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A B S T R A C T

Several methods of preference modeling, ranking, voting and multi-criteria decision-making include pairwise
comparisons. It is usually simpler to compare two objects at a time, furthermore, some relations (e.g., the
outcome of sports matches) are naturally known for pairs. This paper investigates and compares pairwise com-
parison models and the stochastic Bradley–Terry model. It is proved that they provide the same priority vectors
for consistent (complete or incomplete) comparisons. For incomplete comparisons, all filling in levels are
considered. Recent results identified the optimal subsets and sequences of multiplicative/additive/reciprocal
pairwise comparisons for small sizes of items (up to 𝑛 = 6). Simulations of this paper show that the same
subsets and sequences are optimal in the case of the Bradley–Terry and the Thurstone models as well. This
somehow surprising coincidence suggests the existence of a more general result. Further models of information
and preference theory are subject to future investigation to identify optimal subsets of input data.
1. Introduction

Comparison in pairs is a frequently used method in ranking and
rating objects when scaling is difficult due to its subjective nature.
From a methodological point of view, two main types of models can
be distinguished: the ones based on pairwise comparison matrices
(PCMs) and the stochastic models motivated by Thurstone. The aim of
this paper is to present some linkages between these approaches. We
establish a direct relation between them via the concept of consistency.
Evaluating consistent data, we mainly focus on the similarities of the
results in the case of incomplete comparisons. In Bozóki and Szádoczki
(2022) and Szádoczki et al. (2022b), the authors investigate incomplete
pairwise comparisons evaluated via two different weight calculation
techniques from an information retrieval point of view. Incompleteness
means that the comparisons between some pairs of objects are missing.
In the case of consistent data, this absent information is preserved
in the results of the compared pairs. However, in real problems, the
results of comparisons are usually not consistent, therefore this missing
information can cause significant modifications in the evaluations. The
main question of the articles (Bozóki & Szádoczki, 2022) and Szádoczki
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et al. (2022b) is which structure of the comparisons is optimal for fixed
numbers of comparisons investigating pairwise comparison matrices
via the logarithmic least squares and the eigenvector methods (LLSM
and EM). We ask the same question in the case of the Bradley–Terry
(BT) model, when the evaluation is performed via maximum likelihood
estimation (MLE). What are the similarities and the differences between
the optimal comparison arrangements in the case of LLSM and BT? Do
the findings of the papers remain valid in the case of a substantially
different paired comparison method? Are the conclusions method-
specific, i.e., do the results of the paper (Bozóki & Szádoczki, 2022)
apply only for the method LLSM and EM or in general as well, for other
models based on paired comparisons?

The rest of the paper is organized as follows. Section 2 presents
the closely related literature and the research gap that we would like
to consider in the current study. Section 3 describes the preliminary
methods, namely the AHP with LLSM, EM and the Bradley–Terry
model with MLE. In Section 4 we describe the connection between
these models. We pay special attention to consistency, which is deeply
investigated in PCM-based methods, but not in stochastic models. Sub
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Section 4.1 contains theoretical results about the connection of the
models in consistent cases, while Sub Section 4.2 presents examples
demonstrating the differences when the data are inconsistent. Section 5
details the simulation methodology that is used to find optimal solu-
tions concerning information retrieval, while Section 6 contains the
main results of the numerical experiments. Finally, Section 7 concludes
and discusses further research questions.

2. Literature review

The set of information on the preferences of users or decision-
makers serves as input data of information retrieval and decision
support systems, including ranking, recommendation, relevance filter-
ing, relation identification etc. (Zhou & Yao, 2010). Many information
retrieval tasks are themselves multi-criteria decision problems, where
the steps are highly ‘automated’. Explicit preferences are collected via
questionnaires, decision support softwares (Ishizaka & Nemery, 2013;
Tzeng & Huang, 2011). Implicit preferences can originate from e.g., ob-
served clicks as feedback from user interaction (Hofmann et al., 2013;
Jeon & Kim, 2013). Several data such as frequencies (Wu et al., 2023),
results of sport matches or competitions etc. can also be transformed to
implicit preferences.

Applying the method of paired comparisons is essential in psychol-
ogy (Thurstone, 1927), sports (Csató, 2021; Orbán-Mihálykó et al.,
2022), preference modeling (Choo & Wedley, 2004; Mantik et al.,
2022), ranking (Fürnkranz & Hüllermeier, 2011; Shah & Wainwright,
2018), and decision-making methods (Abel et al., 2022; Stewart, 1992).

Nowadays, more and more attention is paid to incomplete compar-
isons, see for instance (Faramondi et al., 2020; Mondal et al., 2023)
and for a detailed literature review (Ureña et al., 2015).

Through the concept of consistency/inconsistency, we compare
some recent results (Bozóki & Szádoczki, 2022) gained on the domain
of PCMs used by the popular multi-attribute decision-making method
Analytic Hierarchy Process (AHP) (Saaty, 1977) to the outcomes pro-
vided by the also widely used Bradley–Terry model (Bradley & Terry,
1952).

The latter one is a special case of the more general Thurstone-
motivated stochastic models. Both these stochastic methods and the
generalization of the AHP can be used on incomplete data, when
some of the paired comparisons are missing (Harker, 1987; Ishizaka &
Labib, 2011), which is often demonstrated on sports examples (Bozóki
et al., 2016; Orbán-Mihálykó et al., 2019a). However, in this regard,
several theoretical questions have been investigated in the most recent
literature (see for instance Chen et al., 2022; Mazurek & Kułakowski,
2022; Tekile et al., 2023).

AHP-based and stochastic Thurstone-motivated models are signif-
icantly different in their fundamental concepts. In the case of two
different principles of a problem’s solution, the linkage between them is
always motivational: what are the common features and the differences
between the methods. As far as the authors know, only few publications
are devoted to this question. Researchers usually deal with one of the
methods. However, in MacKay et al. (1996), the authors recognize the
following: ‘the two branches resemble each other in that both may be
used to estimate unidimensional scale values for decision alternatives
or stimuli from pairwise preference judgments about pairs of stimuli.
The models differ in other respects.’ Nevertheless, in Genest and M’lan
(1999) the authors compare the AHP-based methods and the Bradley–
Terry model in the case of complete comparisons and they prove that in
special cases some different types of techniques provide equal solutions.
In Orbán-Mihálykó et al. (2015), the authors compared numerically the
AHP and Thurstone methods: evaluating a real data set on a 5-value
scale, the numerical results provided by the different methods were
very close to each other. Temesi et al. (2023) compare the rankings
provided by the AHP and the Bradley–Terry model on a real incomplete
data set. Further numerical comparisons for incomplete data can be
2

found in Orbán-Mihálykó et al. (2019a).
Consistency/inconsistency of PCMs is a focal issue in the case of
pairwise comparisons (Brunelli, 2018; Duleba & Moslem, 2019) as well
as for fuzzy decisions, such as various incomplete linguistic preference
relations (Liu et al., 2022, 2021; Wang et al., 2023, 2021), but it is
not investigated in stochastic models. The results’ compatibility with
real experiences is related to the inconsistency of the PCM: discrepancy
may appear even in the case of complete comparisons. The question
necessarily raises: what does the consistency mean in the BT model?

