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Abstract
The NP-hard problem Material Consumption Scheduling and related problems have been thoroughly studied since
the 1980’s. Roughly speaking, the problem deals with scheduling jobs that consume non-renewable resources—each job has
individual resource demands. The goal is tominimize themakespan.We focus on the single-machine casewithout preemption:
from time to time, the resources of the machine are (partially) replenished, thus allowing for meeting a necessary precondition
for processing further jobs. We initiate a systematic exploration of the parameterized computational complexity landscape of
Material Consumption Scheduling, providing parameterized tractability as well as intractability results. Doing so, we
mainly investigate how parameters related to the resource supplies influence the problem’s computational complexity. This
leads to a deepened understanding of this fundamental scheduling problem.

Keywords Non-renewable resources · Makespan minimization · Parameterized computational complexity · Fine-grained
complexity · Exact algorithms
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1 Introduction

Consider the following motivating example. Every day, an
agent works for a number of clients, all of equal impor-
tance. The clients, one-to-one corresponding to jobs, each
time request a service having individual processing time and
individual consumption of a non-renewable resource; exam-
ples for such resources include raw material, energy, and
money. The goal is to finish all jobs as early as possible,
known as minimizing the makespan in the scheduling litera-
ture. Unfortunately, the agent only has a limited initial stock
of the resource which is to be supplied (with potentially dif-
ferent amounts) at known points in time during the day. Since
the job characteristics (resource consumption, job length) and
the resource delivery characteristics (delivery amount, point
in time) are known in advance, the objective thus is to find
a feasible job schedule minimizing the makespan. Notably,
jobs cannot be preempted and only one at a time can be exe-
cuted. Figure 1 provides a concrete numerical example with
six jobs having varying job lengths and resource require-
ments.

The described problem setting is known as minimiz-
ing the makespan on a single machine with non-renewable
resources. More specifically, we study the single-machine
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pj 1 1 1 2 2 3

aj 3 1 2 3 2 6

u� 0 3 5 9

b̃� 3 6 2 6

u1 u2 u3 u4 Cmax = 12

J3 J2 J1 J5 J4 J6

Fig. 1 An example (left) with one resource type and a solution (right)
with makespan 12. The processing times and the resource requirements
are in the first table, while the supply dates and the supplied quantities

are in the second. Note that J3 and J2 consume all of the resources
supplied at u1 = 0, thus we have to wait for the next supply to schedule
further jobs

variant of theNP-hardMaterial Consumption Schedul-
ing. Formally, we study the following problem.
Material consumption scheduling

Input: AsetR of resources, a setJ = {J1, . . . , Jn} of jobs,
each job J j with a processing time p j ∈ Z+ and a
resource requirement ai j ∈ Z+ from resource i ∈
R, a set {u1, u2, . . . , uq} of points in time with 0 =
u1 < u2 < · · · < uq , and a set {b̃i,� | i ∈ R ∧
� ∈ [q]} of resource quantities. At each point ui in
time, b̃i,� quantities of resource i ∈ R are supplied.

Task: Find a schedule σ with minimum makespan for a
single machine without preemption which is feasi-
ble, that is, (i) the jobs do not overlap in time, and
(ii) at any point in time t the total supply from each
resource is at least the total request of the jobs start-
ing until t .

The objective is tominimize themakespan, that is, the time
at which the last job is completed. Formally, the makespan
is defined by Cmax:=maxJ j∈J CJj , where CJj is the com-
pletion time of job J j . Notably, in our example in Fig. 1 we
considered the special but perhaps most prominent case of
just one type of resource. In this case, we simply drop the
indices corresponding to the single resource. In the remainder
of the paper, wemake the following simplifying assumptions
guaranteeing sanity of the instances and filtering out trivial
cases.

Assumption 1 Without loss of generality, we assume that

1. for each resource i ∈ R, there are enough resources sup-
plied to process all jobs:

∑q
�=1 b̃i,� ≥ ∑

J j∈J ai, j ;
2. each job has at least one non-zero resource requirement:

∀J j∈J
∑

i∈R ai, j > 0; and
3. at least one resource unit is supplied at time 0:

∑
i∈R b̃i,0 > 0.

Note that each of these assumptions can be verified in lin-
ear time. It is valid to make these assumptions because of the
following. If the first assumption does not hold, then there
is no feasible schedule. If the second assumption does not

hold, then we can schedule all jobs without resource require-
ments in the beginning. Thus, we can remove these jobs from
the instance and adjust the supply times of new resources
accordingly. If the third assumption does not hold (but the
second does), thenwe cannot schedule any job before the first
resource supply. Thus, we can adjust the supply time of each
resource requirement such that there is a resource supply at
time 0 and get an equivalent instance.

Material Consumption Scheduling is known to be
NP-hard even in the case of just one machine, one resource
type, two supply dates (q = 2), and if the processing time
of each job is the same as its resource requirement, that is,
p j = a j for each J j ∈ J (Carlier, 1984). While many vari-
ants of the problemMaterial Consumption Scheduling
have been studied in the literature in terms of heuristics,
polynomial-time approximation algorithms, or the detection
of polynomial-time solvable special cases, we are not aware
of any previous systematic studies concerning a multivariate
complexity analysis. Thus, seemingly for the first time, we
study several natural problem-specific parameters and inves-
tigate how they influence the computational complexity of
the problem. Doing so, we prove both parameterized hard-
ness and fixed-parameter tractability results for this NP-hard
problem.
Related Work Over the years, performing multivariate,
parameterized complexity studies for fundamental schedul-
ing problems became more and more popular (Bentert et
al., 2019; van Bevern et al., 2015; 2017; Bodlaender & Fel-
lows, 1995; Bodlaender & van der Wegen, 2020; Ganian et
al., 2020; Fellows & McCartin, 2003; Heeger et al., 2021;
Hermelin et al., 2019a; Hermelin et al., 2019b; Hermelin et
al., 2020; Hermelin et al., 2019c; Knop & Kouteck’y, 2018;
Mnich & van Bevern, 2018; Mnich &Wiese, 2015). We con-
tribute to this field by a seemingly first-time exploration of
Material Consumption Scheduling, focusing on one
machine and the minimization of the makespan.

Material Consumption Scheduling was introduced
in the 1980’s (Carlier, 1984; Slowinski, 1984). Indeed, even
a bit earlier a problem where jobs required non-renewable
resources, butwithout anymachine environment,was studied
(Carlier & Rinnooy Kan, 1982). There are several real-world
applications, for instance, in the continuous casting stage of
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steel production (Herr &Goel, 2016), in managing deliveries
by large-scale distributors (Belkaid et al., 2012), or in shoe
production (Carrera et al., 2010).

Carlier (1984) proved several complexity results for
different variants in the single-machine case, while Slowin-
ski (1984) studied the parallel machine variant of the
problem with preemptive jobs. Previous theoretical results
mainly concentrate on the computational complexity and
polynomial-time approximability of different variants; in
this literature review, we mainly focus on the most impor-
tant results for the single-machine case with minimizing
makespan as the objective. We remark that there are sev-
eral recent results for variants with other objective functions
(Bérczi et al., 2020; Györgyi & Kis, 2019, 2022), with a
more complex machine environment (Györgyi &Kis, 2017),
and with slightly different resource constraints (Davari et al.,
2020).

