machine processes
the demands in some order that has to be determined. The cost to beminimized has two
main components: one is related to the replenishment of the items, and another to the
scheduling of the demands on the machine. An example for the former one is the fixed
cost of replenishments due each time a subset of items is replenished, while a possible
scheduling related cost is the maximum flow time, which is the maximum difference
between the completion time of a demand on the machine and its arrival time. The
processing of the demands on the machine adds an extra twist to the problem, and it
may delay the fulfillment of the demands.

As a practical application, consider a paint-shop, where new items arrive regularly
for painting. The paint operation takes the same amount of time for any item. The
paints are ordered once the items are known, and we want to minimize the number of
orders, while not delaying too much the painting of the items.

In the scheduling literature, a machine processes jobs, and we will identify the
demands with jobs. Likewise, we will say that a job j has a release date r j , which is
the arrival time of the corresponding demand, and a processing time p j , which equals
the processing time of the demand on the machine. Preemption of processing is not
allowed. A schedule S specifies a starting time S j for each job j . The completion time
of job j in schedule S is C j = S j + p j . It is required that S j ≥ r j for each job j , and
distinct jobs be processed in non-overlapping time intervals, that is, for each pair of
jobs j �= k, either C j ≥ Ck + p j or Ck ≥ C j + pk .

An online algorithm ALG for the above scheduling problem receives the jobs
one-by-one over time, and decides about the replenishment times, and schedules the
unscheduled jobs after the replenishments. The competitive ratio of ALG is

ρ = sup{ALG(I )/OPT (I ) I is a probem instance with at least 1 job },

where ALG(I ) and OPT (I ) denote the cost of the solution determined by ALG on
input I , and the cost of an optimal solution on the same input, respectively.

In (Györgyi et al. 2023), a number of variants of the combined joint replenishment
and machine scheduling problem are studied, which differ in the scheduling objective,
and in the additional constraints on the processing times of the jobs, or in the frequency
of the arrival of the jobs. In all variants, each time a subset X of items are replenished,
the fixed cost of replenishment is K0 + ∑

i∈X Ki , where K0, and the Ki are non-
negative values. Optimal offline, and competitive online algorithms are proposed with
various competitive ratios. In the online problems studied the scheduling objective was
the total completion time, the total flow time, and the maximum flow time. However,
in the variant with the maximum flow time objective, it was assumed that a job is
released at every non-negative integer time point until no more jobs arrive, each job
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has a processing time of one time unit, and the only unknown parameter was when
the last job arrives. For this online problem, a

√
2-competitive algorithm has been

proposed.
In the presentworkwe focus uniquely on the online problemwith themaximumflow

time scheduling objective. We consider only variants with a single resource required
by every jobs. Each replenishment has the same cost, which is the most common
assumption in case of one resource. Moreover, the processing time of each job is
one time unit, i.e., p j = 1 for each job j . We propose a deterministic 2-competitive
online algorithm for the input, where the jobs have unit processing time, and arrive
at arbitrary distinct integer time points. Furthermore, we analyze the performance of
the algorithm on restricted input, where the difference of the arrival time of any two
consecutive jobs is bounded by some parameter p, so-called p-bounded input. In this
setting, the competitive ratio of our algorithm tends to

√
2 as the number of jobs

tends to infinity. We also provide some lower bounds for the best possible competitive
ratio for any online algorithm for general as well as p-regular input, where a job
arrives every p time units. According to our best knowledge, no paper has considered
the combination of joint replenishment and machine scheduling problems apart from
Györgyi et al. (2023). In that paper, every online algorithm with a fixed competitive
ratio assumes p j = 1. In our paint-shop example, items may arrive regularly (p-
regular input) or with bounded delays (p-bounded input), and the paint operation
takes unit-time.

Notation. Throughout the paper, we will use the well-known α|β|γ notation intro-
duced by Graham et al. (1979) for classifying scheduling problems, where the α field
describes the processing environment, the β field consists of the additional restrictions
and extensions, while the γ field provides the objective function. We consider single
machine scheduling problems, which is denoted by 1 in the α field. In the β field r j
indicates that the jobs have release dates, while p j = 1 restricts the processing time
of each job to be one time unit. In the γ field, cQ indicates the fixed cost of replen-
ishments (it will be formally defined in Sect. 2), while

∑
w jC j is the total weighted

completion time scheduling objective, where thew j are non-negative job weights, and
Fmax = max j Fj is the maximum flow time, where Fj = C j −r j . All these objectives
are to be minimized in the respective machine scheduling problems. We will extended
the β field by jr p which indicates that we combine machine scheduling with joint
replenishment, and s = 1means that there is only one item type required by all the jobs
(demands).Moreover, distinct r j stipulates that the jobs have distinct release dates, i.e.,
r j �= rk for each pair of distinct jobs j and k. So, 1| jr p, s = 1, distinct r j |cQ + Fmax
is a concise notation for the combined joint replenishment and scheduling problem on
a single machine, where there is one item type, the jobs have distinct release dates,
and the objective function is the maximum flow time plus the replenishment costs.

Related work. The joint replenishment problem has been studied for more than 50
years, see (Khouja and Goyal 2008) for an overview. In the simplest version of JRP, a
demand is ready as soon as the required items are replenished. In other variants, such
as JRP-D, the demands have deadlines, and the ordering cost is the only objective
function. In this paper we deal with a variant, where the fulfillment of the demands
may be delayed, and the objective is to minimize the total cost incurred by late delivery
and by the replenishments. This is called JRP-W, and it is strongly NP-hard even in
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case of linear delay cost functions, which follows from the NP-hardness of another
variant examined by Arkin et al. (1989) (called JRP-INV), by reversing the time line.
Later, Nonner and Souza (2009) proved the NP-hardness of a more restricted variant,
where each item admits only three distinct demands over the time horizon.

