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Abstract

Over the past years, the recommender systems community invented several novel approaches that reached better and better
prediction accuracy. Sequential recommendation, such as music recommendation, has seen large improvements from neural
network-based models such as recurrent neural networks or transformers. When no sequential information is available or not
relevant, such as for book, movie, or product recommendation, however, the classic k-nearest neighbor algorithm appears
to remain competitive, even when compared to much more sophisticated methods. In this paper, we attempt to explain the
inner workings of the nearest neighbor using probabilistic tools, treating similarity as conditional probability and presenting
a novel model for explaining and removing popularity bias. First, we provide a probabilistic formulation of similarity and
the classic prediction formula. Second, by modeling user behavior as a combination of personal preference and global
influence, we are able to explain the presence of popularity bias in the predictions. Finally, we utilize Bayesian inference to
construct a theoretically grounded variant of the widely used inverse frequency scaling, which we use to mitigate the effect of
popularity bias in the predictions. By replacing the formerly ad hoc choices of nearest neighbor with probabilistically founded
counterparts, we are able to improve prediction accuracy over a variety of data sets and gain an increased understanding of
the theory behind the method.
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1 Introduction with traditional approaches, they overemphasize the sequen-

tial information of sessions, that is, the order of items in each

When recommending books, movies, or certain products in
subscription-based services, the long- or mid-term user pro-
file plays a more important role than the sequence of the
last few items consumed, which is typically available in non-
subscription-based services. While short-term consumption
products that depend more on the current mood of the user
such as music, products that the users purchase less fre-
quently and potentially engage with for a longer time [1] are
characterized better by looking back at past user behavior.
Although neural models have greatly improved performance
for the short-term, sequential recommendation compared
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browsing session [2,3]. In contrast to session-based recom-
mendation that predicts the next click or item for an ongoing
session without knowing who is now performing the actions,
in this paper, we concentrate on recommendation based on
the long-term user profile, a task of practical relevance in
itself or in a recommender ensemble combined with session-
based methods.

In addition to focusing on recommendation based on long-
term user profiles, we address the implicit recommendation
task where models rely on interaction feedback such as view-
ing an item or listening to a song, and only the lack of
interaction serves as negative feedback. Several practition-
ers argue that most of the recommendation tasks they face
are implicit feedback [4]; in [5], the authors claim that 99%
of the recommendation industry tasks are implicit. Even if
sufficiently many users are willing to explicitly rate the items
such as Netflix movies [6], much more detailed information
is available in the form of implicit feedback of who inter-
acted with which items. Even for Netflix movie ratings, the
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implicit feedback version “who rated what” is an interest-
ing and practically important task [7]. Toward this end, we
also consider explicit feedback research data by transforming
ratings into interaction regardless of its value.

Our contribution to non-sequential implicit feedback
recommendation is the mathematical understanding and
improvement of nearest neighbor, one of the oldest and most
popular approaches for collaborative filtering [8]. While a
multitude of more sophisticated methods has been developed
over the years [9—11], very few can match the simplicity of
the classic k-nearest neighbor. This simplicity also makes
the recommendations and behavior of the method easier to
interpret than many more recent counterparts, which makes it
attractive in practice. Recently, several thorough experiments
proved that they are still often very competitive in terms of
predictive performance [12], even when challenged by much
more complex methods, and in some cases, even compared to
sequential recommendation recurrent network methods [13].

Despite the success of the nearest neighbor recommender,
there is a lack of theoretical analysis and understanding of the
foundations of nearest neighbor methods for implicit feed-
back recommendation in the literature. Already in 2007, Bell
and Koren [14] listed various concerns regarding certain
theoretically unjustified components, including the lack of
statistical foundations for the similarity functions and the dif-
ficulty to avoid overfitting for similarities with low-support
items.

Our goal is to provide a probabilistic formulation, which
has multiple uses. A probabilistic basis allows us to under-
stand the behavior and properties of the algorithm in much
more detail. Further, our work provides insight into not only
the mechanics of the algorithm we investigate but of the data
itself, both of which could potentially influence or inspire
future research.

Even the very recent nearest neighbor implementations
[15-17] depend on ad hoc choices and are heuristic in nature.
In particular, the theoretical foundation is missing for the
similarity functions [14]. Understanding machine learning
approaches in probabilistic theory can become challeng-
ing, as the prediction tasks quickly become too complex
for traditional statistical machinery to sufficiently handle.
Oversimplification can lead to failing to account for certain
effects, which may result in the approach under-performing
its heuristic counterparts. Accounting for these effects often
requires nontrivial methods. In our approach, we investigate
frequently used heuristics and reinterpret them in a proba-
bilistic framework.

Prior to our work, research mostly focused on learning the
similarities [14,18] and there have been only a few attempts
for a probabilistic interpretation of the nearest neighbor algo-
rithm, mostly for the classification problem [19,20]. While
probabilistic analysis of nearest neighbor for explicit ratings
exists [21], we are aware of no probabilistic formulations in
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the implicit case on how interactions with neighbors affect
the preference of the item in question, which can also be
combined with separating the popularity component of the
implicit feedback.

Our work reinterprets the item-based nearest neighbor
recommendation algorithm by considering similarity a con-
ditional probability. We frame multiple heuristics as ways
to deal with the uncertainty of the observed similarity and
propose using the Bayesian credible interval lower bound as
an alternative. For the selected set of neighbors, we argue
that the classic prediction formula is in fact a probabilistic
OR operation over multiple predictors, using the assumption
that these predictors are independent. Although the indepen-
dence assumption is invalid in general [14], empirical tests
still confirm in practice; additionally, methods to improve
independence in the selected neighborhood remain an option
for future work.

We also show that it is plausible that the independence
assumption is responsible for introducing a strong popularity
bias in the predictions. Our modeling of the popularity com-
ponent in item similarity explains the popularity bias that has
been observed many times either directly [22] or through the
need for inverse frequency scaling [23-25].

Decoupling popularity from similarity is a key compo-
nent of our work, which leads to more recommendations in
the long tail without sacrificing accuracy. We give a Bayesian
interpretation of the user behavior as a combination of popu-
larity and personal taste. We consider each positive feedback
observation as an OR operation over a popularity and a per-
sonal taste component. By assuming a Beta prior on the
personal taste component, we derive a Bayesian formula for
the posterior, which we then use in the nearest neighbor rec-
ommendation. Using this approach, we give a theoretically
founded method to reduce the effect of selection bias toward
the popular items when measuring personal taste.

Our model relies on a Bayesian interpretation of the user
behavior as a combination of popularity and personal taste.
We consider each positive feedback observation as an OR
operation over a popularity and a personal taste component.
By assuming a Beta prior on the personal taste component,
we derive a Bayesian formula for the posterior, which we
then use in the nearest neighbor recommendation. Using this
approach, we give a theoretically founded method to reduce
the effect of selection bias toward the popular items when
measuring personal taste.

As a summary, our key contributions toward a proba-
bilistic interpretation of the nearest neighbor method are as
follows:

e We reinterpret similarity as a conditional probability.
e We introduce the Bayesian credible interval lower bound
to incorporate uncertainties.
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e We decouple popularity from personal taste by using
Bayesian inference.

Limitations of our approach include the assumption that
feedback is binary: We do not take into account the number
of interactions between a given user-item pair, only the fact
of whether it exists. Further, in this paper, we only consider
the case of item-based nearest neighbor recommendations,
however, most of the ideas presented could carry over to
user-based nearest neighbor recommendation as well.

We experiment with a large variety of test data and com-
pare to the recent baseline implementations of Dacrema et
al. [12]. We find that our approach works well in practice,
providing a notable recommendation accuracy increase over
other item-based nearest neighbor approaches, while still
closely matching the structure of the original method. Even
though our goal is first and foremost to better understand the
mechanics of the nearest neighbor method, this improvement
also strongly supports the validity of our claims.