In the case of missing comparisons, two further aspects have a cru-
cial effect on the results in every model, namely, the number of known
comparisons, and their arrangement. Our approach is strongly relying
on the graph representation of incomplete paired comparisons (Gass,
1998). We are determining the best representing graphs (the best
pattern of known comparisons) in the Bradley–Terry model for all
possible numbers of comparisons (edges) for a given number of alter-
natives (vertices). The importance of the pattern of known comparisons
in PCMs has been investigated for some special cases by Szádoczki
et al. (2022b), who emphasized the effect of (quasi-)regularity and the
minimal diameter (longest shortest path) property of the representing
graphs. Szádoczki et al. (2022a) also examined some additional ordinal
information in the examples studied by them. Finally, Bozóki and
Szádoczki (2022) have investigated all the possible filling in patterns
of incomplete PCMs, and determined the best ones for all possible (𝑛, 𝑒)
pairs up until 6 alternatives with the help of simulations, where 𝑛 is the
number of items to be compared, while 𝑒 is the number of compared
pairs. Their main findings (besides the concrete graphs) are (i) the
star graph is always optimal among spanning trees; (ii) regularity and
bipartiteness are important properties of optimal filling patterns.

To the best of the authors’ knowledge, there has been no similar
study on the family of stochastic models, thus in this paper we would
also like to fill in this research gap.

3. Preliminaries of the applied methods

3.1. Analytic hierarchy process

The AHP methodology is based on PCMs, which can be used to eval-
uate alternatives according to a criterion or to compare the importance
of the different criteria.

Definition 1 (Pairwise Comparison Matrix (PCM)). Let us denote the
number of items to be compared (usually criteria or alternatives) in a
decision problem by 𝑛. The 𝑛 × 𝑛 matrix 𝐴 = [𝑎𝑖𝑗 ] is called a pairwise
comparison matrix, if it is positive (𝑎𝑖𝑗 > 0 for ∀ 𝑖 and 𝑗), and reciprocal
(1∕𝑎𝑖𝑗 = 𝑎𝑗𝑖 for ∀ 𝑖 and 𝑗).

𝑎𝑖𝑗 , the general element of a PCM, shows how many times item 𝑖 is
better/more important than item 𝑗. In an ideal case, these elements are
not contradicting to each other, thus we are dealing with a consistent
PCM.

Definition 2 (Consistent PCM). A PCM is called consistent if 𝑎𝑖𝑘 = 𝑎𝑖𝑗𝑎𝑗𝑘
or ∀𝑖, 𝑗, 𝑘. If a PCM is not consistent, then it is said to be inconsistent.

emark 1. A PCM is consistent if and only if its elements can be
ritten in the form of 𝑎𝑖𝑗 = 𝑤𝑖∕𝑤𝑗 for ∀𝑖, 𝑗.

In practical problems, the PCMs filled in by decision-makers are
sually not consistent, and because of that, there is a large literature on
ow to measure the inconsistency of these matrices (Brunelli, 2018).
ecently even a general framework has been proposed for defining

nconsistency indices of reciprocal pairwise comparisons (Bortot et al.,
022).

In the case of consistent PCMs all the different weight calculation
echniques result in the same weight (prioritization/preference) vector
hat determines the ranking of the compared items. However, for in-
onsistent data, the results of different weight calculation methods can



Expert Systems With Applications 229 (2023) 120522L. Gyarmati et al.

a

D

p

e
i
o
w
o
S

t
(
t

D
s
o
o
a

c

D
m
c

𝑎

f
(

p
o

3

T
t
K
o
m
r
a
r
t
c
t

O
a
c
d
i

d

𝑝

𝑝

w

𝐹

t

f
o

𝐿

vary. Two of the most commonly used techniques are the logarithmic
least squares method (Crawford & Williams, 1985) and the eigenvector
method (Saaty, 1977).

Definition 3 (Logarithmic Least Squares Method (LLSM)). Let 𝐴 be an
𝑛 × 𝑛 PCM. The weight vector 𝑤 of 𝐴 determined by the LLSM is given
s follows:

min
𝑤

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1

(

ln(𝑎𝑖𝑗 ) − ln
(

𝑤𝑖
𝑤𝑗

))2
, (1)

where 𝑤𝑖 is the 𝑖th element of 𝑤, 0 < 𝑤𝑖 and ∑𝑛
𝑖=1 𝑤𝑖 = 1.

efinition 4 (Eigenvector Method (EM)). Let 𝐴 be an 𝑛 × 𝑛 PCM. The
weight vector w of 𝐴 determined by the EM is defined as follows:

𝐴 ⋅𝑤 = 𝜆max ⋅𝑤 (2)

where 𝜆max is the principal eigenvalue of 𝐴, and the componentwise
ositive eigenvector 𝑤 is unique up to a scalar multiplication.

These techniques can be generalized to the case when some el-
ments are absent from the PCM, when we have to deal with an
ncomplete pairwise comparison matrix (IPCM). For IPCMs the LLSM’s
ptimization problem only includes the known elements of the matrix,
hile the EM is based on the Consistency Ratio-minimal completion
f the IPCM and its principal right eigenvector (Bozóki et al., 2010;
hiraishi & Obata, 2002; Shiraishi et al., 1998).

It is also worth mentioning that the inconsistency indices and
heir respective thresholds can also be generalized for the IPCM case
Ágoston & Csató, 2022; Kułakowski & Talaga, 2020). A suitable tool
o handle IPCMs is to use their graph representation (Gass, 1998).

efinition 5 (Representing Graph of An IPCM). An IPCM 𝐴 is repre-
ented by the undirected graph 𝐺𝐸 = (𝑉 ,𝐸), where the vertex set 𝑉
f 𝐺𝐸 corresponds to the items to be compared (alternatives/criteria)
f 𝐴, and there is an edge in the edge set 𝐸 of 𝐺𝐸 if and only if the
ppropriate element of 𝐴 is known.

The generalized definition of a consistent PCM in the incomplete
ase is as follows (Bozóki & Tsyganok, 2019):

efinition 6 (Consistent IPCM). An incomplete pairwise comparison
atrix (IPCM) 𝐴 represented by the graph 𝐺𝐸 = (𝑉 ,𝐸) is called

onsistent, if

𝑖1𝑖2 ⋅ 𝑎𝑖2𝑖3 ⋅… ⋅ 𝑎𝑖𝑘𝑖1 = 1 (3)

or any cycle in 𝐺𝐸 that is
(

𝑖1, 𝑖2,… , 𝑖𝑘, 𝑖1
)

, for which (𝑖𝑙 , 𝑖𝑙+1) ∈ 𝐸 and
𝑖𝑘, 𝑖1) ∈ 𝐸.

All the definitions introduced in this section can be modified ap-
lying additive or reciprocal (fuzzy) PCMs instead of the multiplicative
nes (Brunelli, 2014).