Arkin et al. (1989) proved the strong NP-hardness of JRP-INV, while Levi et al.
(2006) gave a 2-approximation algorithm, which was improved to 1.8 by Levi and
Sviridenko (2006). Several variants with monotonically increasing, submodular cost
function was studied by Cheung et al. (2016). For JRP-W, Buchbinder et al. (2013)
described a 3-competitive algorithm for the online problemwith linear delay function,
and they gave a lower bound of 2.64 for the best competitive ratio of any online
algorithm. The latter was strengthened in Bienkowski et al. (2014) to 2.754, and the
authors also proposed a 1.791-approximation algorithm for the offline problem.

Györgyi et al. (2023) analyzed the combination of the joint replenishment problem
(JRP-W) and the single machine scheduling with different scheduling objective such
as

∑
C j ,

∑
w jC j ,

∑
Fj and Fmax. For the latter problem, the authors showed that if

there are two resources, the problem is NP-hard even under very strong assumptions.
For 1| jr p, s = 1, r j |cQ + Fmax and 1| jr p, s = const, p j = p, r j |cQ + Fmax,
polynomial algorithms based on dynamic programmingwere proposed. The paper also
considered some online variants of the problem with unit-time jobs and the

∑
w jC j ,∑

Fj , and Fmax objectives. For the former two objectives, deterministic 2-competitive
online algorithms were proposed, while for the Fmax objective, only a special case was
studied, where the input is regular, that is, a job arrives at every integer time point
from time 0 on until some unknown time point when the sequence terminates. For this
latter online problem, a deterministic

√
2-competitive algorithm was described, and

it was shown that there is no deterministic (4/3 − ε)-competitive algorithm for any
ε > 0. For the general input, it was shown that no deterministic online algorithm can
achieve a competitive ratio better than (

√
5 + 1)/2.

Organization of the paper. We provide the problem formulation and an overview
of our results in Sect. 2. In Sect. 3, we present some properties of the offline optimum
for later use. In Sect. 4, we propose a deterministic 2-competitive online algorithm
for the general input, and also prove that for p-bounded input, the competitive ratio
of the same algorithm tends to

√
2. In Sect. 5 we present numerical results regarding

the algorithm proposed in Sect. 4. In Sect. 6, we derive lower bounds for the best
competitive ratio for the general and p-regular input, respectively. We conclude the
paper in Sect. 7.

2 Problem formulation and overview of main results

There is a set of n jobs J , one resource, and a single machine. Each job j has a
processing time p j = 1, and a release date r j . The release dates are distinct, i.e.,
r j �= rk if j �= k. A job can be processed on the machine from time t only if there is
a replenishment from the resource in [r j , t]. Each replenishment incurs a cost of K .
All data is integral.

A solution of the problem is a pair (S,Q), where S = {S j , j ∈ J } is a schedule
specifying the starting times of the jobs, and Q = {τi , 1 ≤ i ≤ q} is the set of
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Fig. 1 Two feasible solutions.
The arrows below the axis
denote the replenishments

replenishment times of the resource such that τi is the i th replenishment time, and
τi < τi+1 for each i = 1, . . . , q−1. The solution is feasible, if the jobs do not overlap
in time, i.e. S j + 1 ≤ Sk or Sk + 1 ≤ S j holds for each j �= k, and for each job
j ∈ J there exists some τi ∈ Q such that τi ∈ [r j , S j ]. The completion time of job j
in schedule S is C j = S j + 1, and its flow time is Fj = C j − r j . The replenishment
cost of a solution is cQ := Kq, while the maximum flow time is Fmax = max j∈J Fj .
The cost of a solution is cost(S,Q) = cQ + Fmax. We seek a feasible solution of
minimum cost.

In the online problem, the jobs arrive over time, and there is no information about
them before their release date. The solution is constructed step-by-step, the starting
time of a job and the replenishment times, once fixed, cannot be reversed. However,
upon arrival of the last job, the scheduler is notified immediately that there will be no
more jobs.

An input is called p-regular, if r j = ( j − 1)p for j ≥ 1, for a given integer p ≥ 1.
It is regular if it is 1-regular. We will also consider p-bounded input, where the only
known information about the input is that the difference of two consecutive release
dates is upper bounded by some number p, i.e., r j+1 − r j ≤ p for j ≥ 1.

The following example illustrates the problem and its possible solutions.

Example 1 Consider an input consisting of two jobs, with release dates r1 = 0 and
r2 = t for some t ≥ 1. If an algorithm makes two replenishments in τ1 < t and
τ2 = t , then the cost of this solution is cost(S,Q) = 2K + τ1 + 1. However, if we
postpone the replenishment and the starting time of the first job, then the objective
is cost(S′,Q′) = K + t + 1. We have saved K at the replenishment cost, but the
maximum flow time has increased by t − τ1. Depending on whether K or t − τ1 is
bigger, the first or the second solution has a smaller cost. See Fig. 1for an illustration.
Of course, in an online setting we do not know when the second job is released,
therefore, we have to make the decision about the first replenishment time τ1 before
time t . �	

In this paper,we focus on the online problem1| jr p, s = 1, p j = 1, distinct r j |cQ+
Fmax. First, we present some new results regarding the offline optimal solutions in
Sect. 3.