Toker et al. (1991) proved that the variant where the
jobs require one non-renewable resource reduces to the 2-
Machine Flow Shop problem provided that the single
non-renewable resource has a unit supply in every time
period. Later, Xie (1997) generalized this result to mul-
tiple resources. Grigoriev et al. (2005) showed that the
variant with unit processing times and two resources is
NP-hard. They also provided several polynomial-time 2-
approximation algorithms for the general problem. There is
also a polynomial-time approximation scheme (PTAS) for
the variant with one resource and a constant number of sup-
ply dates and a fully polynomial-time approximation scheme
(FPTAS) for the case with q = 2 supply dates and one
non-renewable resource (Györgyi&Kis, 2014). Györgyi and
Kis (2015b) presented approximation-preserving reductions
between problem variants with q = 2 and variants of the
Multidimensional Knapsack Problem. These reduc-
tions have several consequences; for example, it was shown
that the problem is NP-hard if there are two resources, two
supply dates, and each job has a unit processing time; or that
there is no FPTAS for the problem with two non-renewable
resources and q = 2 supply dates, unless P = NP. Finally,
there are three further results (Györgyi & Kis, 2015a): (i) a
PTAS for the variant where the number of resources and the
number of supply dates are constants; (ii) a PTAS for the
variant with only one resource and an arbitrary number of
supply dates if the resource requirements are proportional to
job processing times; and (iii) an APX-hardness when the
number of resources is part of the input.
Preliminaries and Notation. We employ the standard three-
field α|β|γ -notation (Graham et al., 1979), where α denotes
the machine environment, β the further constraints like addi-
tional resources, and γ the objective function. We always
consider a single machine, that is, there is a 1 in the α field.
The non-renewable resources are described by nr in the
β field and nr = r means that there are r different resource

types. In our work, the only considered objective is the
makespanCmax. TheMaterial Consumption Schedul-
ing variant with a single machine, single resource type,
and with the makespan as the objective is then expressed
as 1| nr = 1|Cmax. Sometimes, we also consider the so-called
non-idling scheduling (introduced byChrétienne 2008), indi-
cated byNI in theα field, inwhich amachine canonly process
all jobs continuously, without intermediate idling. As we
make the simplifying assumption that themachine has to start
processing jobs at time 0, we drop the optimization goalCmax

whenever considering non-idling scheduling. When there
is just one resource (nr = 1), then we write a j instead
of a1, j and b̃ j instead of b̃1, j , etc. We also write p j = 1
or p j = ca j whenever, respectively, jobs have solely unit
processing times or the resource requirements are propor-
tional to the job processing times. Finally, we use “unary”
to indicate that all numbers in an instance are encoded in
unary. Thus, for example, 1,NI |p j = 1, unary |− denotes a
single non-idlingmachine, unit-processing-time jobs and the
unary encoding of all numbers. We summarize the notation
of the parameters that we consider in the following table.
For simplicity, we introduce the shorthands amax, b̃max,

n Number of jobs
q Number of supply dates
j Job index
� Index of a supply
p j Processing time of job j
ai, j Resource requirement of job j from resource i
u� The �th supply date
b̃i,� Quantity supplied from resource i at u�

bi,� Total resource supply from resource i
over the first � supplies, that is,

∑�
k=1 b̃i,k

and pmax for maxJ j∈J ,i∈R ai j , max�∈{1,...,q},i∈R b̃i,�, and
maxJ j∈J p j , respectively. Finally, we use [n] to denote the
set {1, 2, . . . , n}.
Primer on Multivariate Complexity. To analyze the parame-
terized complexity (Cygan et al., 2015; Downey & Fellows,
2013; Flum & Grohe, 2006; Niedermeier, 2006) of Mate-
rial Consumption Scheduling, we define some part of
the input as the parameter (e.g., the number of supply dates).
A parameterized problem is fixed-parameter tractable if it is
in the class FPT of problems solvable in f (ρ) · |I |O(1) time,
where |I | is the size of the given instance encoding, ρ is the
value of the parameter, and f is an arbitrary computable
(usually super-polynomial) function. Parameterized hard-
ness (and completeness) is defined through parameterized
reductions similarly to classical polynomial-time many-one
reductions. For our work, it suffices to additionally ensure
that the value of the parameter in the problem we reduce to
depend only on the value of the parameter of the problem we
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reduce from. To obtain parameterized intractability, we use
parameterized reductions from problems of the class W[1]
which is widely believed to be a proper superclass of FPT.
For instance, the famous graph problem Clique (Given an
undirected graphG and a positive integer k, doesG contain k
vertices that induce a complete subgraph?) isW[1]-complete
with respect to the parameter size k of the clique (Downey
& Fellows, 2013).

The class XP contains all problems that are solvable
in |I | f (ρ) time for a function f solely depending on the
parameter ρ. While XP ensures polynomial-time solvability
when ρ is a constant, FPT additionally ensures that the degree
of the polynomial is independent of ρ. Unless P = NP, mem-
bership in XP can be excluded by showing that the problem
is NP-hard for a constant parameter value—for short, we say
that the problem is para-NP-hard.
Our Contributions Most of our results are summarized
in Table 1. We focus on the parameterized computational
complexity of the Material Consumption Schedul-
ing problem with respect to several parameters describing
resource supplies. We show that the case of a single resource
and jobs with unit processing time is polynomial-time solv-
able. However, if each job has a processing time proportional
to its resource requirement, then Material Consumption
Scheduling becomesNP-hard even for a single resource and
when each supply provides one unit of the resource. Com-
plementing an algorithm solvingMaterial Consumption
Scheduling in polynomial time for a constant number q
of supply dates, we show by proving W[1]-hardness that
the parameterization by q presumably does not yield fixed-
parameter tractability. We circumvent theW[1]-hardness by
combining the parameter q with the maximum resource
requirement amax of a job, thereby obtaining fixed-parameter
tractability for the combined parameter q + amax. Moreover,
we show fixed-parameter tractability for the parameter umax

which denotes the last resource supply time. Finally, we
provide an outlook on cases with multiple resources and
show that fixed-parameter tractability for q + amax extends
when we additionally add the number r of resources to
the combined parameter, that is, we show fixed-parameter
tractability for q + amax + r . For Material Consumption
Scheduling with an unbounded number of resources, we
show intractability even for the case where all other previ-
ously discussed parameters are combined.

2 Computational hardness results

We start our investigation on Material Consumption
Scheduling by outlining the limits of efficient computabil-
ity. Setting up clear borders of tractability, we identify
potential scenarios which are suitable for spotting efficiently
solvable special cases. This approach is particularly jus-

tified because Material Consumption Scheduling is
already NP-hard for the quite constrained scenario of unit
processing times and two resources (Grigoriev et al., 2005).

Both hardness results in this section use reductions from
Unary Bin Packing. Given a number k of bins, a bin
size B, and a set O = {o1, o2, . . . , on} of n objects
of sizes s1, s2, . . . , sn (encoded in unary), Unary Bin
Packing asks to distribute the objects to the bins such that
no bin exceeds the capacity B.Unary Bin Packing is NP-
hard andW[1]-hard when parameterized by the number k of
bins even if

∑n
i=1 si = kB (Jansen et al., 2013).