This paper is organized as follows. After the related
results, we give a brief overview of the existing main near-
est neighbor approaches. The probabilistic interpretation and
our new nearest neighbor algorithm are found in Sect. 4, and
in Sect. 5, we describe our evaluation methodology and the
conducted experiments.

2 Related results

Recommender systems [26] have become extremely com-
mon recently in a variety of areas including movies, music,
news, books, and products in general. They produce a list of
recommended items by either collaborative or content-based
filtering. Collaborative filtering methods [27,28] build mod-
els of the past user-item interactions, while content-based
filtering [29] typically generates lists of similar items.

In the past few years, several papers addressed the
so-called sequential recommendation problem where the rec-
ommendation is based on the last sequence of items in a user
session. This task is highly relevant when the users are reluc-
tant to create logins and prefer to browse anonymously. Most
popular and successful algorithms use recurrent neural net-
works such as [30-35], however, there are other approaches
as well, such as using graph neural networks [36]. A large-
scale empirical evaluation of session-based recommendation
algorithms [13] enumerates and compares these algorithms.
Note that, the main conclusion of that study is that “the
progress in terms of prediction accuracy that is achieved
with neural methods is still limited. In most cases, our
experiments show that simple heuristic methods based on
nearest neighbors schemes are preferable over conceptually
and computationally more complex methods” [13].

Even more recently, several authors noticed that sequential
recommendation provides suboptimal results as they can-
not sufficiently capture long-term user preferences [2,3,37,
38]. While most of these papers concentrate on improving
sequence recommenders by engineering features of past user
interactions into their models, we believe that addressing the
non-sequential component alone is an important contribu-
tion, since the best methods can then be combined in an
ensemble recommender [39].

In this paper, we consider user independent item-to-item
recommendation based on the profiles of the entire past user
interactions [27,28]. The best known example of this task is
the Amazon list of books related to the last visited one [27].
We model the implicit feedback of the user. The feedback
may be explicit, such as one to five stars ratings of movies on
Netflix [40]. Most of the recommendation tasks are however
implicit, as the user provides no like or dislike information.
In such cases, recommender systems have to rely on implicit
feedback such as time elapsed viewing an item or listen-
ing to a song. Although implicit recommendation is much
more frequent in practice, explicit feedback is overrepre-
sented in research data. For this reason, in our experiments,
we consider a few explicit recommendation research data
by transforming a rating into an interaction regardless of its
value.

Even in the case when explicit feedback is available, it
is only for a small fraction of the interactions, and due to
the frugality of the explicit feedback, it is important to know
who rated what [7]. Furthermore, each user often takes some
implicit actions (e.g., click) before making an explicit deci-
sion (e.g., purchase), hence the binarized, implicit feedback
version of the original explicit feedback data is of high rele-
vance [41]. Note that, BPR [42] also turns both explicit and
implicit feedback into user-dependent pairwise preferences
regarding items. In our experiments, we consider a binarized
version of the explicit feedback data of Amazon, MovieLens,
Epinions, and more.

The first item-to-item recommender methods [27,28,43]
were using similarity information to directly find nearest
neighbor transactions. Very early papers [44] already com-
pared the performance of several variants; for a more recent
one, see [45]. The two main variants are based either on
user [43] or item [28] similarities; in [15], a reformulation is
proposed that unifies the two approaches. Nearest neighbor
algorithms differ in the similarity functions used [18,46], in
feature weighting [23], and other normalization approaches
[14]; some apply spectral methods to denoise the similar-
ity matrix [17] or use different framings of item-to-item
approaches [47].

However, the theory behind nearest neighbor methods was
criticized for at least two main reasons. First, the similarity
metrics typically have no mathematical justification. Second,
the confidence of the similarity values is often not involved
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when finding the nearest neighbor, which leads to overfitting
in sparse cases. In [14], a method is given that learns similar-
ity weights for users. Their method estimates user preference
toward an item by regression over similar item ratings. By
the nature of the regression, their method applies to explicit
feedback recommendation only. One of our main goals is to
provide an implicit feedback counterpart to their result, albeit
based on a probabilistic approach for implicit feedback rec-
ommendation.

Many works introduce probabilistic reasoning for various
collaborative filtering approaches that use elements similar
to ours. The notion of using conditional probability as sim-
ilarity for nearest neighbor appears as early as [22]. In that
work, the author already notes that the approach is known
to lead to popularity bias and mentions TF-IDF and nor-
malization as approaches to mitigate; however, the proposed
solution is based on a heuristic power function transforma-
tion of the conditional probability inspired by TF-IDF rather
than a theoretically founded method. In [48], an undirected
graphical model over the items is introduced with a fast
training algorithm to learn the relations between items; how-
ever, there the main goal is to extend the heuristic solutions
by neighbor interaction considerations. The work [49] com-
putes probabilities for how likely two users are to be of the
same personality type. Their method can be considered as
a Naive Bayes network with past positive user interactions
as features; however, their method makes no consideration
to handle the difference between sparse and dense obser-
vations. The paper [50] also deals with user behavior and
collaborative filtering in a Bayesian setting; however, their
work ventures rather far from the classic KNN formulation.

Of special note is the recent work [21] that has a very
similar theme to ours, attempting to place KNN-based rec-
ommendation in a probabilistic framework, and also using
a conditional probability-based explanation of similarity.
However, the basic approach to problem formulation is differ-
ent, with [21] marginalizing over categorical variables rather
than treating events as binomial variables. As a result, the
two approaches further diverge in how they treat ensemble
prediction and related assumptions. We believe our formula-
tion is more straightforward, while also allowing for a much
more direct way of modeling popularity bias, and an intu-
itive solution to handling it through Bayesian inference. Our
model also has the additional benefit of providing insight into
the underlying user behavior.

One of our main theoretical and practical questions relates
to separating popularity from personal taste in the feedback.
Most authors address this question in the context of the
missing-not-at-random feedback [51-55], however, they all
take approaches different from ours. For example, in [56],
the training procedure itself is de-biased. In [54], a thor-
ough analysis is given on item popularity in recommendation,
which focuses primarily on evaluation aspects such as the
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fraction of recommendation in the long tail. In [57], a prob-
abilistic latent variable model is proposed to make use of the
sparse signals from the users. Finally, for explicit ratings, the
behavior on missing feedback is probabilistically modeled
in [55], however, it remains unclear how their model can be
applied for implicit feedback. Since in our research, we have
neither ground truth nor testing user base, we restrict our
attention to the user behavior as observed in the data. Popu-
larity bias in the data does not primarily affect the traditional
offline recommendation accuracy metrics such as recall or
NDCQG, as the bias is present in the test set just as much
as in the training set. Rather, it hinders recommendation in
the long tail, which is considered particularly valuable for
the users [58]. In our work, we are concerned with the bias
introduced by the method as also observed in [22], instead
of the bias present in the collected data.

Regarding popularity bias, as we discussed, several
authors, for example [56,57], attempt to de-bias the data
itself to directly provide a better user experience. While
several heuristics (regularization and shrink [14], popularity-
stratified training [54], confidence weight [57], de-biasing the
evaluation [56], etc.) were proposed to account for popular-
ity, we require a well-grounded formulation for combining
popularity and personal taste.

3 Background

In this section, we give an overview of the main variants
of the classic item-based KNN using cosine similarity [28,
59]. We mention that the first variants were user similarity-
based [43] and user-based approaches also perform well in
recent experiments [12]. While our ideas could carry over to
the user-based nearest neighbor problem, we restrict to item
similarity for the clarity of the presentation.

Nearest neighbor algorithms typically make an ad hoc
choice of a similarity measure, which is only empirically
justified. For example, different papers propose the Jaccard
coefficient [18], Cosine [28], Asymmetric Cosine [46], and
others such as Dice-Sorensen and Tversky similarities [12].
In some variants, we can consider the denominator in the sim-
ilarity measure as a normalization term. Next, we describe
Cosine similarity as an illustration and motivation for our
definition of similarity as a conditional probability.