In Sect. 4, we devise a deterministic 2-competitive online algorithm for the problem
1| jr p, s = 1, p j = 1, distinct r j |cQ + Fmax. For the so-called sparse input, where
the difference between two consecutive release dates r j and r j+1 is lower bounded by
K j , this analysis is tight. On the other hand, we show that for the p-bounded input,
the competitive ratio of the algorithm tends to

√
2 as the number of jobs tends to

infinity. This result generalizes the one of Györgyi et al. (2023) for the regular input,
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Table 1 Old and new results for the online problem 1| jr p, s = 1, p j = 1, distinct r j |cQ + Fmax

Restriction Result Source

Regular r j
√
2-comp. alg Györgyi et al. (2023)

– no (
√
5 + 1)/2-comp. alg Györgyi et al. (2023)

Regular r j no 4/3-comp. alg Györgyi et al. (2023)

– 2-comp. alg Theorem 1

p-bounded r j
√
2-comp. alg. for n → ∞ Theorem 2

n = 2 no 3/2-comp. alg Theorem 3

n ≥ 3 no 4/3-comp. alg Theorem 4

p-regular r j no 1.015-comp. alg. for n → ∞ Theorem 5

and although it does not reach the
√
2-competitive ratio for short sequences of jobs, in

the long run it gets arbitrarily close to it. We complement these worst-case guarantees
by numerical tests in Sect. 5, which show how our algorithm performs in practice on
inputs with different characteristics.

Lastly, we provide new lower bounds for the best competitive ratio in Sect. 6. For
the general input, there is no online algorithm with competitive ratio of 3/2, even if
there are only two jobs in the input. In the case of three jobs, this lower bound is
4/3. We also provide a lower bound for the best competitive ratio in the case of the
p-regular input. For long sequences of jobs (i.e., where the last job arrives at some
large time point t > t0), there is no algorithm with a competitive ratio better than
1.015.

We mention that our online model is slightly different from that of Györgyi et al.
(2023). While in this paper, upon the arrival of the last job we get the information that
there will be no further jobs, in (Györgyi et al. 2023) this information is not available
at once. Therefore, the presented lower bounds cannot be directly compared with each
other. In fact, we derive a smaller lower bound for the general case (3/2 instead of
(
√
5 + 1)/2).
We summarize our new results, along with some previous ones in Table 1.

3 Properties of the offline optimum

In this section we present some properties of the offline optimal solution on general,
p-regular, and p-bounded input, respectively. Denote with OPT (I ) the value of the
offline optimum on input I . First, we make some easy observations:

Observation 1 (Györgyi et al. 2023)For any feasible solution (S,Q)of1| jr p, r j |cQ+
Fmax, there exists a feasible solution (S′,Q′) of at most the same objective function
value such that the jobs are scheduled in non-decreasing release date order.

Observation 2 (Györgyi et al. 2023) For any feasible solution (S,Q) of
1| jr p, r j |cQ + Fmax, there exists a feasible solution (S′,Q′) of the same objective
function value such that the resource is replenished only at some job release dates.
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Observation 3 If I ′ ⊆ I , i.e., I ′ consists of a subset of jobs of I ,while the replenishment
cost is the same, then OPT (I ′) ≤ OPT (I ).

We only consider inputs, where the release dates are distinct, and the jobs are of
unit-time, i.e., we focus on the problem 1| jr p, s = 1, p j = 1, distinct r j |cQ+Fmax.
Note that without the restriction that the jobs have distinct release dates, wewould face
the more general problem, where the jobs have arbitrary processing times. Replacing
each job j in the latter problem by p j unit-time jobs with release date of r j , we get
an instance of 1| jr p, s = 1, p j = 1, r j |cQ + Fmax. Due to Observation 1, we can
assume that the jobs created from j are scheduled consecutively in a fixed order in a
feasible solution of 1| jr p, s = 1, p j = 1, r j |cQ + Fmax. Hence, there is a bijection
between these solutions and the solutions of the original problem with arbitrary job
processing times: we can replace the p j unit-time jobs by the original job j and vice
versa. Observe that the completion time of job j is the same as the that of the last
unit-time job created from job j .

Observation 4 For any feasible schedule, consider any pair of two jobs, j and k (for
which r j < rk), scheduled consecutively, i.e., S j + 1 = Sk, on the machine. Then
Fj ≥ Fk.

Following Observations 1 and 2, we only consider offline solutions, where the
replenishments occur at the job release dates, and the jobs are scheduled in increasing
release date order as soon as possible (i.e., after each of the earlier jobs are scheduled
and after the first replenishment following their release date).

Next, we derive some properties of the p-regular input consisting of n jobs, which
we denote by Rn .

Observation 5 Consider the p-regular input Rn.

(i) If there is a replenishment which provides resource for at least n′ jobs in a feasible
solution, then the maximum flow time is at least (n′ − 1)p + 1.

(ii) For any feasible solution with q replenishments, there exists a job which has a
flow time of at least (n/q� − 1)p + 1.

(iii) The cost of any feasible solution with q replenishments is at least qK +(n/q�−
1)p + 1.

Proof Let τ be the time of the replenishment, and denote with f and � the first and
the last job in the schedule for which the replenishment is in τ . Then, τ ≥ r� =
r f + (n′ − 1)p, from which (i) follows.

If there are n jobs, then by the pigeonhole principle, there is a replenishment, which
provides resources for at least n/q� jobs. Then, (ii) follows from (i).

