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Abstract
In this paper we consider the coupled task scheduling problem with exact delay times on a
single machine with the objective of minimizing the total completion time of the jobs. We
provide constant-factor approximation algorithms for several variants of this problem that are
known to beNP-hard, while also provingNP-hardness for two variants whose complexity
was unknown before. Using these results, together with constant-factor approximations for
the makespan objective from the literature, we also introduce the first results on bi-objective
approximation in the coupled task setting.

Keywords Single machine scheduling · Coupled task problem · Approximation
algorithms · Total completion times

1 Introduction

The problem of scheduling coupled tasks with exact delays (CTP) was introduced by Shapiro
(1980) more than forty years ago. In this particular scheduling problem, each job has two
separate tasks and a delay time. The goal is to schedule these tasks such that no tasks overlap,
and the two tasks of a job are scheduled with exactly their given delay time in between them,
while optimizing some objective function. This problem has several practical applications,
e.g., in pulsed radar systems, where one needs to receive the reflections of the transmitted
pulses after a given period of time (Elshafei et al., 2004; Farina, 1980), in improving the
performance of submarine torpedoes (Simonin et al., 2011), or in chemistry (Simonin et
al., 2007).

Research interest in the coupled task problem is strongly increasing in recent years,
see Khatami et al. (2020) for a current, detailed overview of the topic. This research focuses
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mainly on variants of the general CTP with some additional restrictions on the job properties,
and mainly tries to optimize the makespan (Khatami et al., 2020). Coupled task problems are
often NP-hard even in very special cases, but polynomial-time approximation algorithms
with constant approximation factors have been developed for a number of them(Ageev and
Kononov, 2006; Ageev&Baburin, 2007; Ageev and Ivanov, 2016). Other objective functions
have virtually not been considered though, until recently, when Chen and Zhang (2021) drew
an almost full complexity picture for the problems of single-machine scheduling of coupled
tasks, with the objective of minimizing the total sum of job completion times. However, they
did not give any approximation algorithms for NP-hard CTP variants with this particular
objective function. We fill this gap by giving a number of constant-factor approximation
algorithms for most of these CTP variants. Additionally, we introduce two new, interesting
variants, which we also prove to be NP-hard, and also approximate one of these with a
constant factor.

Formally, we are given a set of n jobs J = {1, 2, . . . , n}, where each job j has two tasks:
a j and b j . We call a j the first task, and b j the second task of job j . In order to simplify our
notations, we will denote the processing time of these tasks also by a j and b j ; the meaning
of these notations will be clear from context. The sum (a j + b j ) is then called the total
processing time of a job j . These tasks have to be scheduled on a single machine with a given
delay time L j in-between, which means if the machine completes a j at some time point t ,
then we have to schedule b j to start exactly at t + L j . Preemption is not allowed. Note that
it is possible to schedule other tasks on the machine during this delay time, but the tasks
themselves cannot overlap. Our objective is to find a feasible schedule σ that minimizes the
total of job completion times, where a feasible schedule is defined as a schedule that fulfills
all of the requirements above. Such a σ is then called optimal schedule or optimal solution
for the CTP instance. For a given schedule σ , the starting time S j of j is the starting time of
a j , while the completion time C j of j is the completion time of b j . An example of CTP is
visualized in Fig. 1. For a schedule σ , a gap is a period between time points t1 and t2 such
that the machine is idle between t1 and t2 and busy at both t1 and t2. The length of a gap is
the length of this time window. A partial schedule σ p is a schedule for a subset of the jobs J .

We say a job is the j th finishing job in a schedule if its second task is scheduled after
the second tasks of exactly j − 1 many jobs have finished. We say a job is the j th starting
job in a schedule if its first task is scheduled after the first tasks of exactly j − 1 many jobs
have been scheduled. Let COPT be the sum of completion times of an optimal solution.

For a fixed optimal schedule, let C
OPT f
j be the completion time of the j th finishing job

in that schedule. Analogously, let COPT s
j be the completion time of the j th starting job in

that schedule. Observe that COPT = ∑n
j=1 C

OPT f
j = ∑n

j=1 C
OPT s
j . In any proof in this

work, we denote the sum of completion times of the solution produced by the currently used

Fig. 1 An example for a feasible solution for an instance of CTP with n = 3. The patterns are matching for
the two tasks of each job j . For simplicity, the delay time is only visualized for job 1. The total completion
time of the solution is C1 + C2 + C3
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algorithm as CALG . In the schedule σ ALG created by this algorithm, S j and C j denote the
starting time and completion time of job j , respectively.

Throughout this paper, we will use the classic α‖β‖γ notation system of Graham et al.
(1979), with α representing the machine environment, β representing the characteristics of
the jobs, and γ representing the objective function. 1‖(a j , L j , b j )‖ ∑

C j then denotes the
general CTP for minimizing the sum of completion times, where each job j consists of a pair
of tasks of processing times a j and b j , respectively, with an exact time delay L j between
the completion time of its first task and the start time of its second task. As we also look
at more restricted variants of CTP, we fix some naming conventions to easily express these
restrictions in Graham notation. If in a restricted CTP environment, some task of the jobs
are fixed or even constant for each job j , we denote this task without the subscript ’ j’, or
by the specific constant value; e.g. CTP, where the delay time L j is fixed to some L for all
jobs j is denoted as 1‖(a j , L, b j )‖ ∑

C j . If in a restricted CTP environment, some tasks
of the same job always have the same value, we denote them by p instead of their usual
descriptor; e.g., CTP where the first and second task of each job j have the same processing
time (a j = b j ,∀ j) is denoted as 1‖(p j , L j , p j )‖ ∑

C j . This is in line with the standard
notation for the coupled task scheduling problems, as seen for example in Chen and Zhang
(2021). Another way to restrict CTP is to fix the processing sequence of the first tasks of the
jobs, this is indicated by πa in the β-field of the Graham notation.

In this paper we extend the complexity results of Chen and Zhang (2021) and Kubiak
(2022) by proving the strong NP-hardness of 1‖(p j , L, p j )‖ ∑

C j and 1‖(1, L j , 1, πa)‖∑
C j . To achieve the former, we first prove strong NP-hardness of the corresponding

makespan variant 1‖(p j , L, p j )‖Cmax, strengthening a result by Ageev and Ivanov (2016),
who prove weak NP-hardness of this problem. We also give constant-factor approxima-
tions for most CTP variants in a single machine environment with the sum of completion
times objective function, see Fig. 2. The existence of a constant-factor approximation algo-
rithm for the variants 1‖(a j , L j , b j )‖ ∑