The item-based KNN algorithm, which is the main focus
of this paper, uses a number of heuristics. First, the user-
item interaction matrix may optionally be transformed using
TF-IDF (or BM25) normalization [23]:

thidf A Zuii
ol = (M

log (%)
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Here, z,,; € {0, 1} is the observation of whether user « inter-
acted withitem i, M is the number of items, and t; = )", zy.;.
Since we assume the matrix to be O — 1 valued, in TF-IDF,
the square root in the numerator holds no significance.
Next, the similarity values are computed between items.
The cosine similarity value for items i and j is calculated as

D Tu,iZuj

i

Optionally, this calculation involves a shrink value [14] to
penalize items with too few observed interactions:

D Tuilu,j

@

cos(i, j) =

im(i, j) = e lwite 3
s J) V1i/Tj + shrink ©)
Next, for each item i, the k items n(i) = {n(i)1, ..., n@()r}

with the highest similarity values are selected.

Finally, we calculate our prediction Z, ; for each item i
and rank the items to produce a toplist of the items that the
user is most likely to interact with by

Bui= Yy sim(i, j) 2. )

Jjen()

Note that, we use certain similarity values for ranking neigh-
bors and other values in the prediction formula of Eq. (4).
The similarity values in the two cases do not necessarily
have to be the same, but they are often selected so. In our
work, however, we give separate interpretations for the two
subproblems and use different similarity values.

4 Our new algorithm in the probabilistic
interpretation of nearest neighbors

In this section, we introduce our main result, a probabilistic
interpretation of the KNN method. The key ingredients are
summarized as follows:

e We interpret similarity as a conditional probability and
propose using Bayesian credible intervals to select neigh-
bors.

e We present a plausible explanation for the neighbor
ensemble prediction formula of the classic KNN method.

e We explain the presence of popularity bias in the pre-
dictions and develop a formula to mitigate its effects
by using Bayesian inference to acquire an estimate of
popularity-free personal taste. Our Bayesian approach
is reminiscent of Latent Dirichlet Allocation, however,
with a simpler distribution (binomial instead of multino-
mial) but with a more complex inference that involves an
operation between the random variables expressing item
popularity and user personal taste.

The notation used throughout this section is summarized in
Table 1.

We summarize the outline of this Section along with our
main contributions as follows:

e In Sect. 4.1, we replace the naive formulation of the
observed conditional probability of a new interaction
given a past one by a Bayesian inference using Beta pri-
ors.

e Inthe same section, we introduce Bayesian credible inter-
vals to handle the uncertainties if too few interactions are
available in the data.

e In Sect. 4.2, using mild independence assumptions, we
derive formula (11) for computing the OR of all past
interactions that indicate a given new one and show how
this formula can efficiently be computed.

e In Sect. 4.3, we also involve negative events (items not
consumed by the user) in our formulation.

e In Sect. 4.4, we enhance the main formula (11) to decou-
ple popularity from user preference. We introduce and
handle separate taste and popularity components of a
given user interaction.

e The decoupled components of the interaction are han-
dled separately in the next two subsections. In Sect. 4.5,
we introduce a variant of the estimated or maximum a
posteriori estimates to handle the taste component and
mathematically prove its properties.

e In Sect. 4.6, we complete our formula by adding the pop-
ularity component as a Bernoulli variable.

4.1 Conditional probability as similarity

In an attempt to probabilistically interpret the influence of
the nearest neighbor items j on the unknown feedback of
an item i, let us interpret each observation z,,; as a single
sample taken from a Bernoulli variable Z, ;. Our goal is
then to predict P(Z,; = 1) for each i to produce a ranking
list. Typical methods select a set n(i) of items j, for example
those with strongest similarity to 7, as an “expert committee”
to decide on i.

To select neighbors n(i) with the highest predictive
power, we want to rank them by the conditional probabil-
ity P(Z,; = 1| Z,;j = 1). A naive way to estimate this
value from the data is to calculate

P(Zus =11 Zuy = 1) ~ 2 2], s

lj

However, this formula fails to account for the uncertainty of
the estimation, i.e., the sample size ¢;. Rather, we propose
estimating this probability as the parameter of a Beta-
binomial variable with sample size f; and a number of
observed positive outcomes equal to ), z,;iz,, j. Since the
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Table 1 Summary of notations

u User

i,j Items

t; Positive feedback count on item i

Zu,i Observed interactions between users and items

Zy.i The Bernoulli variables that we assume z,, ; are sampled from

Xuyis Yu,i The user specific and global Bernoulli variable components of Z,, ;, respectively

Xu,is Yu,i Parameters of X, ; and Y, ;

n(i) Set of k selected neighbors for item i

nt (@) Set of k selected neighbors for item i for which z,, ; =1

Zyj—>Zu,j Assumed causal events where consuming j signals an independent reason for u to consume i
U1, 1] Number of users and items

q Confidence value for the credible interval in Eq. (8)

c Popularity scaling coefficient in Eq. (22)

o Weight of popularity after recombining with the popularity-free decoupled estimate in Eq. (41)

Note the difference in the relation of x, y to X, Y (parameters) versus z to Z (observation)

observable events are binary, the Beta distribution is a nat-
ural and often used choice of prior for the parameter of the
resulting binomial variables, as it has the convenient property
of being a conjugate prior, i.e., the posterior also assumes a
Beta distribution. Our estimate thus becomes

Zu Zu,ilu,j ta

P(Zu,i:1|Zu,j:1)% tj+b

) (6)

where a and b are the parameters of the Beta-prior used.
Note that, if our prior assumes a low probability, i.e., a is
significantly smaller than b, then this closely resembles the
shrink heuristic mentioned in Sect. 3.

To emphasize the importance of sample size, we can calcu-
late a Bayesian credible interval for the posterior distribution
and rank the items based on the lower interval bound. This
effectively means that we discount items by the uncertainty
present in our estimate, i.e., we calculate the lower bound
Yu.i for which

P( P(Zu,izl|Zu,j=1)<7/u,i)ZQs @)

where ¢ is a given confidence value, for example g = 0.05.
With the assumed Beta prior, the value of ¢ is given by

yu’i:B_l(q,li’j—f-a,lj—ti,j“l‘b), (8)

where #; ; = Y, zu,iZu,j and B~Y(-,a,b) denotes the
inverse of the cumulative distribution function of a Beta
distribution with parameters a and b. To compute, we use
the numerical approximation implemented by the Python
package SciPy [60] and a lookup table for avoiding multi-
ple calculations of the same value.

@ Springer

4.2 Ensemble prediction

Next, we propose a probabilistic interpretation for aggre-
gating the contribution of similar items in predicting user
taste. In the literature [14], several authors argue that there is
no theoretical foundation for the similarity measure and the
summation of Eq. (4).

Our reasoning starts with defining a not directly observ-
able event that the reason for user # consuming item 7 is an
earlier item j, or at least j is indicative of some underlying
reason, such as a certain component of the user’s personal
taste. In other words, if Z,, ; = 1, we may in this case infer
Z,.; = 1 with certain probability. We denote this abstract
event as Z, j — Z ;. In this formulation, the user will con-
sume item i if there is any similar item j € n; (i) for which
Zy, j—» Zy,; is true, i.e., if the following formula is true:

\ Zuj—Zui, ©)

jenj(i)

where n; (i) is the set of neighbors of i that appear in the
interaction history of user u.