Wefirst focus on the case of a single resource, forwhichwe
find a strong intractability result. In the following theorem,
we show that the problem is NP-hard even if b̃max = 1.

Theorem 2.1 1| nr = 1, p j = ca j |Cmax is para-NP-hard
with respect to the maximum number b̃max of resources sup-
plied at once even if all numbers are encoded in unary.

Proof Given an initial instance I of Unary Bin Pack-
ing with

∑n
i=1 si = kB, we construct an instance I ′

of 1| nr = 1, p j = ca j |Cmax with b̃max = 1 as described
below.

We define n jobs J1, J2, . . . , Jn with J j = (p j , a j )

such that p j = Bs j and a j = s j . We also introduce a
special job J ∗ = (p∗, a∗), with p∗ = B and a∗ = 1.
Then, we set kB supply dates as follows. For each i ∈
{0, 1, . . . , k − 1} and x ∈ {0, 1, . . . , B − 1}, we create a
supply date qxi = (uxi , b̃

x
i ):=((B + i B2) − x, 1). We add

a special supply date q∗:=(0, 1). Next, we show that I is a
yes-instance if and only if there is a gapless schedule for I ′,
that is, Cmax = kB2 + B. An example of this construction is
depicted in Fig. 2.

We first show that each solution to I can be transformed
to a schedule with Cmax = kB2 + B. A yes-instance for I
is a partition of the objects into k bins such that each bin is
(exactly) full. Formally, there are k sets S1, S2, . . . Sk such
that

⋃
i Si = O , Si∩S j = ∅ for all i 
= j , and

∑
oi∈S j si = B

for all j .We forma schedule for I ′ as follows. First,we sched-
ule job J ∗ and then, continuously, all jobs corresponding to
elements of sets S1, S2, and so on. The special supply q∗
guarantees that the resource requirement of job J ∗ is met at
time 0. The remaining jobs, corresponding to elements of the
partitions, are scheduled earliest at time B, when J ∗ is pro-
cessed. The jobs representing each partition, by definition,
require in total B resources and take, in total, B2 time. Thus,
it is enough to ensure that at each point B + i B2 in time,
for i ∈ {0, 1, . . . , k − 1}, there are at least B resources avail-
able. This is true because for each i ∈ {0, 1, . . . , k − 1} the
time point B + i B2 is preceded with B − 1 supplies of one
resource. Furthermore, none of the preceding jobs can use
the freshly supplied resources as the schedule must be gap-
less and all processing times are multiples of B. As a result,
the schedule is feasible.

123



Journal of Scheduling (2023) 26:369–382 373

Table 1 Our results for a single resource type (top) and multiple
resource types (bottom). The results correspond to Theorem 3.1 (‡),
Theorem 2.2 (�), Györgyi and Kis (2014) (♣), Theorem 2.1 (�), The-
orem 3.2 (♦), Theorem 4.1 (�), Theorem 3.3 (†), Proposition 4.1 (♥),

Proposition 4.2 (♠), Theorem 4.2 (�), and Proposition 4.3 (�). P stands
for polynomial-time solvable,W[1]-h andp-NP stand forW[1]-hardness
and para-NP-hardness, respectively

q b̃max umax amax amax + q

1| nr = 1, p j = 1|Cmax P‡

1| nr = 1, p j = ca j |Cmax W[1]-h�, XP♣ p-NP� FPT♦ XP� FPT†

1| nr = 1, unary |Cmax W[1]-h�, XP♣ p-NP� FPT♦ XP� FPT†

1| nr = 2, p j = 1, unary |Cmax W[1]-h♥, XP♣ p-NP� XP♣ XP� FPT♠

1| nr = const, unary |Cmax W[1]-h♥, XP♣ p-NP� XP♣ XP� FPT♠

1| nr, p j = 1|Cmax p-NP� p-NP� W[1]-h�, XP� p-NP� W[1]-h�

J∗ = (4, 1) J1 = (4, 1) J4 = (12, 3) J2 = (8, 2) J3 = (8, 2)

0 4 8 12 16 20 24 28 32 36

Fig. 2 An example of the construction in the proof of Theorem 2.1 for
an instance of Unary Bin Packing consisting of k = 2 bins each of
size B = 4 and four objects o1 to o4 of sizes s1 = 1, s2 = s3 = 2,
and s4 = 3. In the resulting instance of 1| nr = 1, p j = ca j |Cmax, there
are five jobs (J ∗ and one job corresponding to each input object) and at
each (whole) point in time of the hatched periods there is a supply of one

resource. An optimal schedule that first schedules J ∗ is depicted. Note
that the time periods between the (right-hand) ends of hatched periods
correspond to a multiple of the bin size and a schedule is gapless if and
only if the objects corresponding to jobs scheduled between the ends of
two consecutive shaded areas exactly fill a bin

Now we show that a gapless schedule for I ′ implies that I
is a yes-instance. Let σ be a gapless schedule for I ′. Observe
that all processing times are multiples of B and therefore
each job has to start at a time that is a multiple of B. For
each i ∈ {0, 1, . . . , k − 1}, we show that there is no job
that is scheduled to start before B + i B2 and to end after
this time. We show this by induction on i . Since at time 0
there is only one resource available and all jobs that consume
one resource have length B, we may assume without loss of
generality that job J ∗ is scheduled first. Hence the statement
holds for i = 0. Assuming that the statement holds for all i <

i ′ for some i ′, we show that it also holds for i ′. Assume toward
a contradiction that there is a job J that starts before t :=B +
i ′B2 and ends after this time. Let S be the set of all jobs that
were scheduled to start between t0:=B + (i ′ − 1)B2 and t .
Recall that for each job J j ′ ∈ S, we have that p j ′ = Ba j ′ .
Hence, since J ends after t , the number of resources used
by S is larger than (t−t0)/B = B. Since only B resources are
available at time t , job J cannot be scheduled before time t
or there is a gap in the schedule, a contradiction. Hence,
there is no job that starts before t and ends after it. Thus, the
jobs can be partitioned into “phases,” that is, there are k + 1
sets S0, S1, . . . , Sk such that S0 = {J ∗}, ⋃

h>0 Sh = J \
{J ∗}, Sh ∩ S j = ∅ for all h 
= j , and

∑
J j∈Sg p j = B2

for all g. This corresponds to a bin packing where object og
belongs to bin h > 0 if and only if Jg ∈ Sh . ��

Note that Theorem 2.1 excludes pseudo-polynomial algo-
rithms for the case under consideration since the theorem
statement is true also when all numbers are encoded in unary.
Theorem 2.1 motivates to study further problem-specific
parameters. Observe that in the reduction presented in the
proof of Theorem 2.1, we used an unbounded number of
supply dates. Györgyi and Kis (2014) presented a pseudo-
polynomial algorithm for 1| nr = 1|Cmax for the case that
the number q of supplies is a constant. Thus, the question
arises whether we can even obtain fixed-parameter tractabil-
ity for our problem by taking the number of supply dates as a
parameter. Devising a similar (yet slightly simpler) reduction
from Unary Bin Packing as in the proof of Theorem 2.1,
we answer this question negatively in the following theorem.