Finally (iii) follows directly from (ii). �	
Proposition 1 For the p-regular input, the minimum cost of any solution with q
replenishments is qK + (n/q� − 1)p + 1.

Proof Weconstruct a feasible solutionwith q replenishments and total cost as claimed.
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Let r be such that n = q�n/q� + r . Let

τi :=

⎧
⎪⎨

⎪⎩

−p, if i = 0,

i pn/q�, if i ∈ {1, . . . , r},
i p�n/q�, if i ∈ {r + 1, . . . , q},

and schedule the jobs in increasing release date order as soon as possible. Let j be the
kth job (k ≥ 1) arriving after τi , but not later than τi+1 for i = 0, . . . , q − 1. Then
τi < r j = τi + kp ≤ τi+1, and C j = τi+1 + k, thus Fj = (τi+1 − τi ) + k(1 − p) ≤
n/q�p+k(1− p). By Observation 4, this expression is maximal if k = 1. Therefore,
Fmax ≤ (n/q�−1)p+1 and the cost of this solution is atmost qK+(n/q�−1)p+1.
Equality follows from Observation 5. �	
Now it follows immediately that

Lemma 1 For p-regular input, the offline optimum is

OPT (Rn) = min
q∈Z≥1

(Kq + (n/q� − 1)p + 1) .

Let q	 determine the optimum value. Then there exists an optimal solution with q	

replenishments.

Next we derive lower and upper bounds on the optimum for p-regular input. To
this end, we define the function f (q):

f (q) = Kq + (n/q − 1)p + 1.

Note that f (q) is quite similar to the expression for OPT (Rn) in Lemma 1.

Lemma 2 For p-regular input, OPT (Rn) ≥ minq∈R>0 f (q) = 2
√
npK − p + 1.

Proof By Lemma 1, we can derive

OPT (Rn) = Kq	 + (n/q	� − 1
)
p + 1 ≥ f (q	) ≥ min

q∈R>0
f (q).

This expression is minimal if q = √
np/K , for which we obtain the minimum value

of 2
√
npK − p + 1. �	

Lemma 3 For p-regular input, OPT (Rn) ≤ 2
√
npK + K + 1.

Proof By Lemma 1, there exists some q∗ ∈ Z≥1 such that

OPT (Rn) = Kq	 + (n/q	� − 1
)
p + 1.

It is easy to see that f (q	) ≤ OPT (Rn) ≤ f (q	) + p.
Let q̂ = √

np/K be the point minimizing f (q) on the positive orthant. Observe
that f (q) is a convex function, hence |q̂ − q	| < 1 holds. We distinguish two cases.
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Fig. 2 The inputs I , DI , and RI
for p = 3

First assume q̂ ≤ q	 < q̂ + 1. Then

f (q	) = Kq	 + np/q	 + 1 ≤ K (q̂ + 1) + np/q̂ + 1

= f (q̂) + K = 2
√
npK − p + 1 + K .

Hence, OPT (Rn) ≤ 2
√
npK + K + 1.

Second, assume q	 < q̂ ≤ q	 + 1, and we verify that

f (q̂) = 2
√
npK − p + 1 ≥ OPT (Rn) − p − K ,

from which the statement follows. To see this, we compute

f (q̂) = Kq̂ + (n/q̂ − 1)p + 1 ≥ Kq	 + (n/(q	 + 1) − 1)p + 1

≥ K (q	 + 1) + (n/(q	 + 1)� − 1
)
p + 1 − p − K ≥ OPT (Rn) − p − K ,

where the first inequality follows from q	 < q̂ ≤ q	 + 1 by assumption, the second
from the properties of integer rounding, and the last from the definition of q	. �	

Let I be a p-bounded input, where the first job arrives in tmin, and the last job
arrives in tmax. Consider the regular input and the p-regular input between tmin and
tmax denoted by DI and RI , respectively. See Fig. 2for an illustration of these three
different inputs in the case of p = 3.

Proposition 2 For a p-bounded input I , we have OPT (DI ) ≥ OPT (I ) ≥
OPT (RI ) − p.

Proof Consider an optimal solution for the input DI . Since I ⊆ DI , by removing the
jobs in DI \I from this optimal solution, we obtain a feasible solution for I . Therefore
OPT (DI ) ≥ OPT (I ).

Now consider an optimal solution (S	,Q	) for the input I , and let F	
max be the

maximum flow time of the jobs in schedule S	, and τ 	
1 < · · · < τ	

q the replenishments
dates in Q	. We transform this solution into a feasible solution (SR,QR) for RI and
follow how the objective function value changes.

Let n = �(tmax − tmin + p− 1)/p� be the number of jobs in RI . These n jobs have
release dates tmin + (i −1)p for i = 1, . . . , n. Since I is p-bounded, we know that for
each i ∈ {2, . . . , n}, I has a job fi with release date in the interval [tmin + (i − 2)p +
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1, tmin + (i −1)p]. If there are more than one jobs with this property, then we pick one
of them. We reset the release date of fi to r ′

fi
:= tmin + (i − 1)p for all i = 2, . . . , n,

and drop all other jobs. Observe that, we get RI by this modification.
Furthermore, we define a new replenishment structure QR using Q	 as follows.

Since we may assume that τ 	
q = tmax, we keep the last replenishment only if tmin +

(n − 1)p = τ 	
q , otherwise tmin + (n − 1)p < τ	

q and we drop the last replenishment.
For all other replenishments τ 	

� ∈ Q	 \ {τ 	
q }, we define a replenishment date τ� such

that τ� = tmin + z · p for some integer number z ≥ 0 such that tmin + (z − 1) · p <

τ	
� ≤ tmin + z · p. Obviously, the replenishment cost cannot increase due to the above
modification.