Next, we approximate the probability that at least one
neighboring item serves as a reason for u# to consume i.
Assuming that the events Z,, ; — Z,, ; are fully independent
for j € n;f (i) and approximating

P(Zyj—>Zui) = P(Zyi=1|2y;=1), (10)

this yields

P[ \/ Zu,j—»zu,,}

jen;"(i)
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zl-]‘[l—P(zu”zu,j:l). (11)

jent (@)

Note that, by expanding the product on the right of
Eq. (11), we get a formula that can be re-written to another
form, also resulting from the inclusion-exclusion principle,
such that the summation of Eq. (4) clearly appears as the first
term:

1= [T =PZuil Zuj=1)

jeni ()

=1- 1—213(2”,,- | Zuj=1)+A
jeni (@)
= Z sim(i, j) zu,j — A. (12)

Jjen(i)

The rest of the terms A prove to be negligible in practice,
as we show in Sect. 5.4. Similar to Sect. 4.1, we treat the
conditional probability as the parameter of a Beta-binomial
variable and estimate it using the formula (6).

It is important to note that the independence assumption
is overly strong and most likely does not hold in realistic
scenarios. At the same time, the predictive performance of
the nearest neighbor methods indicates that this approxi-
mation works in practice. A consequence of this line of
thinking is that one should try to select neighbors that are not
only strong predictors but also independent of each other, as
also observed in [14]. Equation (11) and the independence
assumption will be further discussed in Sect. 4.4.

Another implicit assumption behind Eq. (11) as a predic-
tion for P(Z, ;) is that we have found and taken into account
all possible reasons for the user to consume i, which is unrea-
sonable in general. However, it makes sense to view Eq. (11)
as the probability that the interaction happened because one
of the modeled events caused it to happen. In essence, we
need to view the value defined in Eq. (11) with the caveat
that it is the probability that can be reasonably inferred based
on the evidence taken into account (i.e., the top k neighbors)
and ignoring any other event not explicitly modeled. Note
that, in Sect. 4.4, we expand the modeled events to include a
general item-dependant one. Further, this problem is allevi-
ated by the fact that it is equally true for all items that we are
trying to rank, thus the limited amount of evidence is not a
problem when we compare candidates for recommendation.

Although it may not be immediately clear, formula (11)
can be implemented with the same computational complexity
as (4). The predictions in Eq. (4) are usually calculated by
first computing an item-item neighborhood matrix A, where

ViVjen(i): Aj; =sim(i, j) (13)

and A = 0 elsewhere. The calculation of Eq. (4) then
becomes a vector-matrix multiplication between the Oand1
valued user interaction vector and the sparse matrix A. By
transforming Eq. (11) into an equivalent formula

3 zujlog(1=P(Zuj—~2Zup) |, (14)
jen(i)

1 —exp

we can calculate predictions as a matrix-vector multiplica-
tion.

4.3 Predicting from negative events

For the ensemble formula in Eq. (9), we used predictors in
the form

Zu,j_»Zu,i- (15)

By the above equation, our method for selecting the nearest
neighbors essentially means that we select events that we can
use to predict the event Z,, ; = 1. However, so far, we only
considered events in the form Z,, ; = 1. Itis also possible to
consider events in the form Z, ; = 0, meaning that we also
incorporate users not interacting with an item to predict new
interactions.

To assess the power of predictors based on negative events,
we can use a formula similar to the one used in Eq. (6), i.e.,

P(Zu,i =1 | Zu,j =O)

~ Zu Zu,i(l _Zu,j) +a
(1| —t; +b

(16)

We measure the estimated strength of negative predictors
and their effect in Sect. 5. We note in advance that using
negative predictors is not very promising, as the basic premise
of the mechanics described in Sect. 4.2 is that the predictor
event has a causal relationship with the predicted event. Such
a relationship is much harder to assume when the predictor
event is a missing interaction.

4.4 Inverse frequency scaling

Next, we infer the popularity component of taste by introduc-
ing a new unobservable event Y, ; if a user u interacts with
item i due to its popularity. We apply Bayesian inference
for modeling the relation of popularity and personal taste by
assuming that the user interacts with the item either because
of personal motivation or because of popularity.

The intuition behind the usage of TF-IDF in Eq. (1) is that
interacting with a very popular item carries less information
about the user’s taste than interacting with a less frequent
item. We model this intuition by assuming that observations
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Zu,i arise as the combination of multiple independent com-
ponents of behavior

Zu,i = Xu,i Vv Yu,is (17)

where X, ; is the Bernoulli variable of u interacting with i
because of personal motivation, Y, ; is the Bernoulli variable
of any particular user interacting with i because of its popu-
larity, and Z,, ; is the variable that we are able to observe in
the form of z,,; samples. We assume X and Y to be indepen-
dent by definition, as we view Y as common behavior and X
as deviation from common behavior. Further, we assume Y, ;
to be independent of u and denote it by ¥; (with its parame-
ter denoted by y;) in the remainder of the paper. Hence, the
probability P(Z,; = 1) given the values of x, ; and y; can
be expressed as

P(Zu,i =1| Xu,is Vi) = Xu,i + Vi — Xu,i * Vi- (18)

This ties back into the independence assumption of
Eq. (11): If the observed variables Z, ; contain a compo-
nent Y; that is independent of all other Z., j» then what we are
actually estimating in Eq. (11) is instead

P(Zyilzuj=1)~ P(Zyj—»XuiVY))
= P((Zy,j = Xu,i) V Yi). (19)

Thus, when in Eq. (11) we use the independence assumption
to calculate

PZu)=P| \/ Yiv(Z, ,-a%,»} (20)

jeny @)

we introduce significant popularity bias, as we count the Y;
component multiple times. By this argument, if we increase
the neighborhood size, we also increase popularity bias,
which we will indeed measure in Sect. 5.6. To mitigate the
effect of popularity in combination with neighborhood size,
we propose using the formula

PXu)~P| \/ zu,ﬁxu,l}

jent @)

~ =[]0 =PXui | Zuj=1) 1)

jent (i)

to get an estimate for the personal component X, ;. We dis-
cuss estimating P(X,; | Z,,; = 1) in Sect. 4.5 and the
reintroduction of ¥; into the prediction in Sect. 4.6.
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4.5 Estimating P(Xj | Zy,j=1)

Estimating P(X,; | Z,,; = 1) is possible by treating X, ;
as a Beta-binomial variable and doing inference for it based
on Eq. (18). For this, we also need the value of y;, which we
estimate as

Ccti
PY;,=1)= ﬁ

(22)
in other words, we assume it to be proportional to the over-
all frequency of the item in the data divided by the number
of users |U|, with a global scaling coefficient ¢ to be able
to adjust the strength of the assumed bias. We treat ¢ as a
hyperparameter of the method.

Statement 1 Let X follow a binomial distribution with
parameter x. Let us assume the relation of Eq. (17) between
X, Y, Z. Then, assuming a Beta(a, b) prior distribution for
X, we have

(1 = y)x + y)" x471 (1 —x)b+s—!

fol (1 = y)xo +y) x(‘)‘_1 (1 — x0)o+s—ldxy
(23)

fxlz(x) =

wherer and s are the number of positive and negative samples
observed, respectively.

Proof Since observing z,, ; carries only indirect information
about X, ;, our posterior probability will no longer be Beta.
Further, we need to calculate the posterior while observing
all of the samples at the same time, otherwise the ordering
of the samples would influence the resulting posterior. Thus,
we need to calculate

P(z | x = x0) fx (x0)
P(2)

__ PGIx=x0)/ilx0) o

Jo Pz | x = xp) felxpdxy

fxlz(xo) =

where z is the observed sample of P(Z,; | X, ;) values and

a—l b—1
_xy (I —xo0)
frw) = = p (25)

Further,
P(z|x =x0) = (1 = y)xo + y)" ((1 = x0)(1 = y))*, (26)

where r and s are the number of positive and negative samples
observed. O
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The number of positive and negative samples in our case
is given by

r=Zuitu, 27)
u

s=1j. (28)

After deriving the density function for P(X, ; | Z,;) in
Statement 1, we turn to calculating the or relation of all past
items that can potentially be the reason for user u consum-
ing item i in Eq. (21). Since this equation for the or relation
involves a product of probabilities, it is prohibitively com-
plex to compute the distribution of P (X, ;) by this equation.
Instead, we approximate each P(X,; | Z, ;) value by a
point estimate first, such as the estimated a posteriori (EAP)
or maximum a posteriori (MAP) estimate. Unlike in the case
of a Beta distribution, in our case, these two estimates do not
coincide and are nontrivial to calculate.