Theorem 2.2 1| nr = 1, p j = a j |Cmax parameterized by the
number q of supply dates is W[1]-hard even if all numbers
are encoded in unary.

Proof We reduce fromUnary Bin Packing parameterized
by the number k of bins, which is known to be W[1]-hard
(Jansen et al., 2013). Given an instance I of Unary Bin
Packingwith k bins, each of size B and a set O of n objects
of sizes s1, s2, . . . , sn such that

∑n
i=1 si = kB, we construct

an instance I ′ of 1| nr = 1, p j = a j |Cmax as follows.
For each object oi ∈ O , we define a job Ji = (pi , ai ) such

that pi = ai = si ; we denote the set of all jobs byJ .We then
construct k supply dates qi = (ui , b̃i ), with ui = (i − 1)B
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and b̃i = B for each i ∈ [k]. In this way, we obtain an
instance I ′ of 1| nr = 1|Cmax.

It remains to show that I is a yes-instance if and only
if I ′ is an instance with Cmax = kB. To this end, suppose
first that I is a yes-instance. Then, there is a partition of
the objects into k bins such that each bin is (exactly) full.
Formally, there are k sets S1, S2, . . . , Sk such that

⋃
i Si =

O , Si ∩ S j = ∅ for all i 
= j , and
∑

oi∈S j si = B for
all j . Hence we schedule all jobs Ji with oi ∈ S1 between
time 0 = u1 and B = u2. Following the same procedure,
we schedule all jobs corresponding to objects in Si between
time ui and ui+1 where ui+1 = i B. Since

∑n
i=1 pi = kB,

we conclude that Cmax = kB.
Now suppose that Cmax = kB. Assume toward a con-

tradiction that there is an optimal schedule in which some
job Ji ∈ J starts at some time t such that t < u� < t + pi
for some � ∈ [k]. Let S be the set of all objects that
are scheduled before Ji . Since Cmax = kB, it follows
that at each point in time until t there is some job sched-
uled at this time. Thus, since ph = ah for all jobs Jh , it
follows that

∑
Jh∈S ah = ∑

Jh∈S ph = t resources are con-
sumed before Ji starts. As a result,

∑
Jh∈S∪{Ji } ah = t+ai =

t + pi > u� = (� − 1)B resources are required to sched-
ule job Ji . Since there are only

∑�−1
h=1 b̃h = (� − 1)B

resources supplied before time u� > t , job Ji cannot be
scheduled at time t , a contradiction. Hence, there is no job
that starts before some u� and ends after it. Thus, the jobs
can be partitioned into k “phases,” which means that, there
are k sets S1, S2, . . . , Sk such that

⋃
h Sh = J , Si ∩ Si ′ = ∅

for all i 
= i ′, and
∑

Jh∈Sg ph = B for all g. This corre-
sponds to a bin packing where og belongs to bin h if and
only if Jg ∈ Sh . ��

The theorems presented in this section show that Mate-
rial Consumption Scheduling is presumably not fixed-
parameter tractable with respect to the number of supply
dates or with respect to the maximum number of resources
per supply. However, we show in the following section that
combining these two parameters allows for fixed-parameter
tractability. Furthermore, we present other algorithms that,
partially, allow us to successfully bypass the hardness pre-
sented above.

3 (Parameterized) tractability results

We start our search for efficient algorithms for Mate-
rial Consumption Schedulingwith an introductory part
presenting two lemmata exploiting structural properties of
problem solutions. Afterwards, we employ the lemmata and
provide several tractability results, including polynomial-
time solvability for one specific case.

3.1 Identifying structured solutions

A solution toMaterial Consumption Scheduling is an
ordered list of jobs to be executed on the machine(s). Addi-
tionally, the jobs need to be assigned their starting times.
The starting times have to be chosen in such a way that
no job starts when the machine is still processing another
scheduled job and that each job requirement is met at the
moment of starting the job. We show that, given an order-
ing of the jobs, one can always compute times of starting
the jobs minimizing the makespan in polynomial time. For-
mally, we present in Lemma 3.1 a polynomial-time Turing
reduction from 1| nr = r |Cmax to 1,NI | nr = r |−. The crux
of this lemma is to observe that there always exists an opti-
mal solution to 1| nr = r |Cmax that is decomposable into two
parts. First, when themachine is idling, and second, when the
machine is continuously busy until all jobs are processed. The
main idea is the following: Assume that for some instance
of Material Consumption Scheduling, there is some
optimal schedule where some job J starts being processed
at some time t (in particular, the resource requirements of J
are met at t). If the machine idles for some time directly after
processing job J , then we can postpone processing J to the
latest moment which still guarantees that J is ended before
the next job is processed. Naturally, at the new starting time
of J we can only have more resources than at the old start-
ing time. Applying this observation exhaustively produces a
solution that is clearly separated into idling time and busy
time.

Lemma 3.1 There is a polynomial-time Turing reduction
from 1| nr = r |Cmax to 1,NI | nr = r |−.

Proof Assuming an oracle for 1,NI | nr = r |−, we describe
an algorithm solving 1| nr = r |Cmax that runs in polynomial
time.

Wefirstmake a useful observation about feasible solutions
to the original problem. Consider some feasible solution σ

to 1| nr = r |Cmax and let g1, g2, . . . , gn be the idle times
before processing, respectively, the jobs J1, J2, . . . , Jn .
Then, σ can be transformed to another schedule σ ′ with
the same makespan as σ and with idle times g′

1, g
′
2, . . . , g

′
n

such that g′
2 = g′

3 . . . g′
n = 0 and g′

1 = ∑
t∈[n] gt . Intu-

itively, σ ′ is a scheduling in which the idle times of σ are
all “moved” before the machine starts the first scheduled job.
It is straightforward to see that in σ ′ no jobs are overlap-
ping. Furthermore, each job according to σ ′ is processed at
earliest at the same time as it is processed according to σ .
Thus, because there are no “negative” supplies and the order
of processed jobs is the same in both σ and σ ′, each job’s
resource request is met in schedule σ ′.

Using the aboveobservation, the algorithmsolving1| nr =
r |Cmax using an oracle for 1,NI | nr = r |− problem works
as follows. First, it guesses the duration g ≤ umax of the
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starting gap and then calls an oracle for 1,NI | nr = r |−
subtracting g from each supply time (and merging all non-
positive supply times to a new one arriving at time zero) of
the original 1| nr = r |Cmax instance. For each value of g,
the algorithm adds g to the oracle’s output and returns the
minimum over all these sums.

Basically, the algorithm finds a schedule with the small-
est possible makespan assuming that the idle time happens
only before the first scheduled job is processed. Note that
this assumption can always be satisfied by the initial obser-
vation. Because of the monotonicity of the makespan with
respect to the initial idle time g, the algorithm can perform
binary search while searching for g and thus its running time
is O(log(umax)). ��

We will next extend the idea behind Lemma 3.1 in the
subsequent Lemma 3.2 to also change the relative order of
certain jobs. We first define a domination relation over jobs;
intuitively, a job dominates another job if it is not shorter and
at the same time its resource consumption is not bigger.

Definition 3.1 A job J j dominates a job J j ′ (written J j ≤D

Jj ′ ) if p j ≥ p j ′ and ai, j ≤ ai, j ′ for all i ∈ R.