.2. Stochastic approach: The Bradley–Terry model

From the stochastic branch, this paper investigates the Bradley–
erry model (BT) for two options, worse and better. It is worth men-
ioning that the Bradley–Terry model is generalized for ties in Rao and
upper (1967), but we deal with the model that is allowing only two
ptions. It is a special case of the more general Thurstone-motivated
odel, in which the performances of the objects are considered to be

andom variables 𝜉𝑖 with expected values 𝑚𝑖, 𝑖 = 1, 2,… , 𝑛. The result of
comparison is connected to the realized value of the difference of the

andom variables 𝜉𝑖−𝜉𝑗 = 𝑚𝑖−𝑚𝑗+𝜂𝑖,𝑗 . If the result of the comparison is
hat ‘𝑖 is worse than 𝑗’, then the difference is negative. Vice versa, the
omparison result that ‘𝑖 is better than 𝑗’ means that the difference of
3

he random variables belonging to the objects 𝑖 and 𝑗 is non-negative.
f course, ‘𝑖 is worse than 𝑗’ means that ‘𝑗 is better than 𝑖’. 𝜂𝑖,𝑗 (𝑖 < 𝑗)
re supposed to be independent continuous random variables with a
ommon cumulative distribution function (c.d.f.) 𝐹 . The probability
ensity function 𝑓 is supposed to be symmetric, positive on R, and
ts logarithm is strictly concave.

The probabilities of the above-mentioned events (worse and better),
ue to the symmetry, are as follows.

𝑖,𝑗,1 = 𝑃 (𝜉𝑖 − 𝜉𝑗 < 0) = 𝐹 (0 − (𝑚𝑖 − 𝑚𝑗 )) = 𝐹 (𝑚𝑗 − 𝑚𝑖) = 𝑝𝑗,𝑖,2 (4)

𝑖,𝑗,2 = 𝑃 (0 ≤ 𝜉𝑖 − 𝜉𝑗 ) = 1 − 𝑝𝑖,𝑗,1 = 𝐹 (𝑚𝑖 − 𝑚𝑗 ) = 𝑝𝑗,𝑖,1 (5)

If 𝐹 is the standard normal cumulative distribution function, then
e are dealing with the Thurstone model. In the case, when

(𝑥) = 1
1 + exp(−𝑥)

, (6)

the c.d.f. of the logistic distribution, then we are applying the BT model.
In the case of the BT model, one can check that

𝑝𝑖,𝑗,1 =
exp(𝑚𝑗 )

exp(𝑚𝑖) + exp(𝑚𝑗 )
, (7)

and

𝑝𝑖,𝑗,2 =
exp(𝑚𝑖)

exp(𝑚𝑖) + exp(𝑚𝑗 )
. (8)

In the rest of the paper, we focus on the case of the logistic distribution.
Let 𝐷𝑖,𝑗,1 be the number of comparisons when ‘𝑖 is worse than 𝑗’ and
let 𝐷𝑖,𝑗,2 be the number of comparisons when ‘𝑖 is better than 𝑗’. For
he sake of simplicity, 𝐷𝑖,𝑖,1 = 𝐷𝑖,𝑖,2 = 0. Data matrix 𝐷 contains the

elements 𝐷𝑖,𝑗,𝑘, and its dimension is 𝑛 × 𝑛 × 2. Obviously 𝐷𝑖,𝑗,1 = 𝐷𝑗,𝑖,2
and 𝐷𝑖,𝑗,2 = 𝐷𝑗,𝑖,1, and the data matrix can also be written in a two-
dimensional matrix form as follows: the row number is the number of
pairs for which 𝑖 < 𝑗, 𝑛(𝑛 − 1)∕2, while the number of columns is the
number of options (better and worse), 2. We use the same notation 𝐷
or both data forms. If the decisions are independent, the probability
f sample 𝐷 as a function of the parameters is as follows,

(𝐷|𝑚) =
𝑛−1
∏

𝑖=1

𝑛
∏

𝑗=𝑖+1
𝑝
𝐷𝑖,𝑗,1
𝑖,𝑗,1 ⋅ 𝑝

𝐷𝑖,𝑗,2
𝑖,𝑗,2 . (9)

The maximum likelihood estimation (MLE) of the parameter vector
𝑚 is the 𝑛-dimensional argument �̂� for which function (9) reaches its
maximal value. As (9) depends only on the differences of the expected
values, one parameter can be fixed (for example 𝑚1 = 0). Supposing
this, in Ford Jr (1957) the author proves a necessary and sufficient
condition that guarantees the existence and uniqueness of the MLE
in the BT model: the directed graph of the comparisons has to be
strongly connected. In this case, the vertices are the items to compare,
as previously, and there is a directed edge from item 𝑖 to item 𝑗 if
0 < 𝐷𝑖,𝑗,2 and from item 𝑗 to item 𝑖 if 0 < 𝐷𝑖,𝑗,1 (𝑖 < 𝑗).

Instead of (9), frequently the log-likelihood,

ln𝐿(𝐷|𝑚) =
𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
(𝐷𝑖,𝑗,1 ⋅ ln(𝑝𝑖,𝑗,1) +𝐷𝑖,𝑗,2 ⋅ ln(𝑝𝑖,𝑗,2)) (10)

is maximized. Its maximum value is at the same argument, as the
maximum of (9). The condition for the existence and uniqueness of the
maximal point is the same, as mentioned before. Note, that the matrix
𝐷 can be multiplied by an arbitrary positive number, and the argument
of the maximal value of (9) and (10) does not change. This can be
easily seen in (10). This means that the values of 𝐷𝑖,𝑗,𝑘, 𝑘 = 1, 2 are
not necessarily integers or rational numbers. We will use this property
during the investigations in the next section.
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4. Connection between the BT and PCM models

4.1. Consistent data matrix evaluation

The vector of the estimated expected values �̂� can be converted into
weight vector by a strictly monotone transformation as follows:

̂ =

(

exp(�̂�1)
∑𝑛

𝑖=1 exp(�̂�𝑖)
,… ,

exp(�̂�𝑛)
∑𝑛

𝑖=1 exp(�̂�𝑖)

)

. (11)

Similarly, if the exact expected values 𝑚 were known, a weight
(priority) vector could be constructed as follows:

𝑤 =

(

exp(𝑚1)
∑𝑛

𝑖=1 exp(𝑚𝑖)
,… ,

exp(𝑚𝑛)
∑𝑛

𝑖=1 exp(𝑚𝑖)

)

. (12)

his transformation eliminates the effect of the fixed parameter. The
eights are positive and their sum equals to 1, as in the case of AHP.
ow starting from a normalized vector with positive components
(𝑃𝐶𝑀) =

(

𝑤(𝑃𝐶𝑀)
1 ,… , 𝑤(𝑃𝐶𝑀)

𝑛

)

, (13)

we can construct a consistent PCM (Remark 1), containing the ratios of
the coordinates

𝑎𝑖,𝑗 =
𝑤(𝑃𝐶𝑀)

𝑖

𝑤(𝑃𝐶𝑀)
𝑗

, 𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑛. (14)

imilarly, taking the ratios of the coordinates of (12), a PCM can be con-
tructed, whose elements are the exponential values of the differences
f the expected values: 𝑎(𝐵𝑇 )𝑖,𝑗 = exp(𝑚𝑖 −𝑚𝑗 ) 𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑛.

In the case of BT, due to (7) and (8), these ratios are exactly the ratios
of the probabilities of ‘better’ and ‘worse’.