While an analytical formula of the EAP estimate exists for
integers a and b, it is not practical to compute. Approximate
integration can be done using various methods such as self-
normalized importance sampling.

In our case, this means approximating the infinite sum

=, Sz (i)
P lTen)

E(Xyi | Zyj) =~ Sl (Xi)
Zii aGD

where X; ~ ¢, (29)

by including only a finite number of terms. Note that, the
denominator of fy|; and optionally of ¢ can be canceled out
for the computation, thus the integral itself does not need to
be calculated.

The distribution ¢ is the so-called proposal distribution,
which can be any density function that is reasonably similar
to the one we are trying to approximate. Since effective sam-
pling methods for Beta distributed variables exist, we can
choose ¢ to be a Beta distributed with the shape parameters
agy and b, chosen such that the maximum of the of the den-
sity function coincides with that of fy|,. For this, we need
the MAP estimate of f,|;. Since in case of the beta distribu-
tion the expected value coincides with the maximum of the
density function, we need to set

Y MAP(fy).). (30)
ag + bq

The sample size parameter (i.e., a; + by) is chosen as p -
(a+ b+ r) where p € (0, 1] to make the computation more
stable.

While the formula is guaranteed to converge, in our expe-
rience, a large number of samples (in the order of 10*) are
needed for stability. Since we need to calculate the estimate k
times for each item 7, the approximate integration proved to

be too computationally expensive for our purposes. Because
of this, we resort to using the MAP estimate itself

argmax fy|; = argmax P(z [ x = xo) fx (x0), €1y

X0 X0
which is relatively straightforward to compute by the next
statement.

Statement 2 Assuming a > 2 and b + s > 2, the MAP
estimate for the distribution described in Eq. (23) can be
written as

—Ccy — ,/c% —4cic3

, where 32)

2C1
cr=@+b +rQy-1 (33)
ca=(@+ry -1+ @+b)y (34)
c3=ay (35)

and using substitutionsa’ =a — 1 andb’' =b + s — 1.

Proof We can find the maximum by taking the derivative of
the nominator and finding its root in the (0, 1) interval. Note
that, this root of the derivative is guaranteed to exist since the
function is continuous, zero at both 0 and 1 and nonzero in
between, thus it must have an extreme point in the interval
(0, 1). Calculating the derivative is straightforward:

d 1 r a/ 1 b/
o (A= )50+ )" i (1= x0)
= (1= yxo+» "% (1 —x) w(xo),  (36)

meaning roots at —l%y, 0, 1, and at the roots of the polyno-
mial

w(xg) = clxg + coxg + ¢3. 37

We can observe that c| is always negative, asa’, o', r > 0
and 0 < y < 1, making the denominator of Eq. (32) also
negative. Further, c3 is clearly always positive. This in turn
makes the expression

—cz-l—,/c% —4cic3 (38)

positive, resulting in the corresponding root being negative,
thus leaving the only possible candidate the one described in
Eq. (32). O

We can also use a very similar calculation for estimating
P(Xyu,i | Zy4,j = 0). In fact, Statements 1 and 2 still hold,
we only need to use a different definition for the positive and
negative samples » and s:

r=zui(l = zu)). (39)
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s =11 —1;. (40)

4.6 Reintroducing popularity Y;

Finally, to get a prediction for P(Z,; = 1), we have to
reintroduce the effect of selecting item i due to its popularity,
an abstract event that we denoted by Y, ;.

In our next calculations, we assume that our inference for
X might not be perfect in the sense that the prediction we
calculate by Eq. (11) might still depend on Y;. We model the
remaining effect of ¥; on the inferred X; using a Bernoulli
variable A with parameter o:

P(XyiVANY)) =xui +ay; —ox,;yi, 41

which can be transformed to the formula of our final algo-
rithm using hyperparameter o:

P(Zu,i =1)= Xu,i+ Vi — Xu,iYi

1 -y
= (ui + oy — axuiyi) - ; a;
—ay;
Vi — Yy
42
1 —ay; (42)

Optimal values for « are highly dependent on the values of
other hyperparameters: Both the number of neighbors k and
the global frequency scaling coefficient ¢ in Eq. (22) heavily
influence the amount of popularity bias in the recommenda-
tions.

4.7 Summary

To summarize the resulting method, we take the following
steps when calculating a prediction for P(Z, ;).

1. We calculate the credible interval y, ; with the selected
value « for each possible neighbor candidate using Equa-
tion (8).

2. We select the k top ranked neighbors as predictors.

3. We calculate the MAP estimate for P(Z, ; — X, ;) for
each selected neighbor using Statement 2.

4. By the MAP estimate, we return to Sect. 4.4 to calculate
P(Xy,i) using the ensemble formula (21).

5. We obtain our final prediction score P(Z, ;) by rein-
troducing the global popularity component using Equa-
tion (42).

Throughout this derivation, we rely on the following
hyperparameters: the percentile g in step (1); the (possibly
distinct) parameters for the Beta priors in steps (1) and (3);
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the global scaling parameter ¢ in step (3); and « in step (5).
We discuss hyperparameter selection in Sect. 5.9.

5 Experiments
5.1 Datasets and evaluation

We conduct our experiments on five explicit ratings datasets,
the first three of which are also the ones used in [61], by the
same transformation into an implicit recommendation task
as in our experiment.

The datasets used are as follows:

e Amazon Instant Video [62]: ratings from Amazon.com.
The records have been transformed by transforming a
rating into an interaction regardless of its value. Users
with fewer than 5 ratings were removed. The training-test
and then the training-validation sets are split randomly on
a per-user basis with given percentages (20% and 20%).

e MovieLens 1M [63]: a widely used dataset of movie rat-
ings. Implicit transformation was done the same way as
above. The training-test and then the training-validation
sets are split randomly on a per-user basis with given
percentages (20% and 10%).

e HetRec [64]: a dataset released by the Second Inter-
national Workshop on Information Heterogeneity and
Fusion in Recommender Systems. Implicit transforma-
tion was done the same way as above. The training-test
and then the training-validation sets are split randomly on
a per-user basis with given percentages (20% and 20%).

e Epinions [65]: This dataset is collected from Epin-
ions.com website, which provides an online service for
users to share product feedback. Implicit transformation
was done the same way as above. The validation and test
sets were each created by leaving one interaction out of
the training set randomly for each user.

e Amazon Books [66]: book ratings from Amazon.com
spanning May 1996-July 2014. To create an implicit
dataset, we filtered for ratings of 5 and extracted the 10-
core [67] of the remaining graph, resulting in a dataset
that is still one of the most sparse of the ones used.
The training-test-validation sets are created by randomly
assigning every record with the given probabilities to
each set (0.9, 0.05 and 0.05).

The datasets used have varying sizes and densities, see
Table 2 for specifics. For measuring predictive performance,
results are reported in terms of Normalized Discounted
Cumulative Gain with a cutoff size of 50 (N@50 or
NDCG@50) and recall again with a cutoft size of 50 (R@50
or Recall@50). We evaluate both metrics without sampling
on item ranks that are calculated by considering the full item
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Table 2 Statistics of the

experimental data Users Items Interact. Density Valid./test size
A. Books 56257 50154 1418076 0.00050 0.05%/0.05%
A. Video 3113 5860 22184 0.00122 0.17%/0.19%
Hetrec 2044 5351 71680 0.00336 0.16%/0.20%
ML IM 6013 3231 225473 0.00962 0.08%/0.20%
Epinions 40163 139738 664823 0.00012 0.05%/0.06%

set. We note that for this reason, the issues related to sam-
pled ranking metrics described in [68] do not apply in our
experiments.