When we deal with non-idling schedules, for a pair of jobs
J j and J j ′ where J j dominates J j ′ , it is better (or at least not
worse) to schedule J j before J j ′ . Indeed, since among these
two, J j ’s requirements are not greater and its processing time
is not smaller, surely after the machine stops processing J j
there will be at least as many resources available as if the
machine had processed J j ′ . We formalize this observation in
the following lemma. Note that in the case of two jobs J j
and J j ′ dominating each other (J j ≤D Jj ′ and J j ′ ≤D Jj ),
we allow for either of them to be processed before the other
one.

Lemma 3.2 For an instance of 1,NI | nr |−, let <D be an
asymmetric subrelation of ≤D. There always is a feasible
schedule where for every pair J j and J j ′ of jobs it holds that
if J j <D Jj ′ , then J j is processed before J j ′ .

Proof Let σ be some feasible schedule. Consider any
pair (J j , J j ′) of jobs such that J j is scheduled after J j ′
and J j dominates J j ′ , that is, p j ≥ p j ′ and ai j ≤ ai j ′ for
all i ∈ R. Denote by σ ′ a schedule emerging from con-
tinuously scheduling all jobs in the same order as in σ but
with jobs J j and J j ′ swapped. We show that each job in σ ′
meets its resource requirements, thus proving the lemma.We
distinguish between the set of jobs Jout that are scheduled
before J j ′ in σ or that are scheduled after J j in σ and jobsJin

that are scheduled between j ′ and j in σ (including j ′ and j).
Observe that since all jobs in Jin are scheduled without the
machine idling, it holds that all jobs in Jout are scheduled
exactly at the same times in both σ and σ ′. Additionally,
since the total number of resources consumed by jobs in Jin

in both σ and σ ′ is the same, the resource requirements for
each job in Jout is met in σ ′. It remains to show that the
requirements of all jobs in Jin are still met after swapping.
To this end, observe that all jobs except for J j ′ still meet the
requirements in σ ′ as J j dominates J j ′ (i.e., J j requires at
most as many resources and has at least the same processing
time as J j ′ ). Thus, each job in Jin except for J j ′ has at least
as many resources available in σ ′ as they have in σ . Observe
that J j ′ is scheduled later in σ ′ than J j was scheduled in σ .
Hence, there are also enough resources available in σ ′ to
process J j ′ . Thus, σ ′ is feasible, a contradiction. ��

3.2 Applying structured solutions

We start with polynomial-time algorithms that apply both
Lemma 3.1 and Lemma 3.2 to solve special cases of Mate-
rial Consumption Scheduling where each two jobs can
be compared according to the domination relation (Defini-
tion 3.1). Recall that if this is the case, thenLemma3.2 almost
exactly specifies the order in which the jobs should be sched-
uled.

Theorem 3.1 1,NI | nr |− and 1| nr |Cmax are solvable in,
respectively, quasilinear and quasiquadratic time if the dom-
ination relation is a weak order1 on the set of jobs. In particu-
lar, for the time umax of the last supply,
1| nr = 1, p j = 1|Cmax and 1| nr = 1, a j = 1|Cmax are
solvable in O(N log n log umax) time and
1,NI | nr = 1, p j = 1|− and 1,NI | nr = 1, a j = 1|−
are solvable in O(N log n) time, where N is the size of the
input.

Proof We start with 1,NI | nr = 1, p j = 1|−. At the begin-
ning, we order the jobs increasingly with respect to their
requirements of the resource, arbitrarily ordering jobs with
equal requirements. Then,we simply checkwhether schedul-
ing the jobs in the computed order yields a feasible schedule,
that is, whether the resource requirement of each job is met.
If the check fails, then we return “no,” otherwise we report
“yes.” The algorithm is correct due to Lemma 3.2 which,
adapted to our case, says that there must exist an optimal
schedule in which jobs with smaller resource requirements
are always processed before jobs with bigger requirements.
It is straightforward to see that the presented algorithm runs
in O(n log n) time.

To extend the algorithm to 1| nr = 1, p j = 1|Cmax,
we apply Lemma 3.1. As described in detail in the proof
of Lemma 3.1, we first guess the idling-time g of themachine
at the beginning. Then, we run the algorithm for 1,NI | nr =
1, p j = 1|− pretending that we start at time g by shifting
backwards by g the times of all resource supplies. Since we

1 A weak order of elements ranks the elements such that each two
objects are comparable but different objects can be tied.
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can guess g using binary search in a range from 0 to the time
of the last supply, such an adaptation yields a multiplicative
factor of O(log umax) for the running time of the algorithm
for 1,NI | nr = 1, p j = 1|−. The correctness of the algo-
rithm follows immediately from the proof of Lemma 3.1.

The proofs are analogous for 1,NI | nr = 1, a j = 1|−
and 1| nr = 1, a j = 1|Cmax.

The aforementioned algorithms need only a small modi-
fication to work for 1,NI | nr |− and 1| nr |Cmax. Indeed, we
again schedule jobs in a precomputed order. Yet, the respec-
tive algorithm uses a general method to compute the weak
order of the jobs. First, it sorts descendingly all jobs by their
processing times. Then it sorts increasingly all jobs that are so
far undistinguishable by resource requirements of an arbitrar-
ily selected resource. The algorithm repeats this procedure
iteratively as long as there exist undistinguishable jobs. If,
after the last iteration, undistinguishable jobs still exist, then
the ties are resolved arbitrarily.2 Observe that applying this
sorting method takes O(nr ·n · log n) steps, so we get the
claimed running time (note that the instance size is at least
nr ·n). The obtained algorithm is correct by the same argu-
ment as the other above-mentioned cases. ��

Importantly, it is computationally simple to identify the
cases for which the above algorithm can be applied success-
fully. In fact, the aforementioned procedure for computing
theweak order of jobs can, at a computational cost of an addi-
tional pass through all jobs once, verify whether the obtained
order implies a domination relation.

If the domination relation is not a weak order, then the
problem becomes NP-hard as shown in Theorem 2.1. This is
to be expected since one cannot efficiently decide which of
two incomparable jobs (with respect to the domination rela-
tion) to schedule first: the one which requires fewer resource
units but has a shorter processing time, or the one that requires
more resource units but has a longer processing time. Indeed,
it could be the case that sometimes one may want to sched-
ule a shorter job with lower resource consumption to save
resources for later, or sometimes it is better to run a long job
consuming, for example, all resources knowing that soon
there will be another supply with sufficient resource units.
SinceNP-hardness probably excludes polynomial-time solv-
ability, we turn to a parameterized complexity analysis to get
around the intractability.

The time umax of the last supply seems a promising
parameter. We show that it yields fixed-parameter tractabil-
ity. Intuitively, we demonstrate that the problem is tractable
when the time until all resources are available is short.

Theorem 3.2 1,NI | nr = 1|− parameterized by the time
umax of the last supply is fixed-parameter tractable and can
be solved in O(2umax · n + n log n) time.