It is a well-known fact, that, in the case of AHP, either EM or LLSM is
applied, supposing a complete and consistent PCM composed by (14),
the starting vector 𝑤(𝑃𝐶𝑀) will be the result of the methods. On the
ther hand, if the PCM is complete and consistent, its elements can
e expressed as the ratios of the components of a weight vector. This
riority vector equals the result of the evaluation of the PCM via LLSM
r EM. From Bozóki et al. (2010) it is also known that in the case of
ncomplete comparisons, the existence and uniqueness of the computed
riority vector of EM and LLSM holds if and only if the representing
raph of the comparisons (see Definition 5) is connected. This implies
hat even in the case of incomplete comparisons with a consistent IPCM
onstructed by (14), if the representing graph is connected, then the
tarting 𝑤(𝑃𝐶𝑀) would be recovered by LLSM and EM, too.

Accordingly, in the following, we state a theorem that proves that
f the coefficients 𝐷𝑖,𝑗,𝑘 are the exact probabilities of the possible
omparisons’ results, then the MLE recovers the exact expected values
n both complete and incomplete cases.

First, let 𝐾 = {(𝑖, 𝑗) ∶ 𝑖 ≠ 𝑗} be the pairs of all possible comparisons.
n the case of incomplete comparisons, let 𝐼 ⊂ 𝐾 with pairs 𝑖 < 𝑗. Every
ubset 𝐼 defines a representing graph 𝐺𝐼 , exactly as in Definition 5.

Theorem 1. Let F be the logistic c.d.f. (6). Let our starting vector be
𝑚(0) = (0, 𝑚(0)

2 ,… , 𝑚(0)
𝑛 ), an arbitrary expected value vector with a fixed

irst coordinate. Let the data belonging to 𝑚(0) be defined as follows:
(𝑑)
𝑖,𝑗,1 = 𝐹 (𝑚(0)

𝑗 − 𝑚(0)
𝑖 ), (15)

nd
(𝑑)
𝑖,𝑗,2 = 𝐹 (𝑚(0)

𝑖 − 𝑚(0)
𝑗 ). (16)

Let the incomplete data matrix 𝐷(𝑚(0)) be defined as follows: 𝐷(𝑚(0))
𝑖,𝑗,1 =

(𝑚(0))
𝑗,𝑖,2 = 𝐷(𝑑)

𝑖,𝑗,1 and 𝐷(𝑚(0))
𝑖,𝑗,2 = 𝐷(𝑚(0))

𝑗,𝑖,1 = 𝐷(𝑑)
𝑖,𝑗,2 if (𝑖, 𝑗) ∈ 𝐼 and zero otherwise.

Fix the first coordinate of 𝑚 at 0. If the graph belonging to 𝐼 is connected,
hen the log-likelihood function,

n𝐿(𝐷(𝑚(0))
|𝑚) =

∑

(

𝐷(𝑚(0))
𝑖,𝑗,1 ⋅ ln 𝑝𝑖,𝑗,1 +𝐷(𝑚(0))

𝑖,𝑗,2 ⋅ ln 𝑝𝑖,𝑗,2
)

, (17)
4

𝑖<𝑗,(𝑖,𝑗)∈𝐼
attains its maximal value at �̂�=𝑚(0) and the argument of the maximal value
is unique.

Proof. First we note that the connectedness of the graph defined by 𝐼
and its strongly connected property are equivalent in this case, as both
𝐷(𝑚(0))

𝑖,𝑗,1 and 𝐷(𝑚(0))
𝑖,𝑗,2 are positive in the case of (𝑖, 𝑗) ∈ 𝐼 . Recalling that

(𝑚(0))
𝑖,𝑗,1 +𝐷(𝑚(0))

𝑖,𝑗,2 = 1 and 𝑝𝑖,𝑗,2 = 1 − 𝑝𝑖,𝑗,1,(17) has the following form:

(𝑥1,… , 𝑥𝑘) =
𝑘
∑

𝑠=1
𝐶𝑠 ⋅ln 𝑥𝑠+(1−𝐶𝑠)⋅ln(1−𝑥𝑠), 0 < 𝑥𝑠 < 1, 0 < 𝐶𝑠 < 1. (18)

here 𝐶𝑠 = 𝐷(𝑚(0))
𝑖,𝑗,1 , 𝑥𝑠 = 𝑝𝑖,𝑗,1, 𝑘 is the number of elements (𝑖, 𝑗) in the set

for which 𝑖<𝑗 and we made a one-to-one correspondence 𝑍 between
hese pairs in 𝐼 and the positive integers 1, 2,… , 𝑘, 𝑍(𝑖, 𝑗) = 𝑠, (𝑖, 𝑗) ∈ 𝐼 ,
𝑖<𝑗.

If we consider the multivariate function (18), we can see that it takes
its maximal value at 𝑥𝑠 = 𝐶𝑠, 𝑠 = 1, 2,… , 𝑘, and the argument of the
maximum is unique. Now the question is whether 𝐶 can be expressed
by an expected value vector, for example in the form 𝐶𝑠 = 𝐹 (𝑚𝑗 − 𝑚𝑖),
(𝑖, 𝑗) = 𝑠. It does not hold for an arbitrary vector 𝐶, but since 𝐶𝑠 =

𝐷(𝑚(0))
𝑖,𝑗,1 , (𝑍(𝑖, 𝑗) = 𝑠), then 𝑚(0) provides a possible solution for the above

question, 𝐶𝑠 = 𝐹 (𝑚(0)
𝑗 −𝑚(0)

𝑖 ), due to the construction of the coefficients.
n the other hand, taking into account the connectedness of the graph
efined by 𝐼 , the condition in Ford Jr (1957) is satisfied, therefore
he argument maximizing (17), �̂�, is unique. These together imply that
�̂� = 𝑚(0). ■

First, we note that Theorem 1 remains true if the coefficients 𝐶𝑠
are multiplied by a positive constant value, therefore only the ratios of
𝐷(𝑚(0))

𝑖,𝑗,𝑘 are relevant.
Theorem 1 states that if the coefficients are the exact probabilities

elonging to an expected value vector, then the maximum likelihood
stimation reproduces the exact expected value vector. In addition,
tarting with an expected value vector, computing the exact proba-
ilities by (15) and (16), moreover constructing a consistent IPCM
atrix from the ratios of the probabilities 𝑝𝑖,𝑗,2∕𝑝𝑖,𝑗,1, LLSM, EM and

the priority vector of BT (12) are the same weight vectors. In these
special cases the results of the three methods correspond even for
incomplete comparisons. The fact that the coefficients are the exact
probabilities belonging to an expected value vector means that there
is no contradiction in them. On the other hand, the property of ‘free of
contradictions’ is described by the concept of consistency in the case
of PCM and IPCM matrices. Additionally, in Section 3.2 the data 𝐷𝑖,𝑗,1
and 𝐷𝑖,𝑗,2 are integers, not probabilities. Still, if they are all positive, a
complete PCM matrix can be composed by taking the ratios 𝐷𝑖,𝑗,2/𝐷𝑖,𝑗,1
and 𝐷𝑖,𝑗,1/𝐷𝑖,𝑗,2. If for a certain pair (𝑖, 𝑗) 𝐷𝑖,𝑗,1 = 0 and/or 𝐷𝑖,𝑗,2 = 0,
the IPCM matrix will not contain the element 𝑎𝑖,𝑗 and 𝑎𝑗,𝑖.