These two metrics give a good indication of the perfor-
mance of the methods, with NDCG focusing more on the top
of the recommended list of items, and recall placing uniform
weight on all positions.

5.2 Baselines

We use the baseline implementations and automatic hyperpa-
rameter tuning framework of [12,69] for measuring the per-
formance of baseline algorithms. We optimize for NDCG @50
performance on the validation set in every case. Note that,
the main purpose of including the best algorithms for a wide
selection of model types is important to put our contribution
in context, our primary objective is to improve upon the Item
KNN algorithm as the key competitor. We also note that we
only consider algorithms that use no item sequence informa-
tion. For such tasks, our new algorithm can be evaluated in
an ensemble combined with recurrent neural networks, as for
example in [37] in future work.

We use the splitting procedure implemented by [12,69]
for the HetRec, Amazon Instant Video, Epinions and Movie-
Lens IM datasets. The procedure is non-deterministic, thus
the performance of different algorithms has some variance
depending on the exact split generated. For this reason, we
re-run the baselines on the same exact split that our mod-
els are also tested on. While not an exact match, the results
we get are very much in line with the numbers reported in
[12,69].

We also selected one dataset, the Amazon Books, which
is not part of the evaluation framework of [12,69]. We split
the interactions in this dataset randomly into training, val-
idation, and test sets with probabilities 90%, 5%, and 5%,
respectively.

We briefly summarize the baseline algorithms that we
compare our methods against.

e Item KNN: The method described in Sect. 3 uses the
presence of other items in the user interaction history to
predict the likelihood of interacting with an item. Multi-
ple different similarity measures can be used for selecting

similar items [15], as well as the shrink and the TF-IDF
or BM25 weighting heuristics [23].

e P3¢ and R?B: Random-walk based methods, proposed
in [70,71]. While technically not nearest neighbor algo-
rithms, both of them use closely related ideas.

e iALS: Matrix factorization for implicit feedback datasets
[72].

e SLIMElasticNet: Sparse Linear Models is a well-
performing regression-based method for fop-n recom-
mendation [73]. Similar to [12,69], we use the more
efficient version introduced in [74].

e EASER: A shallow autoencoder-like model, with a
closed form solution for the training objective [75].

e MultVAE: A variational autoencoder architecture for
collaborative filtering recommendation, introduced in
[57]. We chose this one as it performed best against base-
lines when reproduced by [12,69].

An important recent class of recommender algorithms is
based on recurrent neural networks with ideas stemming
from natural language processing. Such algorithms include
GRU4Rec [30], Transformers4Rec [34], and more [31,35].
However, these methods deal with sequential or session-
based recommendation, as opposed to the classic collabo-
rative filtering model considered in this paper. Since neither
our problem setting and datasets nor our algorithms involve
sequential context for the items, they cannot be directly com-
pared to recurrent neural network-based methods. We also
note that a recent empirical evaluation study [13] finds that
the nearest neighbor and other simple approaches remain
competitive even for session recommendations, however,
such a comparison is beyond the scope of the present paper.

5.3 Inverse frequency scaling

The traditionally used TF-IDF formula and the probabilistic
inverse frequency scaling described in Sect. 4.4 fulfill similar
roles in the algorithm. They are applied at different steps in
the process, however, TF-IDF is a pre-scaling for the data,
while the probabilistic version is integrated into the equation
that calculates the values for the ensemble formula. Also,
different is the fact that TF-IDF scales both based on the
predicted and the predicting item (i.e., item and its neighbor),
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Fig. 1 The relative weight of different frequency scaling schemes, at
different rates, all of which discount the popular items

while the probabilistic version only considers the frequency
of the predicted item.

Still, we can compare them somewhat directly, because
they both scale the weights used for calculating the score of
an item, based on its frequency in the dataset. Further com-
plicating the issue is that TF-IDF is used before the similarity
function. For example with the cosine similarity, this effec-
tively results in an additional square root in the weighting
formula, when considered as a function of the frequency of
item i:

3 th-idf () tE-idfCx )

S A () /3 A (x )
_ tf-idf; Zk xiktf'idf(xjk) (43)
VAR /Y, xiny/Y G

Note that, as per Sect. 3, variables x; ; are 0 — 1 valued, thus
the TF-IDF scaling can indeed be treated as a multiplicative
coefficient.

Based on the discussion on the interaction of TF-IDF
and the similarity function, we plot both the regular TF-IDF
weighting and its square root against the probabilistic version
on Fig. 1 for the Hetrec training set. Weights are normalized
to f(0) = 1 to show their relative magnitudes. Popularity
is given as a percentage of the most frequent item. Values
are also dependent on sample size and number of positive
samples, which, for this example, are chosen as 100 and 20,
respectively.

The main contribution of Sect. 4.5 is illustrated in Fig. 1.
We can observe that TF-IDF starts heavily discounting the
weight of items sooner, while the probabilistic version starts
off more gradually. On the other hand, the probabilistic ver-
sion ends up discounting the weights more heavily at higher
popularity values. The slope is controlled by hyperparame-
ter ¢ defined in Eq. (22). We observe that the slope of the
theoretically justified methods discount for popularity better
than heuristic mathods based on TF-IDF.
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Table3 Performance difference using the ensemble formula of Eq. (11)
(“or”’) compared to the classic formula of Eq. (4) (“sum”) on the vali-
dation sets

NDCG @50 Recall@50

“or” “sum”  ratio “or” “sum”  ratio
Epinions 0.040 0.040 1.004 0.109 0.109 1.002
Amazon Books 0.159 0.156  1.019 0.333 0.329 1.010
Amazon Video 0.191 0.190 1.003 0.391 0.391 1.000
MovieLens IM  0.270 0.271 0997 0.439 0.440 0.997
Hetrec 0.220 0.219 1.005 0.354 0356 0.996

5.4 The ensemble formula

The “or” ensemble formula defined in Eqs. (11) and (21)
calculates a prediction close to that of the “sum” ensemble
formula (4). However, because we evaluate based on rank-
ing lists, very small differences in score could potentially
lead to significant changes in the performance as measured
by our metrics. To evaluate the difference between the two
possible ensemble formulas, we run experiments with the
same settings for both formulas. A bit of caution is needed in
the comparison since Eq. (4) carries no guarantees regarding
whether the resulting values can be interpreted as probabil-
ities. For this reason, applying the methods introduced in
Sect. 4.4 and 4.5 would be questionable. We thus run the
experiments using Eqgs. (4) and (11), ignoring Eq. (21) and
do not handle popularity bias in this comparison experiment.

The comparison of the two ensemble formulas is presented
in Table 3. We can observe that the variation in the scores is
very small, to the point of being negligible. The measure-
ments confirm our interpretation of the prediction formula as
Eq. (11). Without popularity bias mitigation, our new formula
performs almost identical to the classical KNN prediction
formula that uses the “sum” formula of Eq. (4). This sup-
ports the plausibility of our explanations.

5.5 Negative predictors

In Sect. 4.3, we described how we can incorporate an interac-
tion not happening as a predictor into the ensemble formula.
When ranking neighbors for each item, we indeed observe
that we can find many such predictors with seemingly high
enough predictive power to make it to the top-k predictors.
InFig. 2, we plot the average percent of negative predictors
ranked in the top-k for each popularity percentile of items
when measured on the Hetrec dataset. We can observe that
generally, lower popularity items tend to have more negative
neighbors, while the most popular items have none. Note
that, due to the power-law distribution of item popularity, the
change of popularity is not linear in the percentile. This could
explain the sharp drop at around the 50th percentile.
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Fig. 2 Average percent of negative neighbors in the top-k for each
popularity percentile in the Hetrec dataset. Higher percentiles contain
more popular items

Although many negative predictors were estimated to be
good predictors, including them in the ensemble formula
results in a predictive performance loss of at least 50% of
the model according to our experiments. This leads us to
believe that despite the high estimated predictive power of
these events, they are spurious most of the time.