2 Note that we assume that the domination relation is a weak order.

Proof Wefirst sort all jobs by their processing time inO(n log
n) time. We then sort all jobs with the same processing time
by their resource requirements in overall O(n log n) time.
We then iterate over all subsets R of [umax]. We refer to the
elements in R as r1, r2, . . . , rk , where k = |R| and ri < r j
for all i < j . For simplicity, we use r0 = 0. For each ri
in ascending order, we check whether there is a job with a
processing time ri − ri−1 that was not scheduled before and,
if so, then we schedule the respective job with the lowest
resource requirement. Next, we check whether there is a job
left that can be scheduled at rk and which has a processing
time at least umax − rk . Finally, we schedule all remaining
jobs in an arbitrary order and check whether the total number
of resources suffices to run all jobs.

We will now prove that there is a valid gapless sched-
ule if and only if all of these checks are met. Notice that
if all checks are met, then our algorithm provides a valid
gapless schedule. Now assume that there is a valid gapless
schedule. We will show that our algorithm finds a (pos-
sibly different) valid gapless schedule. Let, without loss
of generality, J j1 , J j2 , . . . , J jn be a valid gapless schedule
and let jk be the index of the last job that is processed
at time umax. We now focus on the iteration where R =
{0, p j1 , p j1 + p j2 , . . . ,

∑k
i=1 p ji }. If the algorithm schedules

the jobs J j1, J j2 , . . . , J jk , then it computes a valid gapless
schedule and all checks are met. Otherwise, it schedules
some jobs differently but, by construction, it always sched-
ules a job with processing time p ji at position i ≤ k. Due to
Lemma 3.2, the schedule computed by the algorithm is also
valid. Thus, the algorithm computes a valid gapless schedule
and all checks are met.

It remains to analyze the running time. The sorting steps
in the beginning take O(n log n) time. There are 2umax itera-
tions for R, each taking O(n) time. Indeed, we can check in
constant time for each ri which job to schedule and this check
is done at most n times (as afterwards there is no job left to
schedule). Searching for the job that is scheduled at time rk
takes O(n) time as we can iterate over all remaining jobs and
check in constant time whether it fulfills both requirements.

��

Another way to achieve fixed-parameter tractability via
parameters measuring the resource supply structure is com-
bining the parameters q and b̃max. Although both parameters
alone yield intractability, combining them gives fixed-
parameter tractability in an almost trivial way: By Assump-
tion 1, every job requires at least one resource, so b̃max · q
is an upper bound for the number of jobs. Hence, with
this parameter combination, we can try out all possible
schedules without idling (which by Lemma 3.1 extends to
solving 1,NI | nr = 1|Cmax).

Motivated by this, we replace the parameter b̃max by the
presumably much smaller (and hence practically more use-
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ful) parameter amax. We consider scenarios with only few
resource supplies and jobs that require only small units
of resources as practically relevant. Next, Theorem 3.3
shows fixed-parameter tractability for the combined param-
eter q + amax.

Theorem 3.3 1,NI | nr = 1|Cmax is fixed-parameter tract
able for the combined parameter q + amax, where q is
the number of supplies and amax is the maximum resource
requirement per job.

Proof We describe an integer linear program that uses only
f (q, amax) variables. To significantly simplify the descrip-
tion of the integer program, we use an extension to integer
linear programs that allows concave transformations on vari-
ables (Bredereck et al., 2020).Whilewe describe only integer
variables used in our program, the extension (Bredereck et
al., 2020) allowing concave transformations uses auxiliary
fractional variables, thus effectively leading to a mixed inte-
ger program (MILP). We then use a famous result of Lenstra
(1983), who showed that a mixed integer linear program is
fixed-parameter tractable when parameterized by the number
of integer variables (see also Frank & Tardos, 1987 and Kan-
nan, 1987 for later asymptotic running-time improvements).

Our approach is based on twomain observations. First, by
Lemma 3.2 we can assume that there is always an optimal
schedule that is consistentwith the domination order. Second,
within a phase (between two resource supplies), every job
can be arbitrarily reordered. Roughly speaking, a solution
can be fully characterized by the number of jobs that have
been started for each phase and each resource requirement.

We use the following non-negative integer variables:

1. xw,s denoting the number of jobs requiring s resources
started in phase w,

2. xΣ
w,s denoting the number of jobs requiring s resources
started in all phases between 1 and w (inclusive),

3. αw denoting the number of resources available in the
beginning of phase w, and

4. dw denoting the endpoint of phase w, that is, the time
when the last job started in phase w ends.

Naturally, the objective is to minimize dq . First, we ensure
that xΣ

w,s are correctly computed from xw,s by requiring

xΣ
w,s =

w∑

w′=1

xw′,s .

Second, we ensure that all jobs are scheduled at some point.
To this end, using #s to denote the number of jobs J j with
resource requirement a j = s, we add:

∀s ∈ [amax] :
∑

w∈[q]
xw,s = #s .

Third, we ensure that the αw variables are set correctly, by
setting

α1 = b̃1,

and

∀2 ≤ w ≤ q : αw = αw−1 + b̃w −
∑

s∈[amax]
xw−1,s · s.

Fourth, we make sure that we always have enough resources:

∀2 ≤ w ≤ q : αw ≥ b̃w.

Next,we compute the endpointsdw of eachphase, assuming a
schedule respecting the domination order. To this end, let ps1,
ps2, . . . , p

s
#s
denote the processing times of jobswith resource

requirement exactly s in non-increasing order. Further, let
τs(y) denote the processing time spent to schedule the y
longest jobs with resource requirement exactly s, that is, we
have τs(y) = ∑y

i=1 p
s
i . Clearly, τs(x) is a concave function

that can be precomputed for each s ∈ [amax]. To compute the
endpoints, we add:

∀w ∈ [q] : dw =
∑

s∈[amax]
τs(x

Σ
w,s). (3.1)

Since we assume gapless schedules, we ensure that there
is no gap: ∀1 ≤ w ≤ q − 1 : dw ≥ uw+1 − 1. This
completes the construction of theMILP using concave trans-
formations. The number of integer variables used in theMILP
is 2q · amax (q · amax for xw,s and xΣ

w,s variables, respec-
tively) plus 2q (q for αw and dw variables, respectively).
Moreover, the only concave transformations used in Con-
straint Set (3.1) are piecewise linear with only a polynomial
number of pieces (in fact, the number of pieces is at most
the number of jobs), as required to obtain fixed-parameter
tractability of this extended class of MILPs (Bredereck et
al., 2020, Theorem 2). ��

4 A glimpse onmultiple resources

So far we focused on scenarios with only one non-renewable
resource. In this section, we provide an outlook on scenarios
with multiple resources (still considering only one machine).
Naturally, all hardness results transfer. For the tractability
results, we identify several cases where tractability extends
in some form, while other cases become significantly harder.

Motivated by Theorem 3.3, we are interested in the
computational complexity of theMaterial Consumption
Scheduling problem for cases where only amax is small.
When nr = 1 and amax = 1, then we have polynomial-time
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solvability via Theorem3.1. The next theorem shows that this
extends to the case of constant values of nr and amax if we
assume unary encoding. To obtain this result, we develop a
dynamic-programming-based algorithm for 1,NI | nr = 1|−
and apply Lemma 3.1.

Theorem 4.1 1| nr = const, unary |Cmax can be solved
in O(q · aO(1)

max · nO(amax) · log umax) time.