C j , 1‖(a, L j , b j )‖ ∑
C j , 1‖(a j , L j , b)‖ ∑

C j ,
and 1‖(p j , L j , p j )‖ ∑

C j is still open (see the upper part of the figure).
We also look at bi-objective optimization for CTP with both the makespan and the sum

of completion times objectives, under the goal of minimizing both objectives without priori-
tization. For this, we use the concept of (ρ1, . . . , ρz)-approximation, as introduced by Jiang
et al. (2023) for simultaneously minimizing z objectives, where ρi is the approximation
factor of the i th objective function to be minimized, for i = 1, . . . , z. This concept is a gen-
eralization of the bi-objective (ρ1, ρ2)-approximation of scheduling problems minimizing
makespan and sum of completion times, as described first by Stein and Wein (1997). As
far as we are aware, there are no results of minimizing the two objectives makespan and
sum of completion times simultaneously in a coupled task setting, even though this topic
is well researched in other scheduling environments. We start to close this gap by directly
using results of Stein and Wein (1997), together with constant-factor approximations of the
makespan(Ageev and Kononov, 2006; Ageev & Baburin, 2007; Ageev and Ivanov, 2016)
and our approximation results on the sum of completion times objective, to give a number
of (ρ1, ρ2)-approximation results for this problem. The general bi-objective CTP is denoted
as 1‖(a j , L j , b j )‖(Cmax,

∑
C j ) in α‖β‖γ notation system, with the β-field following the

previously discussed naming conventions depending on the considered variant’s restrictions.
This work is structured as follows. We first give a brief literature review of the topic in

Sect. 2. We present our complexity results in Sect. 3. Our approximation results are stated in
Sect. 4. There, we give detailed descriptions and run time analyses of our algorithms, as well
as proofs on approximation factors for problem variants whose instances can be solved by
these algorithms. We then use these results in Sect. 5 to give (ρ1, ρ2)-approximations for the
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aj , Lj , bj

a, Lj , bj aj , Lj , b pj , Lj , pj

3-approx.aj , L, bj
Theorem 7

a, Lj , b
Theorem 5
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Theorem 4
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Theorem 10

pj , pj , bj
Theorem 11
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1, Lj , 1
Theorem 6

pj , pj , pj
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Fig. 2 Overview of our approximation results for different variants of 1‖(a j , L j , b j )‖
∑

C j . The variants,
identifiedby their special constraints, are grouped into layers of equal approximation factors,with the respective
Theorem proving this approximation factor linked next to it. A directed edge from variant "A" to variant "B"
indicates that "B" is a generalization of "A"

bi-objective CTP with both the makespan and sum of completion time objectives. Finally,
we give concluding remarks and an outlook on future research in Sect. 6.

2 Literature review

Research on coupled task scheduling on a single machine began when Shapiro (1980) proved
the NP-hardness of the general problem 1‖(a j , L j , b j )‖Cmax, where both tasks, as well as
the delay time between them, can be different for each job, and the makespan is to be
minimized.

In subsequent years, the NP-hardness was also shown for more restricted variants of
this problem, specifically 1‖(p j , p j , p j )‖Cmax, 1‖(a j , L, b)‖Cmax, 1‖(a, L, b j )‖Cmax and
1‖(p, L j , p)‖Cmax byOrman andPotts (1997). SomeCTPvariantsminimizing themakespan
areNP-hard even when the processing times of all jobs are fixed to 1, as shown by Yu et al.
(2004) for 1‖(1, L j , 1)‖Cmax. Condotta and Shakhlevich (2012) showed NP-hardness for
the evenmore restricted variant 1‖(1, L j , 1, πa)‖Cmax, whereπa indicates a fixed processing
sequence for the first tasks of all jobs.

For most of these problems, polynomial-time constant-factor approximation algorithms
have been developed. Ageev and Kononov (2006) give such algorithms, as well as inapprox-
imability bounds, for the general 1‖(a j , L j , b j )‖Cmax problem, and the restricted variants
1‖(a j , L j , b j , a j ≤ b j )‖Cmax, 1‖(a j , L j , b j , a j ≥ b j )‖Cmax, and 1‖(p j , L j , p j )‖Cmax.
Related to this work, Ageev and Baburin (2007) give an approximation algorithm for the
1‖(1, L j , 1)‖Cmax variant. Additionally, Ageev and Ivanov (2016) give approximation algo-
rithms and inapproximability bounds for 1‖(a j , L, b j )‖Cmax, 1‖(a j , L, b j , a j ≤ b j )‖Cmax

and 1‖(p j , L, p j )‖Cmax.
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for other restricted variants, polynomial-time algorithms do exist. This was shown
by Orman and Potts (1997) for the variants 1‖(p, p, b j )‖Cmax, 1‖(a j , p, p)‖Cmax, and
1‖(p, L, p)‖Cmax, aswell asHwang and Lin (2011) for the variant 1‖(p j , p j , p j ), fjs‖Cmax,
where "fjs" denotes that the sequence of jobs in the schedule is fixed.

Research interest in the topic of coupled task scheduling remained high also in the last
years. Békési et al. (2022) recently introduced and gave a constant-factor approximation
algorithm for the novel problem variant 1‖(1, L j , 1), L j ∈ {L1, L2}‖Cmax, where there are
only two different delay times in an instance; the complexity status of this variant is still
unknown. Khatami and Salehipour (2021a) tackle the coupled task scheduling problem dif-
ferently, giving upper and lower bounds on the solution through different procedures, and
proposing a binary heuristic search algorithm for CTP. The same authors give optimal solu-
tions under certain conditions, and a general heuristic for the problem variant with fixed first
tasks and delay times, but time-dependent processing times for the second tasks(Khatami &
Salehipour, 2021). Bessy and Giroudeau (2019) investigate CTP under parameterized com-
plexity, with the considered parameter k relating to the question if k coupled tasks have a
completion time before a fixed due date.

Interest is also high in scheduling coupled tasks in 2-machine flow shop environments,
denoted by F2 in the machine environment notation. For scheduling coupled tasks in this
environment, we are given twomachines instead of one, and each of the two tasks of one job is
additionally assigned one of these two machines to be processed on.NP-hardness is shown
for a number of flow shop problems minimizing the makespan, e.g., for F2‖(1, L j , 1)‖Cmax

by Yu et al. (2004), but NP-hardness is also known for variants minimizing the total com-
pletion time, e.g., F2‖(a j , L, b j )‖ ∑

C j , as shown by Leung et al. (2007). Several flow
shop problem variants minimizing the total completion time are also polynomial solvable,
as proven by Leung et al. (2007) and Huo et al. (2009).

All of the mentioned literature for scheduling coupled tasks on a single machine only
considers the objective of minimizing the makespan though, and, as Khatami et al. (2020)
note in their survey of CTP, “there has been no published research investigating the single-
machine setting with an objective function other than the makespan, except for those in the
cyclic setting.” This task is finally tackled by Chen and Zhang (2021), who draw a nearly full
complexity picture of problemofminimizing the total of job completion times. However, they
do not give any approximation algorithms for problem variants they prove to be NP-hard.
Recently, Kubiak (2022) slightly extended these complexity results by provingNP-hardness
of 1‖(1, L j , 1)‖ ∑

C j and 1‖〈1, L j , 1〉‖ ∑
C j . In the latter problem variant, the delay time

between the two tasks does not have to be exactly, but at most L j .
In scheduling theory, there is also a great interest in bi-objective and multi-objective

optimization. Here, instead of trying to optimize just one objective function in a given prob-
lem setting, one aims to optimize two or more objective functions at the same time, see
Deb (Deb, 2014) or Hoogeveen (2005) for an overview. Since, until recently, virtually only
themakespan objective has been considered for coupled tasks scheduling problems,we do not
know any such results in the coupled task environment. This is not true for other scheduling
environments though, where especially bi-objective optimization is intensively researched,
particularly for the two objectives of minimizing makespan and sum of completion times.
Here, many approaches focus on establishing a trade-off relationship between the two com-
peting objectives, either by Pareto optimization (finding one or all Pareto optimal solutions)
or simultaneous optimization (minimizing all objectives without prioritization) (Jiang et al.,
2023). Since these problems are generally NP-hard (see e.g. Hoogeveen (2005)), approx-
imation is a popular method for both mentioned approaches. Angel et al. (2003) give fully
polynomial time approximation schemes for the Pareto curve of single-machine batching
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problems and parallel machine scheduling problems on the two objectives. Bampis and
Kononov (2005) consider (ρ1, ρ2)-approximations of the two objectives for scheduling prob-
lems with communication delays. A very recent work by Jiang et al. (2023) is concerned with
(ρ1, ρ2)-approximations for scheduling on parallel machines, with different approximation
ratios for different fixed numbers of machines.