LetQR be the replenishment structure defined by the τ� values and for i = 1, . . . , n,
denote τ 	

�i
the replenishment date of fi in (S	,Q	). We define SR as follows: schedule

f1 from τ�1 and for i = 2, . . . , n schedule fi at time point max{C fi−1, τ�i }. (SR,QR)

is obviously a feasible solution for RI since r ′
fi

≤ τ�i , and the jobs do not overlap.
Let Fmax be the flow time of this solution. Due to Observation 4, there is a job fi in
RI such that its flow time is Fmax and there is no job scheduled right before fi in SR .
Hence, fi starts at τ�i and

Fmax = τ�i + 1 − r ′
fi ≤ τ 	

�i
+ p + 1 − r fi .

Since τ 	
�i
is the replenishment date of fi in (S	,Q	), we have F	

max ≥ τ 	
�i

+ 1− r fi ≥
Fmax − p. The number of the replenishments in QR is at most that of in Q	, hence,
the proposition follows. �	

4 Online algorithm for the general input

In this section we propose an online algorithm for 1| jr p, s = 1, p j =
1, distinct r j |cQ + Fmax and analyze its performance on general as well as on
p-bounded input.

Consider Algorithm 4. For any input I , denote ALG(I ) the cost of the solution
found by the algorithm, q the total number of replenishments, and τ1 < · · · < τq the
q replenishment dates.

Algorithm 1 Online algorithm for the general input
Initialization: t := 0, Fmax := 0.

1. Determine the set Bt of unscheduled jobs at time t .
2. Let Fu

max be the maximum flow time of the jobs in Bt if they are scheduled from t in non-decreasing
order of the release dates without gap.

3. If Fu
max = Fmax + K , then replenish the resource, start the jobs of Bt from t , t := t + |Bt |, and

Fmax := Fmax + K . If the last job has already been scheduled, then STOP.
4. If no job is scheduled at t , then t := t + 1.
5. Go to step 1.
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Observation 6 Let fi be the job scheduled at τi by the algorithm. Then τi = r fi +
Ki − 1.

Observation 7 The number of jobs that get scheduled from τi , i.e., the size of Bτi , is
at most K i, and therefore, the jobs starting in τi are always finished before τi+1.

Proposition 3 The cost of the algorithmat the i th replenishment is 2Ki, withmaximum
flow time of K i for every 1 ≤ i ≤ q.

Proof We prove this by induction. At the first replenishment, the maximum flow time
is K , hence the cost of the algorithm is 2K . Suppose that at τi−1, the algorithm
has a cost of 2K (i − 1) with maximum flow time of Fmax = K (i − 1). The i th
replenishment occurs when the maximum flow time of the jobs released after τi−1
reaches Fmax + K = Ki , while the total cost increases to 2Ki . �	
Proposition 4 τi − τi−1 ≥ Ki for every 1 ≤ i ≤ q.

Proof If j is the first job released after the (i−1)th replenishment, then r j ≥ τi−1+1.
The maximum flow time at the i th replenishment is given by the flow time of j , which
is Ki . Therefore, Ki = Fj = τi + 1 − r j ≤ τi − τi−1. �	

For the sake of analyzing the performance of Algorithm 4, we define a special class
of inputs.

Definition 1 We call an input I sparse, if r j+1 − r j ≥ K j for all 1 ≤ j < n, where n
is the number of jobs in I .

Proposition 5 If I is a sparse input consisting of n jobs, then OPT (I ) = Kn + 1.

Proof Let (S,Q) be the feasible solution,where every job is replenished and scheduled
at its release date (that is, S j = r j for every 1 ≤ j ≤ n, and Q = {r1, . . . , rn}). We
are going to show that (S,Q) is optimal, from which the statement follows, since
cost(S,Q) = Kn + 1.

By contradiction, assume that the solution (S,Q) is not optimal. Consider an opti-
mal solution (S	,Q	) consisting of n − x replenishments, where 1 ≤ x < n. This
means that x replenishments are removed from Q, and the jobs scheduled at these
replenishment times in S are scheduled later in S	.

If for some x < j ≤ n, there is a job j such that r j /∈ Q	, then in S	, j starts not
sooner than r j+1.Hence, the flow time of j is not smaller than r j+1+1−r j ≥ K j+1 >

Kx + 1. Therefore, cost(S	,Q	) > K (n − x) + Kx + 1 = Kn + 1 = cost(S,Q),
contradiction.

It follows that there is no such job j . Since there are n − x replenishments and
rx+1, . . . , rn ∈ Q	, then the first x replenishment times of (S,Q) has to be all removed
from (S	,Q	), and jobs 1, . . . , x start from rx+1. Then the flow time of the first job
in S	 is rx+1 + 1− r1 ≥ Kx(x + 1)/2+ 1, and every other job has smaller flow time.
Therefore, cost(S	,Q	) ≥ Kx(x + 1)/2 + K (n − x) + 1 > Kn + 1 = cost(S,Q),
contradiction.

Hence, the optimal solution is (S,Q). �	
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We can also make an observation regarding the behaviour of Algorithm 4 for the
sparse input.

Proposition 6 If I is a sparse input consisting of n jobs, then Algorithm 4 replenishes
n times. The cost of the solution is 2Kn.

Proof We are going to show that each job is replenished individually from which the
first statement follows. We proceed by induction on the job index. The first job is
released at r1, and Algorithm 4 replenishes and starts this job at time τ1 = r1 +K −1.
Since τ1 < r2, the second job gets a separate replenishment.