The consistency of an incomplete PCM is given in Definition 6.
Taking this definition as the basis, we define the concept of consistent
data in the case of the BT model as follows. Let 𝐼 be the subset of those
pairs for which there exist comparisons and both data are positive, i.e,
𝐼 =

{

(𝑖, 𝑗) ∶ 𝑖 ≠ 𝑗, 0 < 𝐷𝑖,𝑗,1, 0 < 𝐷𝑖,𝑗,2
}

⊆ 𝐾.

Definition 7. Let 𝐼 ⊂ 𝐾, and let the graph 𝐺𝐼 be connected. Introduce
ℎ𝑖,𝑗 =

𝐷𝑖,𝑗,2
𝐷𝑖,𝑗,1

, (𝑖, 𝑗) ∈ 𝐼 . Data matrix 𝐷 is called consistent in 𝐼 , if for any
cycle in 𝐺𝐼 , that is (𝑖1, 𝑖2,… , 𝑖𝑘, 𝑖1), with (𝑖𝑙 , 𝑖𝑙+1) ∈ 𝐼 and (𝑖𝑘, 𝑖1) ∈ 𝐼

ℎ𝑖1 ,𝑖2 ⋅ ℎ𝑖2 ,𝑖3 ⋅ ... ⋅ ℎ𝑖𝑘 ,𝑖1 = 1. (19)

Data matrix 𝐷 is called inconsistent in 𝐼 if it is not consistent in 𝐼 .

Data consistency is defined by the consistency of IPCM constructed
by the ratios of the appropriate data in 𝐷. Now we prove the following
statement, which is an equivalent form, but presents another feature of
data consistency in the BT model:
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Theorem 2. Let 𝐼 define a connected graph. Data matrix D is consistent
n 𝐼 if and only if there exists an 𝑚(0) ∈ R𝑛, 𝑚(0) = (0, 𝑚(0)

2 ,… , 𝑚(0)
𝑛 ) for

hich

𝐷𝑖,𝑗,2

𝐷𝑖,𝑗,1
=

𝐹 (𝑚(0)
𝑖 − 𝑚(0)

𝑗 )

𝐹 (𝑚(0)
𝑗 − 𝑚(0)

𝑖 )
, (𝑖, 𝑗) ∈ 𝐼 (20)

roof. As a first step, let 𝐼 be a spanning tree. As 0 < 𝐷𝑖,𝑗,1 and
< 𝐷𝑖,𝑗,2 if (𝑖, 𝑗) ∈ 𝐼 , we know that the graph 𝐺𝐼 is strongly connected,

he MLE exists and it is unique. Let us investigate the log-likelihood
unction in the form of a multivariate function, as in Theorem 1, with
he coefficients 𝐷𝑖,𝑗,1 and 𝐷𝑖,𝑗,2 (see (18)). Taking the partial derivatives
ith respect to 𝑥𝑠, we can conclude that the maximum is at 𝑥𝑠 =
𝑖,𝑗,1∕(𝐷𝑖,𝑗,1+𝐷𝑖,𝑗,2). We have to prove that there exists an 𝑛-dimensional
ector 𝑚(0) = (0, 𝑚(0)

2 ,… , 𝑚(0)
𝑛 ), for which 𝐷𝑖,𝑗,1∕(𝐷𝑖,𝑗,1 +𝐷𝑖,𝑗,2) = 𝐹 (𝑚(0)

𝑗 −
𝑚(0)
𝑖 ). For that, consider the following form:

𝑚𝑗 − 𝑚𝑖 = 𝐹−1
( 𝐷𝑖,𝑗,1

𝐷𝑖,𝑗,1 +𝐷𝑖,𝑗,2

)

. (21)

It is easy to see that this system of linear equations can be uniquely
solved if (𝑖, 𝑗) ∈ 𝐼 , after fixing 𝑚1 = 0. Denoting the solution by
(0) = (0, 𝑚(0)

2 ,… , 𝑚(0)
𝑛 ), we get

𝐷𝑖,𝑗,2

𝐷𝑖,𝑗,1
=

𝐹 (𝑚(0)
𝑖 − 𝑚(0)

𝑗 )

𝐹 (𝑚(0)
𝑗 − 𝑚(0)

𝑖 )
=

exp(𝑚(0)
𝑖 )

exp(𝑚(0)
𝑗 )

. (22)

e note that if 𝐼 is a spanning tree, but 𝐷𝑖,𝑗,1 = 0 or 𝐷𝑖,𝑗,2 = 0 for some
(𝑖, 𝑗) ∈ 𝐼 , then the MLE does not exist, as the necessary and sufficient
condition given by Ford is not satisfied.

In the second step, let 𝐼 be a general subset of 𝐾 with 0 < 𝐷𝑖,𝑗,1
and 0 < 𝐷𝑖,𝑗,2 if (𝑖, 𝑗) ∈ 𝐼 , moreover assume that 𝐼 defines a connected
graph. Take a spanning tree 𝐼𝑏 ⊆ 𝐼 . Let 𝑚 (0) = �̂�𝐼𝑏

, the MLE of the
xpected value vector belonging to the data set 𝐷𝑖,𝑗,𝑘, (𝑖, 𝑗) ∈ 𝐼𝑏. Now

(20) is satisfied if (𝑖, 𝑗) ∈ 𝐼𝑏. If (𝑖, 𝑗) ∉ 𝐼𝑏, there exists a cycle in 𝐼 , (𝑖1,
𝑖2, …, 𝑖𝑘, 𝑖1,) 𝑖1 = 𝑖, 𝑖𝑘 = 𝑗, (𝑖1, 𝑖2), (𝑖2, 𝑖3), …, (𝑖𝑘−1, 𝑖𝑘) ∈ 𝐼𝑏. Therefore,
for 𝑙 = 1, 2,… , 𝑘 − 1,

ℎ𝑖𝑙 ,𝑖𝑙+1 =
𝐷𝑖𝑙 ,𝑖𝑙+1 ,2

𝐷𝑖𝑙 ,𝑖𝑙+1 ,1
=

𝐹 (𝑚(0)
𝑖𝑙+1

− 𝑚(0)
𝑖𝑙
)

𝐹 (𝑚(0)
𝑖𝑙

− 𝑚(0)
𝑖𝑙+1

)
=

exp(𝑚(0)
𝑖𝑙
)

exp(𝑚(0)
𝑖𝑙+1

)
. (23)

aking the productions of these quantities along the path from 𝑖 to 𝑗
nd applying (19), the left-hand side is 1

ℎ𝑗,𝑖
= ℎ𝑖,𝑗 , while the right hand

side equals

exp(𝑚(0)
𝑖 )

exp(𝑚(0)
𝑗 )

=
𝐹 (𝑚(0)

𝑖 − 𝑚(0)
𝑗 )

𝐹 (𝑚(0)
𝑗 − 𝑚(0)

𝑖 )
, (24)

hich proves (20) for any (𝑖, 𝑗) ∈ 𝐼 .
Conversely, assume that

𝐷𝑖,𝑗,2

𝐷𝑖,𝑗,1
=

𝐹 (𝑚(0)
𝑖 − 𝑚(0)

𝑗 )

𝐹 (𝑚(0)
𝑗 − 𝑚(0)