3 Complexity results

In this section we prove that both 1‖(p j , L, p j )‖ ∑
C j and 1‖(1, L j , 1, πa)‖ ∑

C j are
stronglyNP-hard.We use reductions from correspondingmakespan minimization problems
for both results. As we need strong NP-hardness of the corresponding problems for both
our reductions, we additionally prove strong NP-hardness of 1‖(p j , L, p j )‖Cmax; weak
NP-hardness was already proven for this problem by Ageev and Ivanov (2016).

Theorem 1 1‖(p j , L, p j )‖Cmax is strongly NP-hard.

Proof We reduce thewell-known stronglyNP-hard problem 3- Partition (Garey and John-
son, 1979) to 1‖(p j , L, p j )‖Cmax. The reduction is similar to the idea by Ageev and Ivanov
(2016) for reducing the weaklyNP-hard Partition problem to 1‖(p j , L, p j )‖Cmax. First,
let us formally state the 3- Partition problem.

3- Partition
Instance: A set Q = {1, . . . , 3q}, and for each element i ∈ Q, a corresponding positive

integer ei such that
∑

i∈Q ei = qE , for some positive integer E , and E/4 < ei < E/2.
Question: Does the set Q partition into q disjoint subsets Q1, . . . , Qq such that∑
i∈Q j

ei = E , for j = 1, . . . , q?

3- Partition remains stronglyNP-hard even ifwe assumeq is even.Consider an instance
I of 3- Partition where q is even. We define an instance I ′ of 1‖(p j , L, p j )‖Cmax with 4q
jobs as follows:

• jobs i = 1, . . . , 3q have pi = ei and L = R + E (small jobs),
• jobs i = 3q + 1, . . . , 4q have pi = R and L = R + E (large jobs),

for some R > 3qE . We prove there is a solution for I if and only if there is a solution for I ′
with makespan Cmax ≤ z, with z := q(3E + 2R). The theorem follows from this statement.

1. Assume there is a solution for I . Then there exist Q1, . . . , Qq , such that
∑

i∈Q j
ei = E ,

for j = 1, . . . , q . In this case, we create a schedule σ for I ′ with makespan at most z. We
schedule the jobs in blocks. Let B be an arbitrary block. It consists of 2 large jobs (i and
i ′) and 6 small jobs, which corresponds to items from some Q j and Q j ′ . Let ( j1, j2, j3)
and ( j ′1, j ′2, j ′3) be the small jobs corresponding to the items in Q j and Q j ′ , respectively.
Assume that p j1 ≥ p j2 ≥ p j3 and p j ′1 ≤ p j ′2 ≤ p j ′3 . We schedule ai ′ directly before bi .
We schedule b j1 , b j2 and b j3 in this order in the gap between ai and ai ′ and a j ′1 , a j ′2 and
a j ′3 in this order in the gap between bi and bi ′ , see Fig. 3. Observe that the job tasks do
not intersect, because the length of the gap between ai and ai ′ as well as the gap between
bi and bi ′ is exactly E . The length of block B is at most 4R + 6E , because a j1 starts
at most 2E before ai , and b j ′3 completes at most 2E after bi ′ . We create such blocks
for all jobs, resulting in q/2 blocks in total, and schedule these blocks directly one after
another. Thus, the resulting schedule σ has makespan Cmax ≤ q/2(4R + 6E) = z.

2. Now assume that the instance I ′ has a schedule σ with makespan Cmax ≤ z. Due to the
fixed delay times, the order is the same for the first and the second tasks in σ . Consider
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Fig. 3 A block B of jobs in σ . The blue tasks are j1, j2 and j3, while the red tasks are j ′1, j ′2 and j ′3 (in this
order)

an arbitrary large job i . There has to be exactly one task of another large job i ′ between
ai and bi . There cannot be more than one task of a large job between ai and bi . If there
was no task of a large job between ai and bi , the makespan of σ would be larger than
z, as the total processing time of the large jobs is 2qR, and L = R + E , resulting in a
minimum makespan of Cmax ≥ 2qR + (R + E) > q(2R + 3E) = z, due to R > 3qE .
Observe that if a task of job i ′ is scheduled in the delay time of i , then a task of i is
scheduled in the delay time of i ′. This means we can partition the large jobs into pairs
where the jobs within each pair are interleaved in the above way. Consider an arbitrary
pair of large jobs (i, i ′) and assume that Si < Si ′ . There cannot be any task of a small job
scheduled between ai ′ and bi , as a first task of a small job would imply an intersection
of its second task with bi ′ , and a second task of a small job would imply an intersection
of its first task with ai , due to the fixed delay times. Consider an arbitrary small job j .
If none of its tasks is scheduled in the gap between ai and bi ′ of any pair of large jobs
(i, i ′), then there is also no task of a large job scheduled in the delay time of j due to the
fixed delay times. This implies the makespan of σ is at least 2qR + 2e j + R + E > z,
because the total processing time of the large jobs together with j is 2qR + 2e j , and
the delay time of j is R + E . Therefore, for any small job j , there is a pair of large
jobs (i, i ′), where at least one of the tasks of j is scheduled in the gap between ai and
ai ′ or in the gap between bi and bi ′ . For any pair of large jobs the length of the gap
between ai and ai ′ is at most E , the same holds for the length of the gap between bi and
bi ′ . Thus, the total length of these gaps is at most q/2 · (2E) = qE , which is exactly
half of the total processing time of the small jobs. Therefore, the length of each such
gap must be exactly E , and they must be completely filled with tasks of small jobs. As
E/4 < e j < E/2, there are always exactly three tasks of small jobs in each such gap.
This partitions the small jobs into q sets Q j of 3 jobs each, with

∑
x∈Q j

ex = E for

each j = 1, . . . , q , which gives us a feasible solution for the 3- Partition instance I .


�

Theorem 2 1‖(p j , L, p j )‖ ∑
C j is strongly NP-hard.

Proof We reduce the strongly NP-hard problem 1‖(p j , L, p j )‖Cmax, proven to be
strongly NP-hard in Theorem 1, to 1‖(p j , L, p j )‖ ∑

C j . Consider an instance I of
1‖(p j , L, p j )‖Cmax. We define an instance I ′ of 1‖(p j , L, p j )‖ ∑

C j as follows. There
are n + M jobs in I ′, where M is a sufficiently large number.