Suppose that the ( j − 1)th job is replenished at τ j−1 < r j , by that time there are
j − 1 replenishments, and the maximum flow time is K ( j − 1) by Proposition 3. The
next job is released at r j , therefore, the algorithm is going to replenish and start this
job when its flow time reaches K j , i.e., τ j = K j + r j − 1 ≤ r j+1 − 1, where the last
inequality follows from the definition of the sparse input. By Proposition 3, the cost
of the solution is 2Kn. �	

Theorem 1 Algorithm 4 is 2-competitive on general input.

Proof Consider an input I for which Algorithm 4 makes q replenishments in time
points τ1, . . . , τq . Then ALG(I ) = 2Kq by Proposition 3. For 1 ≤ i ≤ q, denote
with fi the job from I that starts at τi . We define a new input with these q jobs,
I ′ = { f1, . . . , fq}, and job fi inherits the release date r fi from input I . Since r fi +
Ki − 1 = τi by Observation 6, and r fi+1 > τi for i = 1, . . . , q − 1, we have
r fi+1 − r fi ≥ Ki . Hence, I ′ is a sparse input, and we have OPT (I ′) = Kq + 1
by Propositions 5. Moreover, OPT (I ) ≥ OPT (I ′) by Observation 3. Therefore, we
have

ALG(I )/OPT (I ) ≤ ALG(I )/OPT (I ′) ≤ 2Kq/(Kq + 1) ≤ 2.

Finally, note that on any sparse input I ′ with q jobs, we have

ALG(I ′)/OPT (I ′) = 2Kq/(Kq + 1) → 2

if q tends to +∞, so the analysis is tight. �	

Theorem 2 On p-bounded input, the competitive ratio of Algorithm 4 tends to
√
2 as

the number of jobs tends to infinity.

Proof Consider a p-bounded input I consisting of n jobs, for which Algorithm 4
makes q replenishments in τ1, . . . , τq .

Let ni be the number of jobs released between τi−1 +1 and τi for 1 ≤ i ≤ q. Since
the input is p-bounded, we obtain that:

ni ≥ (τi − τi−1)/p� ≥ Ki/p� ≥ Ki/p,

123



Journal of Combinatorial Optimization (2023) 45 :134 Page 13 of 20 134

where the second inequality follows by Proposition 4. Hence,

n =
q∑

i=1

ni ≥
q∑

i=1

Ki/p = Kq(q + 1)/2p ≥ Kq2/2p,

from which q ≤ √
2pn/K follows. Therefore:

ALG(I ) ≤ 2Kq ≤ 2K
√
2np/K = 2

√
2npK .

On the other hand, by Lemma 2 and Proposition 2, we have

OPT (I ) ≥ 2
√
npK − 2p + 1.

It follows that

ALG(I )

OPT (I )
≤ 2

√
2npK

2
√
npK − 2p + 1

=
√
2npK√

npK − p + 1/2
→ √

2, if n → ∞,

hence, the statement is proved.
The analysis is tight: consider the p-regular input Rn , which is also p-bounded. By

Lemma 3, OPT (Rn) ≤ 2
√
npK + K + 1. Therefore,

ALG(Rn)

OPT (Rn)
≥ 2

√
2npK

2
√
npK + K + 1

=
√
2npK√

npK + K/2 + 1/2
→ √

2 if n → ∞.

�	

5 Numerical results

In this section we analyse the competitive ratio proposed in Sect. 4. We proved that the
algorithm has a competitive ratio of 2, which tends to

√
2 in the case of p-bounded

inputs for some constant p. A question arises as to where does the competitive ratio lie
if the difference of two consecutive release dates follows some probability distribution
D.

Formally, we generate an input consisting of n jobs, where r j = X1 + . . . + X j

for 1 ≤ j ≤ n, and X j is a random variable chosen from a discrete distribution D,
with possible values of 1, 2, 3 etc. Note that if the distribution D has a finite support,
then it is straightforward that the competitive ratio of such inputs tend to

√
2 as n

tends to infinity, since if D is upper bounded by some finite number p, then the inputs
generated this way are p-bounded with probability 1. Hence, we assume that D has
infinite support.

We chose D to be a geometric distribution with parameter β, supported on the set
{1, 2, 3, . . .}. That is, P(X j = k) = (1 − β)k−1β for every 1 ≤ j ≤ n. We fixed the
replenishment cost to K = 1. We generated 1000 instances for different values of β

and n. For an input consisting of n jobs, we ran the offline algorithm and Algorithm 4,
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Fig. 3 Competitive ratios for β = 0.01, n ∈ {100, 200, 1000}

Fig. 4 Competitive ratios for β = 0.001, n ∈ {500, 1000, 5000}

respectively, to obtain the competitive ratio. Figures3 , 4 , 5 show the results of the
experiments for β ∈ {0.01, 0.001, 0.0001} and different values of n.

The smaller β is, the closer the competitive ratio is to 2, since the input becomes
sparse with high probability. On the other hand, by increasing the number of jobs,
the competitive ratio is quickly decreasing, and it tends to the ratio

√
2 as in the case

of a p-bounded input. This is due to the fact that the time between two consecutive
release dates has an expected value of 1/β, hence, if the number of jobs is sufficiently
large, the input becomes 1/β-bounded with high probability. If β is relatively large,
the competitive ratio is close to

√
2 even for small values of n, see Fig. 3. As the value
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Fig. 5 Competitive ratios for β = 0.0001, n ∈ {1000, 5000, 10000}

of β decreases, larger numbers of jobs are needed to approach the desired ratio of
√
2,

see Figs. 4 and 5.