Proof We will describe a dynamic-programming proce-
dure that computes whether there exists a gapless schedule
(Lemma 3.1). Let r be the (constant) number of different
resources. We distinguish jobs by their processing times as
well as their resource requirements. To this end, we define the
type of a job J j as a vector (a1, j , a2, j , . . . , ar , j )T containing
all its resource requirements. Let T = {t1, t2, . . . , t|T |} be
the set of all types such that for all t ∈ T there is at least one
job J j of type t . Let s:=|T | and note that s ≤ (amax + 1)r .
We first sort all jobs by their type using bucket sort in O(n)

time and then sort each of the buckets with respect to the
processing times in O(n log n) time using merge sort. For
the sake of simplicity, we will use Pt [k] to describe the set
of the k longest jobs of type t . We next define the �th phase
as the time interval from the start of any possible schedule
up to u�+1. Next, we present a dynamic program

T : [q] × [nt1] ∪ {0} × . . . × [nts ] ∪ {0} → {true, false},

wherenti is the number of jobs of type ti .Wewant to store true
in T [i, x1, . . . , xs] if and only if it is possible to schedule at
least the jobs in Ptk [xk] such that all of these jobs start within
the i th phase and there is no gap. If T [q, nt1 , . . . , nts ] is true,
then this corresponds to a gapless schedule of all jobs and
hence this is a solution.We will fill up the table T by increas-
ing values of the first argument. That is, we will first compute
all entries T [1, x1, x2, . . . , xs] for all possible combinations
of values for xi ∈ [nti ] ∪ {0}. For the first phase, observe
thatT [1, x1, x2, . . . , xs] is set to true if andonly if the two fol-
lowing conditions are met. First, there are enough resources
available at the start to schedule all jobs in all Pti [xi ]. Sec-
ond, the sum of all processing times of all “selected jobs”
without the longest one ends at least one time step before u2
(such that the job with the longest processing time can then
be started at latest in time step u2 − 1 which is the last time
step in the first phase). For increasing values of the first argu-
ment, we do the following to compute T [i, x1, x2, . . . , xs].
For all tuples of numbers (y1, y2, . . . , ys) with yk ≤ xk for
all k ∈ [s], we check (i) whether T [i − 1, y1, y2, . . . , ys] is
true, (ii) whether the corresponding schedule can be extended
to a schedule for T [i, x1, x2, . . . , xs], (iii) whether there are
enough resources available, and (iv) whether all selected jobs
except for the longest one can be finished at least one time
step before ui+1 − 1. Since checks (i), (iii), and (iv) are very
simple, we focus on (ii). To this end, it is actually enough to

check whether
∑

k∈[s]
∑

j∈Ptk [yk ] p j ≥ ui − 1 since if this
was not the case but there still was a gapless schedule, then
we could add some other job to the (i − 1)st phase and since
we iterate over all possible combinations of values of yi , we
would find this schedule in another iteration.

It remains to analyze the running time of this algorithm.
First, the number of table entries in T is upper-bounded
by q · ∏

k∈[s](ntk + 1) ≤ (q · (n + 1)s). For each table
entry T [i, x1, x2, . . . , xs], there are at most

∏

k∈[s]
(xk + 1) ≤

∏

k∈[s]
(ntk + 1) ∈ O((n + 1)s)

possible tuples (y1, y2, . . . , ys), yk ≤ xk for all k ∈ [s] and
checks (i) to (iv) can be performed in O(s) time. Thus, the
overall running time for computing a gapless schedule is

O(q · s · (n + 1)2s) ⊆ O(q · (amax + 1)r · (n + 1)2r(amax+1))

and the time for solving 1| nr = const, unary |Cmax is by
Lemma 3.1

O(q · (amax + 1)r · (n + 1)2r(amax+1) · log umax).

��
The question whether 1| nr = const, unary |Cmax is in FPT
or whether it isW[1]-hard with respect to amax remains open
even for only a single resource.

We continuewith showing that alreadywith two resources
and unit processing times of the jobs,Material Consump-
tion Scheduling becomes computationally intractable,
even when parameterized by the number of supply dates.
Note that NP-hardness for 1| nr = 2, p j = 1|Cmax can also
be transferred from Grigoriev et al. (2005, Theorem 4) (the
statement is for a different optimization goal but the proof
still works).

Proposition 4.1 1| nr = 2, p j = 1|Cmax is W[1]-hard when
parameterized by the number of supply dates even if all num-
bers are encoded in unary.

Proof Given an instance I of Unary Bin Packing with
k bins, each of size B, and n objects o1, o2, . . . , on of
sizes s1, s2, . . . , sn such that

∑n
i=1 si = kB, we construct

an instance I ′ of 1| nr = 2, p j = 1|Cmax as follows.
For each i ∈ [k], we add a supply

qi = (ui , b̃1,i , b̃2,i ):=((i − 1)B, B, B(B − 1));
thus, we create k supply dates. For each object oi , we create
an object job ji = (pi , a1,i , a2,i ):=(1, si , B− si ). Addition-
ally, we create kB − n dummy jobs; each of them having
processing time 1, no requirement of the resources of the
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first type, and requiring B resources of the second type. We
refer to the constructed instance as I ′.

We show that I is a yes-instance if and only if there is
a schedule for the constructed instance I ′ with makespan
exactly kB. Clearly, if I is a yes-instance, then there is a k-
partition S1, S2, . . . , Sk of theobjects such that for each i ∈ k,∑

o j∈Si s j = B. For some set Si , we schedule all jobs in Si ,
one after another, starting at time (i−1)B. Then, in the second
step, we schedule the remaining dummy jobs such that we
obtain a gapless schedule σ . Naturally, since each Si contains
at most B objects, the object jobs are non-overlapping in σ .
Also, because in the second stepwe have exactly kB − n jobs
available (recall that n is the number of object jobs), σ is a
gapless schedule with makespan exactly kB. To check the
feasibility of σ , let us consider the first B time steps. Note
that from time 0 to time |S1|, themachine processes all object
jobs representing objects from S1; from time |S1| + 1 to B it
processes exactly B−|S1| dummy jobs. Thus, the number of
used resources of type 1 is

∑
o j∈S1 s j = B, and the number of

used resources of type 2 is
∑

o j∈S1(B− s j )+ (B−|S1|)B =
|S1|B−B+B2−|S1|B = B(B−1). As a result, at time B−1
there are no resources available, so we can apply the argu-
ment for the first B time steps to all following k − 1 periods
of B time steps; we eventually obtain that σ is a feasible
schedule.

For the reverse direction, let σ be a schedule with
makespan kB for instance I ′. We again consider the
first B time steps. Let Jp be the set of exactly B jobs pro-
cessed in this time. Let A1 and A2 be the usage of the
resource of, respectively, type 1 and type 2 by the jobs
in Jp. We denote by Jo ⊆ Jp the object jobs within Jp.
Then, A1:= ∑

J j∈Jo
a1, j +∑

J j∈Jp\Jo
a1, j . In fact, since no

dummy job has a requirement for the resources of the first
type, we have A1 = ∑

J j∈Jo
a1, j . Moreover, there are only

B resources of type 1 available in the first B time steps, so
it is clear that A1 ≤ B. Using the fact that, for each job ji , it
holds that a2,i = B − a1,i , we obtain the following:

A2:=
∑

J j∈Jo

a2, j +
∑

J j∈Jp\Jo

a2, j

= |Jo|B − A1 + |Jp \ Jo|B = B2 − A1.