• the first n jobs are the same as the jobs in I (small jobs),
• for the remaining M jobs, we have p j = ∑n

i=1 pi + nL , j = n + 1, . . . , n + M (large
jobs).

We prove that there is a solution σ for I with makespan at most C if and only if there is
a solution for I ′ with a total completion time of at most z := (n + M)C + hM(M + 1)/2,
where h := 2

(∑n
i=1 pi + nL

)+ L = a j + L +b j is the time required for scheduling a large
job j . The Theorem follows from this statement.
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t

Cσ

. . . an+1 bn+1 an+2 . . .

Fig. 4 Schedule σ ′ created from schedule σ

Fig. 5 Above: schedule σ ′ created from schedule σ . The original jobs are white, the helper jobs are blue.
Below: jobs k + 1, . . . , n + M in schedule σ̂

If there is such an σ , then we define σ ′ (a solution of I ′) from σ as follows. The small
jobs start exactly at the same time as they start in σ , while the large jobs start right after
them as soon as possible (in arbitrary order), see Fig. 4. Observe that the completion time
of any small job in σ ′ is at most C , while the total completion time of the large jobs is
MC + hM(M + 1)/2. Therefore, the total completion time of σ ′ is at most z.

Now suppose that there is no such solution for I , i.e., the makespan Cmax of any solution
σ is at least C + 1. Consider an arbitrary optimal solution σ̂ for I ′. Observe that no job
task can be scheduled between the first and the second task of any large job in σ̂ , since the
processing times of both tasks of any large job are larger than L . Furthermore, no large job
can precede any of the small jobs, otherwise, we would get a better schedule by moving that
large job to the end of the schedule (cf., the definition of the processing times of the large
jobs). Therefore, the large jobs start right after the small jobs, i.e., after Cmax. Hence,

n+M∑

j=1

Ĉ j =
n∑

j=1

Ĉ j + MCmax + hM(M + 1)/2

> M(C + 1) + hM(M + 1)/2 > z,

where the last inequality follows if M is larger than nC .


�
Theorem 3 1‖(1, L j , 1, πa)‖ ∑

C j is strongly NP-hard.

Proof We reduce the known stronglyNP-hard problem 1‖(1, L j , 1, πa)‖Cmax, proven to be
strongly NP-hard by Condotta and Shakhlevich (2012), to 1‖(1, L j , 1, πa)‖ ∑

C j . Recall
that πa fixes a scheduling sequence for the first tasks of all jobs. Consider an instance I of
1‖(1, L j , 1, πa)‖Cmax. We want to know if I has a solution with Cmax ≤ C . We define an
instance I ′ of 1‖(1, L j , 1, πa)‖ ∑

C j as follows. There are n + M jobs in I ′, where M is a
sufficiently large number.

• the first n jobs are the same as the jobs in I (original jobs),
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• for the remaining M jobs, we have L j = C + 2( j − n − 1), j = n + 1, . . . , n + M
(helper jobs).

The fixed sequence of the first tasks in I ′ is defined as π ′
a , with

• π ′
a := (n + M, n + M − 1, . . . , n + 1, {πa}).

We prove that there is a solution σ for I with makespan at most C if and only if there is
a solution for I ′ with a total completion time of at most

z := n(M + C) + M2 + M(M + 1)

2
+ MC .

If there is such an σ , then we define σ ′ (a solution of I ′) from σ as follows. The helper jobs
are scheduled in decreasing order of their indices one after another as soon as possible, while
the original jobs are scheduled in the exact same way as in σ , but with their starting time
increased byM each. See the first schedule of Fig. 5 for an illustration. This schedule respects
the order given by π ′

a . Observe that the completion time of any original job in σ ′ is at most
M + C , while the total completion time of the helper jobs is exactly M2 + M(M+1)

2 + MC .
Therefore, the total completion time of σ ′ is at most z.

Now suppose that there is no such solution for I , i.e., the makespan Cmax of any solution
σ is at least C + 1. Consider an arbitrary optimal solution σ̂ for I ′. Suppose for the sake of
contradiction that the total completion time of σ̂ is at most z for any M .

Due to the fixed order of the first tasks π ′
a we can assume that an+M starts at 0 in σ̂ .

Observe that the total completion time of the helper jobs is at least M2 + M(M+1)
2 + MC .

The original jobs start after the first tasks of the helper jobs, i.e., after M , thus their total
completion time is at least nM . If any of the original jobs completes after bn+M in σ̂ , then
its completion time is larger than 2M , and the total completion time of the jobs in σ̂ is larger
than M2 + M(M+1)

2 + MC + (n + 1)M > z, if M > nC . Thus, each original job has to start
before bn+M .

If there is no gap among the first tasks of the helper jobs in σ̂ , then the machine is busy
with the helper jobs in [0, M] and in [M + C, 2M + C]. Since each original job has to be
completed before bn+M (i.e., before 2M+C), these jobs have to be scheduled in [M, M+C].
However, this is a contradiction to the the makespan of σ .

Therefore, in the followingwe suppose there is a gap between some first tasks of the helper
jobs in σ̂ . Let k, n + 1 ≤ k ≤ n + M − 1, be the largest index such that there is a gap before
ak . Then, the machine is busy with jobs n + M, n + M − 1, . . . , k + 1 in [0, n + M − k] and
in [M + C + k − n, 2M + C], see the second schedule in Fig. 5. Since ak starts later than
n + M − k, bk starts later than M +C + k − n, which means bk starts later than 2M +C to
avoid intersection.

Let j be a job in {n + 2, . . . , k} whose second task b j is scheduled after bn+M . Since
L j−1 = L j − 2, and a j−1 has to be scheduled after a j according to π ′

a , b j−1 is scheduled
either right before, or at some time after b j . In both cases, b j−1 has to be scheduled after
bn+M to avoid intersection with bn+M . This particularly implies that bn+1 is scheduled after
bn+M , i.e., Cn+1 ≥ Cn+M + 1 = 2M + C + 1.

The total completion time of jobs n + 2, . . . , n + M is then at least (M +C + 2) + (M +
C+3)+ . . .+ (2M+C) = (M−1)(M+C+2)+ (M−1)(M−2)/2. The total completion
time of the original jobs is at least nM . Thus we have the following lower bound on the total
completion time of σ̂ :

(2M + C + 1) +
(

(M − 1)(M + C + 2) + (M − 1)(M − 2)

2

)

+ (nM)
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t. . . aj′ bj′

≥ ∑j
i=1 ai Lj′

C
OPTs

Fig. 6 Illustration of the bound on COPT s
j

= M2 + M + CM + M2 + M

2
+ nM > z,

if M > nC , proving the Theorem. 
�

4 Approximation results

As in the following,we only look atCTPwith the objective ofminimizing the total completion
times, we call this problem only "CTP" from now on for simplicity reasons. In this section we
give polynomial-time approximation algorithms for a number of CTP variants. All of these
variants are proven to beNP-hard either by Chen and Zhang (2021), by Kubiak (2022), or by
the results of Sect. 3. We start this section with two useful lemmas that provide lower bounds
on the objective value of any optimal solution for the general CTP. Sections 4.2 and 4.3
consider variants with fixed processing times and fixed delay times, respectively. Section 4.4
examines variants where there exists some relation between the processing times and the
delay time of each job.