6 Lower bounds for the best competitive ratio

In this section, we provide several lower bounds for the best competitive ratio of an
arbitrary online algorithm.

Theorem 3 On general input, if there are only two jobs released, there is no online
algorithm with competitive ratio better than 3/2.

Proof Consider an arbitrary online algorithm. Suppose that the first job is released at
0, and the algorithm replenishes and starts this job at t . Then, assume that the last job
is released at t + 1, therefore the algorithm schedules that job immediately, and then
stops. Hence, ALG = 2K + t + 1.

On the other hand, OPT = min{2K + 1, K + t + 2}, because it either replenishes
the resource once at t + 1 or twice at 0 and at t + 1. There are two cases to consider:

1. If K ≤ t , then OPT = 2K + 1, and ALG = 2K + t + 1 ≥ 3K + 1. Hence,

ALG

OPT
≥ 3K + 1

2K + 1
→ 3

2
, if K → ∞.

2. If K > t , then OPT = K + t + 2, therefore,

ALG

OPT
= 2K + t + 1

K + t + 2
>

3

2
− ε, for any ε > 0, if K → ∞.

Therefore, no online algorithm can obtain a competitive ratio better than 3/2, even
if there are only two jobs released. �	
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Theorem 4 On general input, if there are at least three jobs released, there is no online
algorithm with competitive ratio better than 4/3.

Proof Consider an arbitrary online algorithm. Suppose that the first job is released at
0 and the algorithm replenishes and starts this job at t1. Then, a second job is released
at t1 + 1, and the algorithm replenishes and starts this job at some t2 ≥ t1. Finally, the
third and last job is released at t2 + 1 which is replenished and started immediately.

We can assume that the flow time of the second job is at least the flow time of the first
job, i.e. t1 + 1 ≤ t2 − t1, since replenishing and starting the second job sooner would
not decrease the maximum flow time of the algorithm. Hence, ALG = 3K + t2 − t1.

On the other hand, OPT = min{K + t2 + 2, 2K + t1 + 1, 3K + 1}, depending on
the number of replenishments (one, two or three). We are going to distinguish three
cases:

1. If t1 ≤ K − 1 and t2 − t1 ≤ K − 1, then, ALG ≥ 2K + t2 + 1, and K + t2 + 2 ≤
2K + t1 + 1 ≤ 3K , from which OPT = K + t2 + 2 follows. Therefore,

ALG

OPT
≥ 2K + t2 + 1

K + t2 + 2
= 1 + K − 1

K + t2 + 2
≥ 1 + K − 1

3K
→ 4

3
, if K → ∞.

2. If t1 ≤ K − 1 and t2 − t1 ≥ K , then ALG ≥ 4K , and OPT = 2K + t1 + 1.
Therefore:

ALG

OPT
≥ 4K

2K + t1 + 1
≥ 4K

3K
= 4

3
.

3. If t1 ≥ K and t2 − t1 ≥ K , then ALG ≥ 4K and OPT = 3K + 1. Therefore,

ALG

OPT
≥ 4K

3K + 1
→ 4

3
, if K → ∞.

It follows that no online algorithm can obtain a competitive ratio better than 4/3, if
there are at least three jobs released. �	

Now we consider the p-regular input consisting of n jobs, denoted by Rn . That is,
r j = ( j − 1)p for 1 ≤ j ≤ n. In Sect. 4 we have presented a 2-competitive online
algorithm whose competitive ratio tends to

√
2 as the number of jobs tends to infinity.

In this section we investigate the question whether the above limit of
√
2 could

be decreased to 1 + ε for an arbitrary small ε > 0. So, we will consider only long
sequences of jobs, i.e., where the number of jobs is larger than some number n0, which
is independent of the input.

Lemma 4 On p-regular input, there exists n0 > 0 such that for any n ≥ n0, the
number of the replenishments in any c-approximate solution for Rn is in

[
1

2c + εn

√
np

K
, c

(

2

√
np

K
+ 2

)]

,

where εn → 0 as n → +∞.
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Proof From Lemma 3, we have OPT (Rn) ≤ 2
√
npK + K + 1. Hence, the objective

function value in any c-approximate solution is at most c(2
√
npK + K + 1). Since

K ≥ 1, the upper bound on the number of the replenishments immediately follows.
On the other hand, we will prove that if the number of the replenishments is too

small, then the flow time of the solution is larger than the upper bound for a c-
approximate solution. Suppose for contradiction that we have q < 1/(2c + εn) ·√
np/K , where εn → 0 as n tends to +∞. After a small transformation, we get

np

(2c + εn)
√
npK

> q,

and then,

np

c(2
√
npK + K + 1) + p − 1

> q,

if n ≥ n0 for some n0 > 0. We can reduce the denominator on the left-hand-side by
using OPT (Rn) ≤ 2

√
npK + K + 1 again to get

np

c · OPT (Rn) + p − 1
> q.

Rearranging terms gives

np/q − p + 1 > c · OPT (Rn).

Notice that the left hand side is smaller than qK +n/q� · p− p+1, which is the cost
of a schedule with q replenishments by Observation 5. Therefore, q replenishments
are not enough to obtain a c-approximate solution. �	
Lemma 5 On p-regular input, there exist a series εn such that εn → 0 as n → ∞,
and some integer n1 > 0 such that for any n ≥ n1, the maximum flow time in any
c-approximate solution for Rn is in

[
K 3/2√(n − 1)p

(2 + εn)c
− p + 1, c

(

2

√
np

K
+ K + 1

)]

.