𝑖 )
(25)

if (𝑖, 𝑗) ∈ 𝐼 . Applying again the equality

𝐹 (𝑚(0)
𝑖 − 𝑚(0)

𝑗 )

𝐹 (𝑚(0)
𝑗 − 𝑚(0)

𝑖 )
=

exp(𝑚(0)
𝑖 )

exp(𝑚(0)
𝑗 )

, (26)

and taking their product on a cycle (𝑖1, 𝑖2,… , 𝑖𝑘, 𝑖1) with (𝑖𝑙 , 𝑖𝑙+1) ∈
𝐼, (𝑖𝑘, 𝑖1) ∈ 𝐼 , after simplification we get (19), namely

ℎ𝑖1 ,𝑖2 ⋅ℎ𝑖2 ,𝑖3 ⋅... ⋅ ℎ𝑖𝑘 ,𝑖1 = 1. (27)

■

We note, that if 𝐷 is consistent in 𝐼 and 𝐺𝐼 is a connected graph,
then 𝑚(0) = (0, 𝑚(0)

2 ,… , 𝑚(0)
𝑛 ) in (20) is unique. Recalling Theorem 1,

𝑚(0) equals to the evaluation of the MLE. The conclusion of Section 4.1
s that in the case of consistent comparison data 𝐷 and connected
5

representing graph, the evaluations of BT, LLSM and EM provide the
same priority vector. In other words, the results of these three methods
coincide both in complete and incomplete cases. The ratio 𝐷𝑖,𝑗,2

𝐷𝑖,𝑗,1
is

common in sports results’ evaluations: the ratios of the number of wins
and defeats often appear in PCMs (for example in Bozóki et al., 2016).
Therefore, in this case, supposing consistent data, the evaluation of BT,
LLSM and EM would be the same. As an example, consider

𝐷 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐷1,2,1 𝐷1,2,2
𝐷1,3,1 𝐷1,3,2
𝐷1,4,1 𝐷1,4,2
𝐷2,3,1 𝐷2,3,2
𝐷2,4,1 𝐷2,4,2
𝐷3,4,1 𝐷3,4,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2
1 2
1 1
1 1
2 1
2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (28)

The PCM constructed based on these data is

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝐷1,2,2
𝐷1,2,1

𝐷1,3,2
𝐷1,3,1

𝐷1,4,2
𝐷1,4,1

𝐷1,2,1
𝐷1,2,2

1 𝐷2,3,2
𝐷2,3,1

𝐷2,4,2
𝐷2,4,1

𝐷1,3,1
𝐷1,3,2

𝐷2,3,1
𝐷2,3,2

1 𝐷3,4,2
𝐷3,4,1

𝐷1,4,1
𝐷1,4,2

𝐷2,4,1
𝐷2,4,2

𝐷3,4,1
𝐷3,4,2

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

1 2 2 1
1
2 1 1 1

2
1
2 1 1 1

2
1 2 2 1

⎞

⎟

⎟

⎟

⎟

⎠

. (29)

One can easily check that data matrix 𝐷 is consistent and so is 𝐴.
Performing MLE in BT model, the estimated expected value vector
equals

�̂� = (0,−0.693,−0.693, 0) (30)

and the priority vector is

�̂�(𝐵𝑇 ) = (1
3
, 1
6
, 1
6
, 1
3
). (31)

ne can check that, applying PCM 𝐴, LLSM and EM also provide the
ame priority vector.

.2. Inconsistent data matrices’ evaluations

In Section 4.1, we proved that in the case of consistent comparison
ata, LLSM, EM and BT result in the same priority vectors. However,
he following example demonstrates that in case of inconsistent data,
he three methods provide different priority vectors both for complete
nd incomplete cases.

Let 𝑛=4, 𝑚(0) = (0, 0.25, 0.75, 1.75). The probabilities of the compar-
isons’ results are

𝐷(𝑚(0)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑝1,2,1 𝑝1,2,2
𝑝1,3,1 𝑝1,3,2
𝑝1,4,1 𝑝1,4,2
𝑝2,3,1 𝑝2,3,2
𝑝2,4,1 𝑝2,4,2
𝑝3,4,1 𝑝3,4,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.562 0.438
0.679 0.321
0.852 0.148
0.622 0.378
0.818 0.182
0.731 0.269

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (32)

These data are consistent. If we modify 𝑝3,4,1 and 𝑝3,4,2 by subtract-
ing/adding 0.2, we get the modified data matrix

𝐷(mod) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑝1,2,1 𝑝1,2,2
𝑝1,3,1 𝑝1,3,2
𝑝1,4,1 𝑝1,4,2
𝑝2,3,1 𝑝2,3,2
𝑝2,4,1 𝑝2,4,2
𝑝(mod)
3,4,1 𝑝(mod)

3,4,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.562 0.438
0.679 0.321
0.852 0.148
0.622 0.378
0.818 0.182
0.531 0.469

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (33)

One can check that 𝐷(mod) is inconsistent. The corresponding PCM is

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

1 𝑝1,2,2
𝑝1,2,1

𝑝1,3,2
𝑝1,3,1

𝑝1,4,2
𝑝1,4,1

𝑝1,2,1
𝑝1,2,2

1 𝑝2,3,2
𝑝2,3,1

𝑝2,4,2
𝑝2,4,1

𝑝1,3,1
𝑝1,3,2

𝑝2,3,1
𝑝2,3,2

1
𝑝(mod)
3,4,2

𝑝(mod)
3,4,1

𝑝1,4,1 𝑝2,4,1 𝑝(mod)
3,4,1
(mod) 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0.779 0.472 0.174
1.284 1 0.607 0.223
2.117 1.649 1 0.883
5.755 4.482 1.132 1

⎞

⎟

⎟

⎟

⎟

⎠

.

⎝

𝑝1,4,2 𝑝2,4,2 𝑝3,4,2 ⎠
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Fig. 1. Optimal graphs for 𝑛 = 5, 𝑒 = 4, 5,… , 10.

(34)

One can easily check that 𝐴 is not consistent. For example, take
𝑎1,3
𝑎1,4

= 0.472
0.174

= 2. 713 ≠ 𝑎4,3 = 1.132. (35)

The result vectors computed by LLSM and EM are

𝑤(𝐿𝐿𝑆𝑀) = (0.105, 0.135, 0.276, 0.484) , (36)

𝑤(𝐸𝑀) = (0.103, 0.132, 0.279, 0.485) . (37)

If we evaluate data matrix 𝐷(mod) by BT via MLE, the estimated
expected values are

�̂� = (0, 0.246, 0.954, 1.450) . (38)

Transforming this into a weight vector we get

�̂�(𝐵𝑇 ) = (0.109, 0.140, 0.284, 0.466) . (39)

�̂�(𝐵𝑇 ) differs from 𝑤(𝐿𝐿𝑆𝑀) and 𝑤(𝐸𝑀) , demonstrating that, in the
case of inconsistent data, the evaluations of LLSM, EM and BT provide
different results. We can observe the same phenomenon if we restrict
the data to the set

𝐼 = (1, 2), (1, 3), (1, 4), (3, 4), (2, 1), (3, 1), (4, 1), (4, 3) ,
6

{ }
that is we evaluate incomplete comparisons.