4.1 Lower bounds on the optimum

Recall the definitions C
OPT f
j and COPT s

j as the completion time of the j th finishing and j th
starting job of some optimal schedule, respectively. The next lemma is straightforward from

the definition of C
OPT f
j , since there are j jobs that complete until C

OPT f
j in an optimal

schedule.

Lemma 1 Let the jobs of a CTP instance be indexed in non-decreasing ai + bi order. Then,
for any optimal schedule for this instance, we have

1. C
OPT f
j ≥ ∑ j

i=1(ai + bi ), j = 1, . . . , n and

2. COPT ≥ ∑n
j=1

∑ j
i=1(ai + bi ).

The second lemma is analogous, and follows from the observation that there are j −1 first
tasks that finish until the first task of the job corresponding to COPT s

j starts in some optimal
schedule. See Fig. 6 for an illustration.

Lemma 2 Let the jobs of a CTP instance be indexed in non-decreasing ai order. Then, for
any optimal schedule for this instance, where j ′ is the j th starting job, we have

1. COPT s
j ≥ ∑ j

i=1 ai + L j ′ + b j ′ , j = 1, . . . , n and

2. COPT ≥ ∑n
j=1

∑ j
i=1 ai + ∑n

j=1 L j + ∑n
j=1 b j .
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4.2 CTP with fixed processing times

In this section we assume a j = a and b j = b for each job j ∈ J . Consider Algorithm A.

Algorithm A
Input: a CTP instance with a j = a and b j = b for each job j
Output: a schedule σ for this instance

1. Sort the jobs in non-decreasing L j order. In the following, let the jobs be indexed in this order.
2. Schedule the jobs one-by-one as soon as possible without intersection.

Recall that here, σ ALG denotes the schedule created by Algorithm A and S j is the starting
timeof job j . The precisemeaning of ’as soon as possible’ is the following: for a given (partial)
scheduleσ p and a job j , scheduling j as soon as possiblemeans setting it’s starting time S j :=
min{t ≥ 0 : the machine is idle both in [t, t + a j ] and in [t + a j + L j , t + a j + L j + b j ]}.
Lemma 3 Suppose that a j = a, b j = b ( j ∈ J ) and b ≤ a. When Algorithm A schedules
job j , where j is the j th job in non-decreasing L j order, then a j starts from the earliest time
point t ′, such that the machine is idle in [t ′, t ′ + a].
Proof Weprove the statement by an induction on j in the order given by step 1 inAlgorithmA;
it is trivial for j = 1. Suppose that the statement is true for some j , and consider the partial
schedule σ p created by the algorithm before scheduling job j + 1. Let t be the earliest time
point such that the machine is either idle in [t ′, t ′ + a] in σ p (it is possible that t ′ is the time
point when σ p finishes). We prove the lemma by showing S j+1 = t . Due to the definition of
t ′, a j+1 cannot intersect with any task in σ p . We need to prove the same for b j+1, which is
scheduled in [t ′ + a + L j+1, t ′ + a + L j+1 + b].

First, observe that ai starts before ai+1 for each i ≤ j due to the induction. This means
a1, . . . , a j complete before t ′. Let L1, . . . , Ln be the delay times of the jobs obtained in
step 1 of Algorithm A. Since L1, . . . , L j ≤ L j+1, we have C1, . . . ,C j ≤ t ′ + L j+1 + b ≤
t ′ + L j+1 + a, where the last inequality follows from b ≤ a. Thus, as each task in σ p

completes before the start of b j+1, there is no intersection of any scheduled tasks. 
�
Lemma 4 Algorithm A runs in O(n log n) time and it always produces a feasible solution.

Proof Sorting the jobs requires O(n log n) time. When Algorithm A schedules job j , it
searches the first gap after the first task of the directly previous scheduled job with a length
of at least a (Lemma 3). This means the length of the gap after each task is only checked
once during the whole procedure, which requires O(n) time in total. The feasibility of the
schedule is straightforward from the definition of ’as soon as possible’. 
�
Theorem 4 Algorithm A is a factor-2 approximation for 1‖(a, L j , b, b ≤ a)‖ ∑

C j .

Proof Due to Lemma 4, it remains to prove that CALG ≤ 2COPT .
From Lemma 3 we know that the machine is always busy just before a first task of a job is

scheduled (except a1, which starts at time 0). This means there are at most j − 1 gaps before
S j , and the length of any of these gaps is smaller than a. Hence, if we consider the partial
schedule at the time when the algorithm schedules job j , we have

S j ≤ ( j − 1)(a + b) + ( j − 1)a, j ∈ J ,
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because (i) the machine is busy at most ( j − 1)(a + b) time in [0, S j ] with tasks of the jobs
1, . . . , j−1; and (ii) the total length of the gaps before S j is smaller than ( j−1)a. Therefore,
we have C j ≤ ( j − 1)(a + b) + ( j − 1)a + a + L j + b and

CALG =
n∑

j=1

C j ≤ n(n − 1)

2
(a + b) + n(n − 1)

2
a + n(a + b) +

n∑

j=1

L j

≤ COPT + n(n + 1)

2
a + nb +

n∑

j=1

L j ≤ 2COPT ,

where the second inequality follows from Lemma 1 and from n(n− 1)/2+ n = n(n+ 1)/2,
while the third follows from Lemma 2. 
�

As1‖(a, L j , b, b ≤ a)‖ ∑
C j is amoregeneral versionof the variant 1‖(p, L j , p)‖ ∑

C j ,
Corollary 1 directly follows.

Corollary 1 Algorithm A is a factor-2 approximation for 1‖(p, L j , p)‖ ∑
C j .

The following lemma describes some important attributes of σ ALG in the opposite case
of a ≤ b.

Lemma 5 Suppose that a j = a, b j = b ( j ∈ J ) and a ≤ b. Consider the partial schedule
σ p created by Algorithm A, right before it schedules job j starting at S j . Then,

(i) a j or b j start right after another task (for each j > 1),
(ii) the number of the gaps in σ p is at most j − 1.
(iii) the number of gaps before S j is at most j − 1,
(iv) the length of each gap in [0, S j ] is at most b.
Proof Statement (i) immediately follows from the algorithm. We use induction on j for
proving the remaining statements; they are trivial for j = 1. Suppose that they are true for
1, 2, . . . , j − 1, we then prove them for j .

Statement (ii) follows from (i) and the following observation. If there is no gap before a j ,
then there will be at most one new gap created by b j (as it is in the middle of a previous gap
or at the end of the schedule after a new gap). If there instead is no gap before b j , then there
will be at most one new gap created by a j .

Let t denote the completion time of the last task in σ p. Observe that S j ≤ t . Hence,
statement (iii) immediately follows from (ii).