Proof The upper bound on the flow time follows immediately from the upper bound
of Lemma 3 on OPT (Rn).

We proceed with the lower bound. Let F be the maximum flow time of a solution
with q replenishments. By Proposition 1, we have

Kq + F ≥ Kq + (n/q� − 1) p + 1.

After small transformations we get

(F + p − 1)/p ≥ n/q� ≥ n/q,
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fromwhich it follows that the number of the replenishmentsq is at least np/(F+p−1),
thus the replenishment cost is at least npK/(F + p − 1).

Suppose the statement of the lemma does not hold, i.e., F < (K 3/2√
(n − 1)p)/((2 + εn)c) − p + 1, for every εn → 0 as n → ∞. We will prove

that then

npK/(F + p − 1) > c(2
√
np/K + K + 1), (1)

where the left hand side is a lower bound on the replenishment cost (see above),
and the right hand side is an upper bound on the cost of a c-approximate solution
(cf. Lemma 3), which is a contradiction, and the claimed lower bound on themaximum
flow time follows. To this end, we rewrite our indirect assumption:

F + p − 1 <
(n − 1)pK

c(2 + εn)
√

(n − 1)p/K
.

Observe that for εn = (K + 1)/
√
np/K , we have εn → 0 as n → ∞, and

(n − 1)pK

c(2 + εn)
√

(n − 1)p/K
<

npK

c(2
√
np/K + K + 1)

,

which implies (1). �	
Theorem 5 For any n0 > 0, there is no deterministic online algorithm which is 1.015-
competitive on any p-regular input Rn with n > n0 even if K = 1.

Proof Fix any n0 > 0. Suppose there is a c-competitive deterministic online algo-
rithm on p-regular input with n ≥ n0 jobs. For an arbitrary p-regular input Rn ,
let (S(n),Q(n)) be the solution computed by the algorithm. Note that for any n,
Rn is unique, and thus (S(n),Q(n)) is also uniquely defined, since the algorithm is
deterministic.

Let n1 > n0 be such that the algorithm replenishes the 2kth time when the nth1 job
is released at (n1 − 1)p for some integer k > 0, independently whether the nth1 job is
the last job released or not. Since the algorithm is deterministic on a p-regular input,
n1 is well-defined, and for any input where n ≥ n1, it produces the same schedule
until (n1 − 1)p. That is, S(n1) is a sub-schedule of S(n), and Q(n1) ⊆ Q(n) for any
n ≥ n1.

From Lemma 5, we know that the maximum flow time in (S(n1),Q(n1)) is at most
U (n1) = c

(
2
√
n1 p + 2

)
, and the maximum flow time in (S(n),Q(n)) is at least

L(n) = √
(n − 1)p/((2+ εn)c)− p+ 1. We can choose n such that L(n) ≥ 2U (n1).

Now consider the following new feasible solution (S′(n),Q′(n)) for Rn : starting
with the first one, drop every second replenishment fromQ(n) in [0, (n1 − 1)p]. The
flow time of the jobs arriving before (n1 − 1)p at most doubles (since (n1 − 1)p is
the time of the 2kth replenishment, it is not removed), and the flow time of the jobs
released after n1 does not change. Since L(n) ≥ 2U (n1), the maximum flow time of
(S′(n),Q′(n)) is not greater than of (S(n),Q(n)).
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The cost of the obtained solution is cost(S′(n),Q′(n)) ≥ OPT (Rn). How-
ever, by Lemma 4, there are at least

√
n1 p/(2c + εn1) replenishments until n1 in

Q(n). Therefore cost(S′(n),Q′(n)) ≤ cost(S(n),Q(n))−√
n1 p/(4c+2εn1). Thus,

cost(S(n),Q(n)) ≥ OPT (Rn) + √
n1 p/(4c + 2εn1).

Let n2 := 64(n1−1)+1. Then we have OPT (Rn2) ≤ 2
√
n2 p+2 from Lemma 3,

thus OPT (Rn2) ≤ 16
√
n1 p. Let (S(n2),Q(n2)) be the schedule and replenishment

structure provided by a c-competitive algorithm, hence,

cost(S(n2),Q(n2)) ≤ 16c
√
n1 p.

On the other hand, by Lemma 2,

OPT (Rn2) ≥ 2
√
n2 p − p + 1 = 16

√
(n1 − 1)p + p/64 − p + 1.

Therefore, (S(n2),Q(n2)) can be a c-approximate solution only if

(
16 + 1/(4c + 2εn1)

) √
n1 p ≤ 16c

√
n1 p.

This inequality leads to a quadratic expression in c, and its solution yields that
(S(n2),Q(n2)) can be a c-approximate solution only if c ≥ (1 + √

17/16)/2 − μ >

1.015 − μ, where μ → 0 as n1 → ∞. �	

7 Conclusions

In this paper we have described a deterministic online 2-competitive algorithm for
the online variant of the problem 1| jr p, s = 1, p j = 1, distinct r j |cQ + Fmax. The
competitive ratio is even better for the case of p-regular input. Yet, there is a gap
between the best upper and lower bounds. The natural question arises whether it is
possible to provide an online algorithm with better competitive ratio, or to derive a
stronger lower bound for the best competitive ratio. There are other open questions to
consider: what can we say when the jobs can have arbitrarily big processing times, or
if there are multiple types of resources. These problems can be intriguing for further
research.
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