𝐷(mod)
𝐼 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑝1,2,1 𝑝1,2,2
𝑝1,3,1 𝑝1,3,2
𝑝1,4,1 𝑝1,4,2
𝑝(mod)
3,4,1 𝑝(mod)

3,4,2

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0.562 0.438
0.679 0.321
0.852 0.148
0.531 0.469

⎞

⎟

⎟

⎟

⎟

⎠

(40)

Now, the incomplete PCM 𝐴𝐼 looks as follows,

𝐴𝐼 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝑝1,2,2
𝑝1,2,1

𝑝1,3,2
𝑝1,3,1

𝑝1,4,2
𝑝1,4,1

𝑝1,2,1
𝑝1,2,2

1 ∗ ∗
𝑝1,3,1
𝑝1,3,2

∗ 1
𝑝(mod)
3,4,2

𝑝(mod)
3,4,1

𝑝1,4,1
𝑝1,4,2

∗
𝑝(mod)
3,4,1

𝑝(mod)
3,4,2

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0.779 0.472 0.174
1.284 1 ∗ ∗
2.117 ∗ 1 0.883
5.755 ∗ 1.132 1

⎞

⎟

⎟

⎟

⎟

⎠

.

(41)

It is inconsistent for the same reason as it was presented in (35). Its
evaluation by LLSM and EM are

𝑤(𝐿𝐿𝑆𝑀)
𝐼 = (0.106, 0.136, 0.301, 0.457) , (42)

and

𝑤(𝐸𝑀)
𝐼 = (0.107, 0.134, 0.302, 0.458) , (43)

respectively. Applying the incomplete and inconsistent data matrix
𝐷(mod)

𝐼 , estimating the expected values by BT via MLE and taking the
priority vector, the result is different from (42) and also from (43),
namely

�̂�𝐼 = (0, 0.250, 1.017, 1.366) (44)

and

�̂�(𝐵𝑇 )
𝐼 = (0.112, 0.143, 0.308, 0.437) . (45)

This incomplete example demonstrates that all three investigated
methods, namely BT, LLSM and EM may provide different results
during the evaluations.

5. Evaluating information retrieval from incomplete comparisons

The information retrieval problem investigated here is strongly con-
nected to the fact that the comparisons provided by the decision-makers
are always costly. Thus, the number of comparisons can easily become a
bottleneck. However, choosing the most appropriate set of comparisons
helps to retrieve the most information estimating the preferences of the
decision-maker, which can be interpreted as the optimal usage of this
costly resource. Our approach can be especially attractive in the case,
when the number of the provided comparisons is uncertain a priori,
e.g., in online questionnaires.

Rather than establishing presumably too complex analytical results,
we perform Monte-Carlo simulations to investigate the information
retrieval from incomplete comparisons in the case of the BT model. The
large number of connected subgraphs (21 in the case of 𝑛 = 5 and 112 in
the case of 𝑛 = 6) also suggests an extensive computational approach.

The steps of the simulations with explanations are the following.

1. Generate 𝑛 random integer values from 1 to 9 with uniform
distribution and normalize them. In this way, a random weight
(priority) vector is created. This will be the initial priority vector
belonging to BT.

2. Take the logarithm of all coordinates and decrease the new
components by the first one. A random vector with zero first
coordinate is now constructed. This vector serves as the initial
random expected value vector in the BT model.

3. Calculate the exact probabilities of the comparison results by
(15) and (16) for all possible pairs. A consistent and complete
system of the comparisons’ results has been generated.
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Fig. 2. Average measures of information retrieval in the case of different graph structures: average distances defined by (46), (47), average correlations defined by (48), (49),
(50) and (51), respectively, comparing 𝑛 = 4 objects and applying 0.15 perturbation.
Fig. 3. Standard deviations of the different measures defined by (46),(47),(48),(49),(50) and (51) in the case of different graph structures comparing 𝑛 = 4 objects and applying
0.15 perturbation.
4. As previously presented, based on consistent comparison results
MLE recovers the initial expected values both in complete and
incomplete cases. Because of that, perturbations are made on the
consistent results as follows: each value 𝐷(𝑚(0))

𝑖,𝑗,1 are modified by
adding to them independent uniformly distributed random num-
bers on [−𝑝𝑒𝑟𝑡𝑢𝑟𝑏, 𝑝𝑒𝑟𝑡𝑢𝑟𝑏]. The value of 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 can be chosen
between 0 and 1. The perturbed values 𝑝𝑒𝑟𝑡𝐷(𝑚(0))

𝑖,𝑗,1 are claimed to
be strictly between 0 and 1.

5. Compute 𝑝𝑒𝑟𝑡𝐷(𝑚(0))
𝑖,𝑗,2 by 𝑝𝑒𝑟𝑡𝐷(𝑚(0))

𝑖,𝑗,2 = 1 − 𝑝𝑒𝑟𝑡𝐷(𝑚(0))
𝑖,𝑗,1 . As 0 <

𝑝𝑒𝑟𝑡𝐷(𝑚(0))
𝑖,𝑗,1 < 1, so is 𝑝𝑒𝑟𝑡𝐷(𝑚(0))

𝑖,𝑗,2 .
6. Use the previously constructed complete comparisons’ results as

data in the BT model, and evaluate them via MLE. The outcome
expected value vector is �̂�𝐾 . The outcome priority vector is �̂�𝐾 .

7. Compute the results belonging to the different graph structures
as follows. For each possible connected graph 𝐼 : apply only the
data belonging to the graph structure and perform MLE in the
BT model. By omitting a subset of comparisons incomplete and
inconsistent data are considered. The existence and uniqueness
7

of the evaluation are guaranteed by the connectedness and by
0 < 𝑝𝑒𝑟𝑡𝐷(𝑚(0))

𝑖,𝑗,1 < 1 and 0 < 𝑝𝑒𝑟𝑡𝐷(𝑚(0))
𝑖,𝑗,2 < 1. The results of the

evaluation in the case of graph structure 𝐼 are denoted by �̂�𝐼

and �̂�𝐼 .
8. The differences between the results belonging to the complete

case and the graph structure 𝐼 can be defined by several mea-
sures. We used Euclidean distance of the estimated expected
value vectors

𝐸𝑈 _𝑀 = 𝐸𝑈 (�̂�𝐾 , �̂�𝐼 ) =

√

√

√

√

𝑛
∑

𝑖=1
(�̂�𝐾

𝑖 − �̂�𝐼
𝑖 )2, (46)

the Euclidean distances of the estimated weight vectors

𝐸𝑈 _𝑊 = 𝐸𝑈 (�̂�𝐾 , �̂�𝐼 ) =

√

√

√

√

𝑛
∑

(�̂�𝐾
𝑖 − �̂�𝐼

𝑖 )2, (47)

𝑖=1
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Fig. 4. Average EU_M and EU_W distances defined by (46) and (47) in the function of the number of graphs’ edges in the case of 𝑛 = 6 and perturbation 0.15.
Fig. 5. Average rank correlations Spearman 𝜌 and Kendall 𝜏 (defined by (50) and (51)) in the function of the number of graphs’ edges in the case of 𝑛 = 6 and perturbation 0.15.
Pearson correlation coefficient belonging to the expected values