For proving (iv), suppose for purpose of showing contradiction that there exists a gap
[g1, g2] in σ p before S j with a length larger than b. We know from the induction that each
a� (� ≤ j − 1) completes before g1, because otherwise, the gap before a� would already
have been larger than b right after we have scheduled job �. If [g1, g2] existed however, the
algorithm would schedule a j at time g1: there would be neither an intersection between a j

and any other task (since a ≤ b < g2 − g1), nor between b j and any other task (since a j+1

starts later than the previously scheduled first tasks, and L j ≥ L� for each � ≤ j − 1).
The existence of such a gap would contradict the definition of the algorithm, therefore,(iv)
follows. 
�
Theorem 5 Algorithm A is a factor-3 approximation for 1‖(a, L j , b)‖ ∑

C j .

Proof Due to Lemma 4, it remains to prove that CALG ≤ 3COPT .
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If b ≤ a, we can approximate 1‖(a, L j , b)‖ ∑
C j with a factor of 2 (Lemma4). Therefore,

w.l.o.g, we assume in the following that a ≤ b. We show that, in this case, we get an
approximation factor of 3.

From Lemma 5 (iii) and (iv) we know that when the algorithm schedules job j , the total
idle time of the machine in [0, S j ] is at most ( j − 1)b. Due to the order of the jobs, the
machine is busy in the partial schedule from 0 to S j for at most (a + b)( j − 1) time; thus we
have S j ≤ (a + b)( j − 1) + b( j − 1) and C j ≤ (a + b)( j − 1) + b( j − 1) + (a + L j + b).
Hence,

CALG =
n∑

j=1

C j ≤
n∑

j=1

(a + b)( j − 1) +
n∑

j=1

b( j − 1) + n(a + b) +
n∑

j=1

L j

= n(n − 1)b +
⎛

⎝n(n + 1)

2
a + nb +

n∑

j=1

L j

⎞

⎠ ≤ n(n − 1)b + COPT ,

where the second inequality follows from Lemma 2. Since C
OPT f
j ≥ (a+b) j by Lemma 1,

we have COPT ≥ n(n+1)
2 (a + b). Therefore,

CALG ≤ COPT + n(n − 1)b ≤ 3COPT .


�
Theorem 6 Algorithm A is a factor-1.5 approximation for 1‖(1, L j , 1)‖ ∑

C j .

Proof Due to Lemma 4, it remains to prove that CALG ≤ 1.5COPT . From Lemma 3 we
know that the algorithm always schedules a j in the first gap. Thus, the starting time of j
( j ∈ J ) is at most 2( j − 1), because the total processing time of the jobs � < j is 2( j − 1)
and the other jobs start later. Therefore, C j ≤ 2( j − 1) + 2 + L j , and

CALG ≤ 2
n∑

j=1

( j − 1) + 2n +
n∑

j=1

L j

≤ COPT +
n∑

j=1

( j − 1) + n ≤ 1.5COPT ,

where the second inequality follows from Lemma 2, and the third from Lemma 1. 
�

4.3 CTP with fixed delay times

In this section we assume L j = L for each job j ∈ J . Consider Algorithm B, based on
an idea of Ageev and Ivanov (2016). Observe that both the first and the second tasks are in
non-decreasing a j + b j order in the schedule found by Algorithm B.

Lemma 6 Algorithm B runs in O(n log n) time and always produces a feasible solution.

Proof The run time of Algorithm B is straightforward. Together with the observation that
in step 3iii, we schedule the current job after all the other tasks, it is clear that there are no
intersections in the schedule produced by the algorithm. 
�
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Algorithm B
Input: a CTP instance with L j = L for each job j
Output: a schedule σ for this instance

1. Sort the jobs in non-decreasing a j + b j order. In the following, let the jobs be indexed in this order.
2. Schedule a1 from 0 and b1 from a1 + L . Let s := 1 and js := 1.
3. For j = 2, . . . , n do the following:

i) If it is possible to start a j right after a j−1 without b j intersecting any job task on the schedule,
then do it and consider the next job.

ii) If it is possible to start b j right after b j−1 without a j intersecting any job tasks on the schedule,
then do it and go to consider the next job.

iii) Otherwise, start a j right after b j−1. Let s := s + 1 and js := j .

Fig. 7 Example for gaps in different cases

Let Bs := { js, js + 1, . . . , js+1 − 1} be the sth block (1 ≤ s ≤ n) and let Hs :=
C js+1−1 − S js denote the length of Bs . The next lemma describes an important observation
on the gap sizes within a block and follows directly from the equal delay times and some
simple algebraic calculations (see Fig. 7 for illustration).

Let Gi and G ′
i be the length of the gap directly after ai and bi , respectively. If there is no

gap, then the corresponding value is 0.

Lemma 7 If jobs j and j + 1 are in the same block, then a j+1 starts right after a j or b j+1

starts right after b j . In the former case G ′
j ≤ a j+1 − b j ≤ a j+1, while in the latter case

G j ≤ b j − a j+1 ≤ b j .

Theorem 7 Algorithm B is a factor-3 approximation for 1‖(a j , L, b j )‖ ∑
C j .

Proof Due to Lemma 6, it remains to prove that CALG ≤ 3COPT . The length of a block Bs

is the sum of the following: (i) the lengths of the first tasks of the jobs in Bs , (ii) the lengths
of the gaps among these tasks, (iii) L , and (iv) the length of the second task of the last job in
Bs , i.e., Hs = ∑ js+1−1

i= js
ai + ∑ js+1−2

i= js
Gi + L + b js+1−1. From Lemma 7, we have

Hs ≤
js+1−1∑

i= js

(ai + bi ) + L. (1)

Observe that the algorithm starts a new block every time it cannot schedule the next
upcoming job in steps 3i) and 3ii). Therefore, there can be two reasons why js+1 cannot be
scheduled in Bs : (a) the length of the gap between a js+1−1 and b js is smaller than a js+1 , i.e.,
G js+1−1 < a js+1 or (b) the completion time of b js+1−1 minus the starting time of b js is larger
than L , see Fig. 8.
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Fig. 8 Reasons of starting a new block: a3 does not fit between a2 and b1, while the total processing times of
the second tasks in the second block (b3 + b4) and the gap between them is larger than L

In case of (a), we know that b js starts at S js + a js + L and a js+1−1 completes at S js +
∑ js+1−1

i= js
ai + ∑ js+1−2

i= js
Gi , thus

a js+1 > G js+1−1 = (S js + a js + L) −
⎛

⎝S js +
js+1−1∑

i= js

ai +
js+1−2∑

i= js

Gi

⎞

⎠

= L −
js+1−1∑

i= js+1

ai −
js+1−2∑

i= js

Gi ≥ L −
js+1−1∑

i= js+1

ai −
js+1−2∑

i= js

bi ,

where the last inequality follows from Lemma 7. After rearrangement, we get
∑ js+1

i= js+1 ai +
∑ js+1−2

i= js
bi > L .