When we extend the set of possible predictor events to
include the ones based on not interacting with items, the
number of potential events increases by a very large num-
ber. This is due to the fact that most users interact with only
a small percentage of items. With the number of possible
events increasing, the likeliness of including spurious predic-
tors increases as well. This effect is particularly problematic
with less popular items, where the small sample sizes make it
harder to find successful predictors and result in higher vari-
ance in the measured predictive power. As a result, we end
up excluding such events from our model in further experi-
ments.

Regarding the average relative popularity of recom-
mended items, we can observe a large decrease. When
measuring item popularity as the number of interacting users,
normalized by the maximum of such numbers, the aver-
age popularity of recommendations decreases from 0.4263
to 0.2073 when measured at a cutoff of 50 on the HetRec
dataset. Such a significant change in itself can be expected
to worsen the measured accuracy of the model, as the distri-
bution of the recommendations should approximately reflect
the data distribution to achieve best offline evaluation results.
Nevertheless, some experiments [13,76] suggest that offline
evaluation does not necessarily reflect user satisfaction in
such cases.

5.6 Neighborhood size and popularity bias

As we increase the number of neighbors k, we ground the
recommendation on more items that each carry a popular-
ity bias itself. The reasoning behind Eq. (20) implies that
popularity bias increases with k. To verify, we measure the
average popularity of the recommended items while chang-

c=0
c=0.5
c=0.75

tHite

average popularity

20 40 60 80 100 120 140 160 180
k

Fig.3 Change of average popularity of recommended item with differ-
ent values of k and ¢ on the Hetrec dataset. We can observe that using a
larger number of neighbors indeed leads to higher average popularity,
as predicted by Eq. (20). Our inference-based method, however, is able
to counteract this effect to some degree, as higher values for parameter
c result in less popularity increase

ing k. We also run the experiment with different values of c,
the parameter that controls the strength of the popularity bias
in Eq. (22). We show the results in Fig. 3. Average popularity
on the y axis is measured by a linear scale, with the value 1
for the most and 0 for the least popular item in the data.

With ¢ = 0, our algorithm behaves similar to a classic
one without any bias reduction. We can observe the average
popularity rising with k, which reinforces the correctness of
our assumption that the popularity component is considered
multiple times in a classical KNN method.

For larger values of ¢, we quantify our mitigation attempts.
Larger values of ¢ clearly reduce the average popularity of
the recommendation list. By conflating Fig. 3 with Fig. 5, we
can also note that the optimal value of ¢ &~ 1.25 seems to
cause the average popularity of the recommended items to
flatten out to a constant after an initial rise with &.

5.7 Predictive performance

Overall predictive performance is summarized in Table 4
for our algorithm and the baseline KNN methods that we
improve upon. We also separately report results for more
advanced algorithms. Scores equal to or higher than our
method are highlighted in bold. Unfortunately, we are not
able to report the performance of the EASER algorithm on
the Epinions dataset, as the computation would not complete
in a reasonable amount of time, even with considerable com-
puting resources, due to the relatively large number of items
in this dataset.

We observe that our method improves predictive perfor-
mance over the KNN baselines in every case when measured
by the optimization target NDCG @50, and also in almost all
cases when measured by Recall@50. We can observe very
similar behavior when measuring on the smaller cutoff of 20
in Table 5.
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Table 4 Predictive performance results on the test set with a cutoff of 50

Amazon Books Amazon Video Epinions Hetrec MovieLens 1M

N@50 R@50 N@50 R@50 N@50 R@50 N@50 R@50 N@50 R@50
Item KNN cosine 0.1785 0.3565 0.1822 0.3845 0.0394 0.1044 0.2255 0.3701 0.2724 0.4464
Item KNN dice 0.1785 0.3528 0.1912 0.3818 0.0389 0.1046 0.2128 0.3600 0.2569 0.4209
Item KNN jaccard 0.1791 0.3539 0.1906 0.3819 0.0388 0.1045 0.2133 0.3499 0.2567 0.4189
Item KNN asymmetric 0.1809 0.3476 0.1966 0.3987 0.0427 0.1136 0.2245 0.3749 0.2705 0.4436
Item KNN tversky 0.1820 0.3526 0.1915 0.3808 0.0397 0.1068 0.2156 0.3495 0.2611 0.4253
Our variant 0.1842 0.3620 0.2022 0.3813 0.0451 0.1231 0.2368 0.3886 0.2812 0.4564
TIALS 0.1287 0.2944 0.1857 0.3766 0.0422 0.1145 0.2360 0.3990 0.2672 0.4444
P3« 0.1812 0.3670 0.1929 0.3979 0.0410 0.1105 0.2235 0.3863 0.2747 0.4564
RP38 0.1864 0.3605 0.1835 0.3887 0.0398 0.1051 0.2255 0.3878 0.2828 0.4658
EASER 0.1515 0.3192 0.1815 0.3785 Nan Nan 0.2115 0.3511 0.2787 0.4517
SLIMElasticNet 0.1935 0.3812 0.2008 0.3812 0.0444 0.1160 0.2399 0.3886 0.2927 0.4654
MultVAE 0.1097 0.2474 0.1512 0.3468 0.0403 0.1159 0.2110 0.3773 0.2806 0.4724
Table 5 Predictive performance results on the test set with a cutoff of 20

Amazon Books Amazon Video Epinions Hetrec MovieLens 1M

N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20
Item KNN cosine 0.1571 0.2680 0.1617 0.2879 0.0323 0.0688 0.1858 0.2481 0.2187 0.2929
Item KNN dice 0.1586 0.2714 0.1738 0.3011 0.0318 0.0690 0.1725 0.2365 0.2051 0.2724
Item KNN jaccard 0.1591 0.2721 0.1732 0.3006 0.0318 0.0690 0.1763 0.2379 0.2056 0.2733
Item KNN asymmetric 0.1632 0.2765 0.1782 0.3130 0.0351 0.0753 0.1827 0.2478 0.2168 0.2888
Item KNN tversky 0.1635 0.2780 0.1741 0.3001 0.0325 0.0702 0.1777 0.2373 0.2082 0.2759
Our variant 0.1635 0.2772 0.1843 0.2972 0.0368 0.0812 0.1951 0.2610 0.2260 0.3012
IALS 0.1054 0.1954 0.1680 0.2932 0.0342 0.0743 0.1905 0.2620 0.2112 0.2847
P3« 0.1586 0.2731 0.1744 0.3112 0.0336 0.0731 0.1792 0.2511 0.2177 0.2940
RP38 0.1672 0.2823 0.1637 0.2956 0.0327 0.0689 0.1803 0.2495 0.2247 0.3006
EASER 0.1300 0.2289 0.1625 0.2896 Nan Nan 0.1719 0.2291 0.2228 0.2918
SLIMElasticNet 0.1713 0.2899 0.1845 0.3051 0.0369 0.0782 0.1983 0.2639 0.2374 0.3091
MultVAE 0.0909 0.1672 0.1306 0.2498 0.0318 0.0729 0.1685 0.2449 0.2230 0.3087

The KNN baseline methods fluctuate with no clear win-
ner. Also note that, the baseline methods themselves include
very similar ingredients as in our proposed method, however,
based only on heuristic grounds and implemented to varying
degrees. Using a number of heuristic elements in the baseline
methods have an effect of performance variance from dataset
to dataset, while our algorithm performs well in all cases.

Our approach also manages to outperform a number of
more advanced methods, including the neural network-based
recommender MultVAE that performed best in the compar-
ison in [12,69]. The only algorithm that performs better in
multiple data sets is SLIMElasticNet from 2013 [74]. Note
that, for our algorithm, hyperparameter selection was per-
formed for the cutoff 50, in which case even SLIMElasticNet
only outperforms ours in half of the cases as seen in Table 5.
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An interesting case study is the Amazon Video dataset,
where our variant consistently wins in the optimization target
NDCG and loses in Recall against other KNN algorithms.
From this observation, we might conclude that our variant is
quite effective at optimizing for NDCG in a trad-off against
Recall on this relatively small dataset, possibly due to the
high number of hyperparameters involved. However, we do
not observe the same effect in other, larger datasets, such as
Amazon Books or Epinions.