Using the above relation between A1 and A2, we show
that A1 = B. For the sake of contradiction, assume that A1 <

B. Immediately, we obtain that

A2 > B2 − B = B(B − 1),

which is impossible since we only have B(B − 1) resources
of the second type in the first B time steps of schedule σ .
Thus, since A1 = B, we use exactly B resources of the first
type and exactly (B − 1)B resources of the second type in

the first B time steps of σ . We can repeat the whole argument
for all following k − 1 periods of B time steps. Eventually,
we obtain a solution to I by taking the objects correspond-
ing to the object jobs scheduled in the subsequent periods of
B-time steps.

The reduction is clearly applicable in polynomial time and
the number of supply dates is a function depending solely
on the number of bins in the input instance of Unary Bin
Packing. ��

Proposition 4.1 limits the hope for obtaining positive
results for the general case with multiple resources. Still,
when adding the number of different resources to the com-
binedparameter,we can extendourfixed-parameter tractabil-
ity result from Theorem 3.3. Since we expect the number of
different resources to be rather small in real-world applica-
tions, we consider this result to be of practical interest.

Proposition 4.2 1,NI | nr = r |Cmax is fixed-parameter
tractable for the parameter q + amax + r , where q is the
number of supplies and amax is the maximum resource
requirement of a job.

Proof Themain observation needed to extend theMILP from
Theorem 3.3 is that, by Lemma 3.2, given two jobs with
the same resource requirement, there is always a schedule
that first schedules the longer (dominating) job. In essence,
for each phase and each possible resource requirement, a
solution is still fully described by the respective number of
jobs with that requirement scheduled in the phase.

For multiple resources, we describe the resource require-
ment of job J j by a resource vector

s = (a1, j , a2, j , . . . , ar , j ).

We use the following non-negative integer variables:

1. xw,s denoting the number of jobs with resource vector s
being started in phase w,

2. xΣ
w,s denoting the number of jobs with resource vector s
being started between phase 1 and w,

3. αy,w denoting the number of resources of type y available
in the beginning of phase w,

4. dw denoting the endpoint of phase w, that is, the time
when the job started latest in phase w ends.

All constraints and proof arguments translate in a straight-
forward way from the proof of Theorem 3.3. ��

Next, by a reduction from Independent Set we show
that Material Consumption Scheduling is intractable
for an unbounded number of resources evenwhen combining
all other considered parameters.
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Theorem 4.2 1| nr, p j = 1|Cmax is NP-hard and W[1]-hard
parameterized by umax even if amax = b̃max = 1 and q = 2.

Proof We provide a parameterized reduction from the NP-
hard Independent Set problemwhich, given an undirected
graph G and a positive integer k, asks if there is an indepen-
dent set of size k, that is, a set of k vertices in G which
are pairwise non-adjacent. Independent Set is W[1]-hard
with respect to the size k of the independent set (Downey &
Fellows, 2013).

Given an Independent Set instance (G, k), we create
an instance of 1| nr, p j = 1|Cmax as follows. Let V (G) =
{v1, . . . , vn} and E(G) = {e1, . . . , em}. For each edge in G,
we create one resource, that is, nr = m. At time u1 = 0, we
provide one initial unit of every resource. At time u2 = k,
we provide another unit of every resource. For each ver-
tex v j ∈ V (G), there is one job J j of length one with
a resource requirement being consistent with the incident
edges, that is, ai, j = 1 if v j ∈ ei and ai, j = 0 if v j /∈ ei .

We claim that there is an independent set of size k if and
only if there is a schedule with makespan Cmax = n.

For the “if” direction, let V ′ = {v�1, . . . , v�k } be an inde-
pendent set in G. Observe that every schedule that schedules
the jobs J�1 , . . ., J�k (in any order) in the first phase and then
all other jobs (in any order) in the second phase is feasible
and has makespanCmax = n. Feasibility comes from the fact
that we have an independent set so that no two jobs scheduled
in the first phase require the same resource. (After the sec-
ond supply, there are enough resources to schedule all jobs.)
The makespan can be verified by observing that we have unit
processing time and that the machine does not idle.

For the “only if” direction, assume that there is a fea-
sible schedule with makespan Cmax = n and let J ′ =
{J j1 , . . . , J jk }be the jobswhich are scheduled at timepoints 0
to k − 1. (Note that J ′ is well-defined since each job has
length one, there are n jobs in total, and the makespan is n.)
We claim that the set V ′ = {v j1 , . . . , v jk } is an indepen-
dent set. Assume toward a contradiction that two vertices are
adjacent. Then, both jobs are scheduled in the first phase and
require one unit of the the same edge resource; a contradic-
tion. ��

Finally, to complement Theorem 4.2, we show that
1| nr |Cmax parameterized by umax is in XP. Note that for this
algorithm we do not need to assume unit processing times.

Proposition 4.3 1| nr |Cmax is solvable in O(numax+1 · log
umax) time.

Proof We solve 1| nr |Cmax by basically brute-forcing all
schedules up to time umax. By Lemma 3.1, we may assume
that we are looking for a gapless schedule. The algorithm
now iteratively guesses the next job in the schedule (starting
with a first job at time 0). Since we assume that process-
ing any job requires at least one time unit, the algorithm

guesses atmost umax jobs until time umax.Afterwards,we can
schedule the jobs in any order as no new resources become
available afterwards. Notice that guessing up to umax jobs
takes O(numax) time, verifying whether a schedule is fea-
sible takes O(n) time, and Lemma 3.1 adds an additional
log umax factor for assuming a gapless schedule. This results
in an overall running time of O(numax+1 · log umax). ��

5 Conclusion

We provided a seemingly first thorough multivariate com-
plexity analysis of the problemofMaterial Consumption
Scheduling on a single machine. Our main focus was the
case of one resource type (nr = 1). Table 1 surveys our
results.

Open research questions refer to the parameterized com-
plexity for the single parameters amax and pmax, their
combination, and the closely related parameter number of
job types. Notably, this might be challenging to answer
because these questions are closely related to long-standing
open questions for Bin Packing and P||Cmax (Knop &
Koutecký, 2018; Knop et al., 2020; Mnich & vanBevern,
2018). Indeed, parameter combinations may be unavoid-
able in order to identify practically relevant tractable cases.
For example, it is not hard to derive from our statements
(particularly Assumption 1 and Lemma 3.1) fixed-parameter
tractability for b̃max +q while for the single parameters b̃max

and q it is both times computationally hard.
Another challenge is to study the case of multiple

machines, which is obviously computationally at least as
hard as the case of a single machine but relevant in prac-
tice. It seems, however, far from obvious to generalize our
algorithms to the multiple-machines case.

We have also seen that cases where the jobs can be ordered
with respect to the domination ordering (Definition 3.1)
are polynomial-time solvable. It may be promising to con-
sider structural parameters measuring the distance from this
tractable special case in the spirit of distance from triviality
parameterization (Guo et al., 2004; Niedermeier, 2006).

Our results for multiple resources certainly represent only
first steps. They clearly invite further investigations, par-
ticularly concerning a multivariate complexity analysis. It
would also be interesting to study other objectives than the
makespan in the future.
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