In case of (b), we have

L <

js+1−1∑

i= js

bi +
js+1−2∑

i= js

G ′
i ≤

js+1−1∑

i= js

bi +
js+1−1∑

i= js+1

ai ,

where the last inequality follows from Lemma 7.
For each block, at least one of the previous inequalities holds, and neither of those inequal-

ities contains any task occurring in any other inequality of another block. Hence, summing
the valid inequalities for the first s − 1 blocks, we have

(s − 1)L <

js−1∑

i=1

(ai + bi ) + a js . (2)

Applying Eqs. 1 and 2 to bound the completion time C j of a job j in Bs , we get

C j ≤
s−1∑

k=1

Hk +
j∑

i= js

(ai + bi ) + L ≤
j∑

i=1

(ai + bi ) + sL

< 2
j∑

i=1

(ai + bi ) + L ≤ 3C
OPT f
j ,

where the last inequality follows from Lemma 1 and from L < C
OPT f
j . Summing over all

jobs, the Theorem follows. 
�
Theorem 8 Algorithm B is a factor-1.5 approximation for 1‖(p j , L, p j )‖ ∑

C j .

Proof Due to Lemma 6, it remains to prove that CALG ≤ 1.5COPT .
Consider an arbitrary optimal solution. Note that, in the present case, the non-decreasing

a j + b j order is the same as the non-decreasing a j order. Thus, we can use both lower
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Fig. 9 Since p2 + p3 + p4 > L , job j4 has to be scheduled in a new block

bounds on the optimum described in Sect. 4.1. Also,C
OPT f
j = COPT s

j follows directly from
all delay times being fixed.

Consider jobs j and j + 1 from the same block. From Lemma 7, and from p j ≤ p j+1,
we know that there is no gap between a j and a j+1 in σ ALG . Thus, the length of a block Bs

can be expressed as

Hs =
js+1−1∑

k= js

pk + L + p js+1−1. (3)

Since js could not be scheduled in Bs−1, we have

js∑

k= js−1+1

pk > L, s ≥ 2, (4)

see Fig. 9.

In the remaining part of the proof we compare C j and C
OPT f
j , i.e., the completion time

of job j in σ ALG and the completion time of the j th finishing (or starting) job in a fixed

optimal schedule. For all j > j2, we will proveC j ≤ 1.5C
OPT f
j , but this inequality does not

necessarily always hold true for j = j2, where j2 is the first job of the second block in σ ALG .
However, with a more sophisticated analysis, we still manage to prove CALG ≤ 1.5COPT

over the total of all jobs.
Let job j be a job in some block Bs , where s ≥ 2 and j �= j2. Then the completion time

C j of j can be expressed as:

C j =
s−1∑

i=1

Hi +
j∑

k= js

pk + L + p j .

Using Eq.3, we get

C j <

s−1∑

i=1

⎛

⎝
ji+1−1∑

k= ji

pk + L + p ji+1−1

⎞

⎠ +
j∑

k= js

pk + L + p j ≤
j∑

i=1

pi +
s−1∑

i=1

p ji+1−1 + sL + p j .

Applying Inequality 4 once for blocks B1, . . . , Bs−1, we get:

C j < p1 + 2
js∑

k=2

pk +
s−1∑

i=1

p ji+1−1 +
j−1∑

k= js+1

pk + 2p j + L.

Applying it again for B1, and then using p j2−1 ≤ p j (since j > j2), we have

C j < p1 + 3
j2∑

k=2

pk + 2
js∑

k= j2+1

pk +
s−1∑

i=1

p ji+1−1 +
j−1∑

k= js+1

pk + 2p j
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≤ p1 + 3
j2∑

k=2

pk + 2
js∑

k= j2+1

pk +
s−1∑

i=2

p ji+1−1 +
j−1∑

k= js+1

pk + 3p j

≤ 3
j∑

k=1

pk .

Using Lemma 1 on this statement, we have C j < 1.5C
OPT f
j and thus,

∑

j> j2

C j < 1.5
∑

j> j2

C
OPT f
j . (5)

If j is in B1, we have C j = ∑ j
k=1 pk + L + p j ≤ C

OPT f
j , where the last inequality

follows from Lemma 2.
Now, if j = j2, we then have C j2 = H1 + 2p j2 + L = ∑ j2

k=1 pk + p j2−1 + p j2 + 2L

(from Eq.3) and C
OPT f
j2

≥ ∑ j2
k=1 pk + L + p j2 (from Lemma 2). Hence,

1.5
(
C

OPT f
1 + C

OPT f
j2

)
≥ 1.5

⎛

⎝2p1 + L +
j2∑

k=1

pk + L + p j2

⎞

⎠

= 3p1 + 3L + 1.5p j2 + 1.5
j2∑

k=1

pk ≥ 2p1 + 3L + p j2 +
j2∑

k=1

pk + 0.5(p j2−1 + p j2)

≥ 2p1 + 3L + p j2 +
j2∑

k=1

pk + p j2−1,

(6)

where the last inequality follows from p j2−1 ≤ p j2 . Thus, we have

j2∑

k=1

Ck = (
C1 + C j2

) +
j2−1∑

k=2

C j

≤
⎛

⎝2p1 + L +
j2∑

k=1

pk + p j2−1 + p j2 + 2L

⎞

⎠ +
j2−1∑

k=2

C
OPT f
j

≤ 1.5
(
C

OPT f
1 + C

OPT f
j2

)
+

j2−1∑

k=2

C
OPT f
j ≤ 1.5

j2∑

k=1

C
OPT f
j ,

where the second inequality follows from Eq.6. Therefore, CALG = ∑n
j=1 C j ≤

1.5
∑n

j=1 C
OPT f
j = 1.5COPT , following from the previous statement and Eq.5. 
�

4.4 CTP with related processing and delay times

In this section we consider variants where at least one of the tasks has a processing time equal
to the delay time. We first reuse Algorithm A:

Theorem 9 Algorithm A is a factor-1.5 approximation for 1‖(p j , p j , p j )‖ ∑
C j .
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Fig. 10 The schedules considered in Remark 1

Proof Due to Lemma 4, it remains to prove that CALG ≤ 1.5COPT . Observe that both first
and the second tasks are in non-decreasing p j order in σ ALG . Thismeans the completion time

C j of job j is at most 3
∑ j

i=1 pi . Thus, we haveC
ALG = ∑n

j=1 C j ≤ ∑n
j=1

(
3

∑ j
i=1 pi

)
≤

1.5COPT , where the last inequality follows from Lemma 1. 
�
Remark 1 Consider an instance with 2n + 
√2n� jobs. For j = 1, . . . , n, let p j = 1 + jε,
while for j > n let p j = 3 + 3( j − n)ε. For this instance, the algorithm creates a schedule,
where the jobs are in increasing index order and the first task of a job always starts right
after the second task of the previous job. The objective function of this schedule tends to
(18+ 12 ·√2)n2 + O(n) as n tends to infinity and ε tends to 0. Consider the schedule where
job n+1 starts from 0, each first task of a job with j > n+1 starts right after the second task
of job j − 1, and the first task of a job with j ≤ n starts right after the first task of job j + n,
see Fig. 10. The objective function of this schedule tends to (18 + 9 · √

2)n2 + O(n) as n
tends to infinity and ε tends to 0. This shows that the approximation factor of our algorithm
can generally not be better than (2 + √

2)/3 ≈ 1.138.

Now, consider Algorithm C.