5.8 Recommendation diversity

Recommendation diversity measures how diverse the rec-
ommendation lists are for different users. Diversity can be
measured in various ways, such as using the Gini diversity
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Fig.4 Change of recall when compared with the Gini diversity of the
recommendation lists of different parameter configurations. We also
plot the best-fit linear regressor as the red dashed line. We can observe
that these two metrics tend to be inversely proportional to each other

measure [77] or the Shannon entropy of the distribution of
recommended items over all users.

Several authors [78,79] observed a natural trade-off
between diversity and recommendation accuracy. In Fig. 4,
we plot the trade-off between recall and Gini diversity by
using the data points of Fig. 3. We can clearly observe an
inversely proportional relation between the recall and amount
of diversity in the ranking lists.

In Table 6, we present the Gini diversity and the Shannon
entropy of the recommendation lists of our method and the
baselines, at a 50 item cutoff. Our KNN variant achieves a
balanced diversity score. It is notable, however, that different
scores have very high variance across the evaluated methods.
Conflating with Table 4, the accuracy-diversity trade-off is
arguably present across methods as well. Still, some methods
clearly perform better in both regards then the average, such
as the RP3 8, which often achieves very high results in both
metrics.

While the notion of diversity is related to popularity, our
goal was not to improve diversity, but to better model user
behavior through explicitly incorporating popularity bias in
our model. Accordingly, all of our hyperparameter config-
urations are optimized for recall, as described in Sect. 5.2.
In this paper, we attempt no optimization for a combined
measure of accuracy and diversity [78], which could yield
different results across methods. To explore whether the pre-
sented model can be used for an improved recall-diversity
trade-off remains future research.

5.9 Hyperparameters

Next, we measure performance as the function of the various
hyperparameters introduced throughout Sect. 4. All newly
introduced hyperparameters have the favorable property that
acertain minimum or maximum value turns the selected com-
ponent of the algorithm off: the credible interval lower bound
returns the probability itself at g = 0.5; the prior parameters
a and b have very little effect when they are small; value
0 for the global popularity scaling parameter ¢ denotes no
popularity bias, i.e., ¥; = 0 when ¢ = 0; and finally, o of
Eq. (41) has no effect when « = 1. With this setup, when-
ever an optimal parameter value differs from the ones listed
above, we can conclude that the corresponding step improves
prediction accuracy.

Optimal values vary with the data; we present optimal
values in Table 7. For ¢, optimal values range from 10~ to
0.1. With the prior parameters, we fixed a = 2.01 to simplify
the optimization process, which still allows us to change the
expectation of the prior, i.e., aaﬁ, by changing the value of b.
Note that, we use two separate Beta priors in two steps of
our algorithm, in Eq. (8) and in Eq. (32). To distinguish, in

Table 6 Recommended item diversity on the test set for the evaluated methods

Amazon Books Amazon Video Epinions Hetrec MovieLens IM

Gini Entropy Gini Entropy Gini Entropy Gini Entropy Gini Entropy
Item KNN cosine 0.4346 14.6999 0.1233 9.3946 0.1209 12.4611 0.0139 7.3247 0.0538 8.0575
Item KNN dice 0.5078 14.7845 0.1785 9.9468 0.0479 10.9559 0.0165 7.4539 0.0498 7.8765
Item KNN jaccard 0.5000 14.7828 0.1776 9.9330 0.0478 10.9496 0.0142 7.2364 0.0498 7.8494
Item KNN asymmetric 0.4686 14.5611 0.1524 9.7078 0.0566 11.5312 0.0158 7.4184 0.0614 8.0926
Item KNN tversky 0.4761 14.6544 0.1789 9.9533 0.0530 11.1388 0.0160 7.3258 0.0530 8.1142
Our variant 0.4431 14.6924 0.1451 9.3348 0.0382 10.3138 0.0139 7.5387 0.0616 8.3081
IALS 0.1472 13.1727 0.1299 9.9664 0.0118 10.8564 0.0208 8.1445 0.0538 8.1307
P3«a 0.3073 14.1947 0.1491 9.6472 0.0585 11.6387 0.0147 7.5004 0.0507 8.0022
RP3p 0.4658 14.8078 0.1345 9.4838 0.1446 12.0390 0.0235 7.8296 0.0668 8.2576
EASER 0.1577 13.0396 0.1686 9.7731 Nan Nan 0.0086 6.7291 0.0529 8.1099
SLIMElasticNet 0.2938 14.0509 0.1893 10.2678 0.0344 11.3497 0.0178 7.8192 0.0638 8.3519
MultVAE 0.3637 14.3242 0.2189 10.3845 0.0222 10.7044 0.0250 8.2452 0.0941 8.8399

Diversity is measure by Gini diversity and Shannon entropy, with the recommendation list cutoff of 50
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Table 7 Optimal hyperparameters for the datasets

k by by c o q
Amazon Books 10 11 46 2.63 0.00 0.00100
Amazon Video 100 11 21 2.68 0.00 0.00886
Epinions 757 14 242 4.81 0.17 0.09501
Hetrec 85 45 4 1.20 0.21 0.00016
MovieLens IM 100 7 11 0.95 0.11 0.00070
0.36 1
0.35
= 0.34 4
g
0.33 1
0.32
0.31

[o

Fig.5 Change of recall with the hyperparameter c, the strength of the
assumed popularity bias to be removed in Eq. (22), over the Hetrec
validation set

0.360 -

0.355 A

recall

0.350

0.345 -

Fig.6 Change of recall with the hyperparameter «, the weight of pop-
ularity after recombining with the popularity-free decoupled estimate,
in Eq. (41) on the Hetrec validation set

Table 7, we denote the corresponding parameters b as by and
b>. Optimal values for b; were around 10 in most cases, but
ranged from 4 to 250 for b,. Optimal values for ¢ ranged
from around 1 to 5, while optimal values for « tend to be
near O in all cases.

To illustrate the behavior of the method with different val-
ues of ¢ and «, we plot the performance in recall with different
values of these parameters in Figs. 5 and 6. We observe that
the best value for c is slightly above 1, which means that in
Eq. (22), we give an even higher probability estimate to the
effect of popularity on the user interacting with the given item
than what we would infer from the fraction of users consum-
ing the item. Furthermore, best performance is achieved with
a low value of v, which corresponds to little weight to popu-
larity after reintroducing it in Eq. (41). Both of these findings
confirm the importance of decoupling popularity from taste

@ Springer

and the power of the two main constants in Egs. (22) and (41)
that control the strength of the effect.

6 Conclusions

In this work, we addressed the task of implicit feedback rec-
ommendation using item-based nearest neighbor methods.
We reviewed the classic method and developed a probabilis-
tic explanation of its inner mechanics. We proposed a new
interpretation of the prediction process by considering simi-
larity as a conditional probability and proposed incorporating
the uncertainty of the observed similarities by using Bayesian
credible intervals. Further, we presented an interpretation of
the classic ensemble prediction formula that considers the
prediction a logical operator over multiple independent pre-
dictors. Finally, we developed a novel way of modeling user
behavior as a combination of popularity and personal taste
and used Bayesian inference to extract the personal taste
component. We tested our claims extensively over multiple
datasets to assess their validity.

The overall goal of this paper was to explore interpre-
tations of the classic method in a probabilistic context,
possibly influencing or inspiring future methods, and to
gain an increased understanding of and insight into the
mechanics behind these methods. As a result, our proposed
solutions also translated into an improvement in recommen-
dation accuracy. In future work, our new algorithm can be
evaluated in an ensemble combined with sequential recom-
menders based on for example recurrent neural networks to
complement them with modeling the longer term user taste
for recommendation.
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