Algorithm C
Input: a CTP instance with L j = b j for each job j
Output: a schedule σ for this instance

1. Sort the jobs in non-decreasing a j + p j order. In the following, let the jobs be indexed in this order.
2. Schedule the jobs one-by-one as soon as possible without intersection.

Theorem 10 Algorithm C is a factor-2 approximation for 1‖(a j , p j , p j )‖ ∑
C j .

Proof It is straightforward that Algorithm C runs in O(n log n) time and always produces a
feasible solution. In the worst case, the algorithm schedules each job right after the second
task of the previously scheduled job. Hence, we haveCALG ≤ ∑n

j=1
∑ j

i=1(a j +2p j ). Since

COPT ≥ ∑n
j=1

∑ j
i=1(a j + p j ) from Lemma 1, the Theorem follows. 
�

Remark 2 Consider an instance with 2n jobs. For k = 1, . . . , n, let a j = p j = 1+ (k − 1)ε,
if j = 2k − 1; and a j = 1 + kε and p j = 1 + (k − 1)ε, if j = 2k. For this instance, the
algorithm creates a schedule where the first task of a job starts right after the second task
of the previously scheduled job. The objective value of this schedule is 6n2 + O(n). There
exists a solution, by scheduling the jobs as soon as possible in decreasing index order, where
the objective value is 4n2 +O(n). This shows that the approximation factor of our algorithm
can generally not be better than 1.5.

If we modify the input, as well as the first step of Algorithm C, such that it takes instances
of CTPwith L j = a j , and sorts the jobs in non-decreasing p j +b j order, we can approximate
1‖(p j , p j , b j )‖ ∑

C j with factor of 2. The proof is analogous to the proof of Theorem 10.
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Theorem 11 Modified Algorithm C is a factor-2 approximation for 1‖(p j , p j , b j )‖ ∑
C j .

Remark 3 An instance similar to the one described in Remark 2 shows that the approximation
factor of the modified algorithm can generally not be better than 1.5.

5 Bi-objective approximation

In this section, we give constant-factor (ρ1, ρ2)-approximations for all variants of the
bi-objective 1‖(a j , L j , b j )‖{Cmax,

∑
C j } problem for which we gave constant factor

approximations on, the
∑

C j -objective in this work.
Stein andWein (1997) defined two simple conditions on scheduling problems: Truncation

(deleting jobs from a valid schedule results in a valid partial schedule) and Composition (a
simple way of appending two valid partial schedules results in a valid schedule) and proved
the following:

Proposition 1 (Stein and Wein (1997), Corollary 3) For any scheduling problem satisfying
the conditions Truncation and Composition, if there exists an α-approximation algorithm for
the minimization of makespan and a β-approximation algorithm for the minimization of sum
of completion times, there exists an (α(1 + δ), β( δ+1

δ
))-algorithm for any δ > 0.

Note that all considered coupled task problem variants fulfill these conditions. With this
result in hand, we can now combine our β-approximation algorithms for the sum of com-
pletion times with previous α-approximation algorithms for the minimization of makespan
to get (ρ1, ρ2)-approximations for all approximated

∑
C j problems. We choose δ in such a

way that the maximum of the two approximation factor max(ρ1, ρ2) is minimized. This is a
common choice in bi-objective optimization as the goal is to get the best balanced result for
both objectives simultaneously.

We give these results in Table 1. The first column of the table specifies the specific variant
of 1‖(a j , L j , b j )‖{Cmax,

∑
C j } to be approximated, with the variant identified by its job

characteristics. The second column gives the (ρ1, ρ2)-approximation factor for each variant.
As in our case ρ1 always equals ρ2, we just give one value in this column. In the remaining
columns we give the specific α and β values used in Proposition 1, with a reference to their
origin, as well as our choice of δ.

The run time of this algorithm implied by Proposition 1 is the sum of the run times of
both the α- and the β-approximation algorithms. As all used approximation algorithms for
both Cmax and

∑
C j problems run in polynomial time, all (ρ1, ρ2)-approximations given in

Table 1 can be computed in polynomial time as well.

6 Conclusion

In this paper, we deal with the single machine coupled task scheduling problem, with the
minimization of the total completion time as our objective function. Our work extends the
complexity results of Chen and Zhang (2021) and Kubiak (2022) by introducing two new
NP-hard variants, andprovides several polynomial-time constant-factor approximation algo-
rithms.Todo this,wewere able tomodify several knownalgorithmic concepts used in coupled
task makespan minimization, but some of our proofs on approximation factors required more
sophisticated ideas. E.g., in the proof of Lemma 8, the original idea for the approximation
factor only worked for jobs scheduled after a certain number of other jobs had already been
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Table 1 Results on bi-objective (ρ1, ρ2)-approximation for CPT variants with Cmax and
∑

C j objectives

ρ1 = ρ2 α β δ

(a, L j , b) 6.5 3.5 (Ageev and Kononov, 2006) 3 (Theorem 5) 6/7

(a j , L, b j ) 6 3 (Ageev and Ivanov, 2016) 3 (Theorem 7) 1

(a, L j , b, b ≤ a) 5.5 3.5 (Ageev and Kononov, 2006) 2 (Theorem 4) 4/7

(a j , p j , p j ) 5.5 3.5 (Ageev and Kononov, 2006) 2 (Theorem 10) 4/7

(p j , p j , b j ) 5.5 3.5 (Ageev and Kononov, 2006) 2 (Theorem 11) 4/7

(p j , p j , p j ) 4 2.5 (Ageev and Kononov, 2006) 1.5 (Theorem 9) 3/5

(1, L j , 1) 3.25 1.75 (Ageev & Baburin, 2007) 1.5 (Theorem 6) 6/7

(p j , L, p j ) 3 1.5 (Ageev and Ivanov, 2016) 1.5 (Theorem 8) 1

processed, and a careful analysis of the approximation factor for the jobs before this cut-off
was needed to get the result on hand.

We also give the first results on bi-objective approximation in the coupled task setting:
we use a result from Stein and Wein (1997), together with constant-factor approximations
on the makespan objective taken from the literature, to give bi-objective constant-factor
approximations for the problem of both minimizing the sum of completion time and the
makespan simultaneously. We do this for all variants of CTP with the sum of completion
times objective that we managed to approximate with a constant factor.

Although we did manage to provide approximation algorithms for several coupled task
scheduling problem variants with the sum of completion times objective, it is still unknown
if there is a constant-factor approximation algorithm for a few important cases: for the most
general case; for the cases where only one of the tasks has a fixed processing time; and for the
(p j , L j , p j ) variant. This stems from the fact that all algorithms presented in this work make
use of some unique ordering of the jobs implied by the job characteristics on either the task
lengths or delay lengths. In the aforementioned cases, there exists no such unique ordering
using only task lengths or delay lengths. Inapproximability results also are of interest for the
problems presented in this paper, as they do exist for most CTP variants with the makespan
objective (Ageev and Kononov 2006; Ageev and Ivanov 2016). The ideas of these papers
were useful for achieving complexity results, but it seems to us that new approaches are
needed for the total completion time objective. To our best knowledge, there are no such
results. While we have proved some lower bounds on the best approximation factors, the
tightness of our algorithms is still open, which invites for more sophisticated analyses. We
point to these three open questions as suggestions for future research.
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