𝑃𝐸_𝑀 = 𝑃𝐸(�̂�𝐾 , �̂�𝐼 ) =

∑𝑛
𝑖=1 �̂�

𝐾
𝑖 ⋅�̂�𝐼

𝑖
𝑛 − �̂�

𝐾
⋅ �̂�

𝐼

√

∑𝑛
𝑖=1

(

�̂�𝐾
𝑖 −�̂�

𝐾
)2

𝑛

√

∑𝑛
𝑖=1

(

𝑚𝑖
𝐼−�̂�

𝐼
)2

𝑛

, (48)

and belonging to the priority vectors

𝑃𝐸_𝑊 = 𝑃𝐸(�̂�𝐾 , �̂�𝐼 ) =

∑𝑛
𝑖=1 �̂�

𝐾
𝑖 ⋅�̂�𝐼

𝑖
𝑛 − �̂�

𝐾
⋅ �̂�

𝐼

√

∑𝑛
𝑖=1

(

�̂�𝐾
𝑖 −�̂�

𝐾
)2

𝑛

√

∑𝑛
𝑖=1

(

�̂�𝐼
𝑖 −�̂�

𝐼
)2

𝑛

. (49)

To investigate the similarities of the rankings, the Spearman 𝜌
rank correlation

𝜌 = 𝜌(�̂�𝐾 , �̂�𝐼 ) = 1 −
∑𝑛

𝑖=1 𝑑
2
𝑖 (50)
8

6𝑛(𝑛2 − 1)
where 𝑑𝑖 is the difference in rankings of the 𝑖th object, and the
Kendall 𝜏 rank correlations

𝜏 = 𝜏(�̂�𝐾 , �̂�𝐼 ) = 2
𝑛(𝑛 − 1)

∑

𝑖<𝑗
sign(�̂�𝐾

𝑖 − �̂�𝐾
𝑗 ) ⋅ sign(�̂�

𝐼
𝑖 − �̂�𝐼

𝑗 ) (51)

were applied. These rank correlations are the same either the
expected value vectors’ or the priority vectors’ rankings are
considered. The above-mentioned measurements characterize
the deviations and the similarities in a different manner, hence
providing different measures of information retrieval. In the
case of Euclidean distances, the smaller the value, the more
information is regained, and the less information is lost due
to the incomplete comparisons. In the case of the correlation
coefficients, the closer the result is to 1, the more information is
recovered. We call these measurements similarity measures and
compute all of them for the different graph structures.

9. Repeat the steps 1–8 𝑁 times, where 𝑁 is the number of simu-
lations. These quantities are, of course, random quantities de-
pending on the random values of the data matrix. Take the
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Fig. 6. Euclidean distances between the priority vectors belonging to the optimal graph structure with a given edge number and the complete graph (defined by (46)) in the
function of the number of graphs’ edges in the case of 𝑛 = 6 objects to compare and perturbation 0.15.
Fig. 7. Pearson correlation coefficients between the optimal graphs and the complete graph in the function of the number of graphs’ edges in the case of 𝑛 = 6 objects to compare
and perturbation 0.15.
average and the dispersion of the similarity measures over the
simulations.

We do not know the bounds for the values �̂� but we do for the
other measurements. As they are all bounded, therefore their expected
values and variances are finite. Consequently, both the law of large
numbers and the central limit theorem can be applied to them. The
central limit theorem guarantees the

(

𝑢𝛼 ⋅ 𝜎
)

∕
√

𝑁 upper bound for
the simulation error with reliability 1-𝛼 if 𝜎 is an upper bound for
the standard deviation of the random quantity, and 𝛷(𝑢𝛼) = 1 − 𝛼

2 .
Now, the Euclidean distance of the weight vectors is less than

√

2, the
correlation coefficients are between −1 and 1, therefore the standard
deviations of these quantities are less than or equal to

√

2
2 and 1,

respectively. Using the upper bound 1,
(

𝑢𝛼 ⋅ 𝜎
)

∕
√

𝑁 = (2.58 ⋅ 1) ∕
√

𝑁
when the reliability is 1-𝛼 = 0.99. 𝑁 = 106 simulations were carried out,
thus the theoretical upper bound of the simulation error is 0.00258.
Of course, the estimated standard deviations are much less than the
theoretical upper bounds, therefore the true simulation errors are much
smaller than the theoretical values. They are usually of different order
9

of magnitude. Narrow confidence intervals can be given in which the
means of the quantities are situated with a given reliability.

6. Simulation results

The examined number of objects to compare are 𝑛 = 4, 5 and 6. In
the case of 𝑛 = 4, together with the complete case, 6 graphs can be
distinguished for defining the set of comparisons. Two of them have 3,
two of them have 4, one and one have 5 and 6 edges, respectively. In
the case of 𝑛 = 5 objects, the number of different graphs is 21. While
in the case of 𝑛 = 6, there are 112 different possible graph structures.
We can observe that in almost all cases, for a given number of objects
and a given number of comparisons each similarity measure marks the
same graph to be the best. There are few exceptions for 𝑛 = 6 and large
numbers of edges, namely if 𝑒 = 12 and 13. In the case of e = 12 the best
structure by 𝜌 differs from the best marked by the other measures. If the
number of edges equals 13, then the rank correlations 𝜌 and 𝜏 indicate
graph g109 to be the best, while the other measures indicate g110.
Although the numerical differences are small, this phenomenon appears
independently of the value of the perturbation, moreover, in the case
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Fig. 8. Comparison of the best graph structure with 7 edges and the worst graph structure with 8 edges in the case of 𝑛 = 6 objects to compare and 0.15 perturbation.
Fig. 9. Euclidean distances EU_M and EU_W (defined by (46) and (47)) between the results belonging to the star graph and to the complete graph in the function of the value
of the perturbation in the case of 𝑛 = 4 objects to compare.
of PCM methods, too. The optimal graph structures, sequences and the
exceptions are the same as it was presented in Bozóki and Szádoczki
(2022). Fig. 1 shows the optimal graphs for the different completions
levels. Graphs with 𝑒 and 𝑒 + 1 (𝑒 = 6, 7, 8) edges are reachable from
each other by the addition/deletion of a single (orange) edge.

This observation supports that the most information retrieval be-
longs to the structure of the graph. The independence of the rankings
from the similarity measures can be seen in Fig. 2: graphs g1, g2, …,
and g5 (the complete graph g6 is omitted) are in the same ranking
according to all 6 measurements. It is important to note that the smaller
EU_M and EU_W indicate the better information retrieval, while in
the case of PE_M, PE_W, 𝜌 and 𝜏 the larger value is preferred. Fig. 3
demonstrates that even the standard deviations work the same way in
the case of choosing the best graph, keeping in mind that the smaller
the standard deviation, the smaller the volatility in every measurement.
See, for example, 𝜏 defined by (51): the graph structure g2 is the worst
and g5 is the best, as they have the smallest and largest average values,
respectively. Investigating the dispersion, the largest value belongs to
g2 and the smallest one is for the graph structure g5.
10
Based on the simulations, we can conclude that the larger the
number of edges, the better the information retrieval. This observation
is true in average and for the best graphs, as well, for all the examined
number of objects (4, 5 and 6), for all the perturbation values and for all
the investigated measurements. Fig. 4 presents the average distances,
when the averages contain the data of the graphs with 5, 6, …, and
14 edges independently of the graph structures. Fig. 5 represents the
averaged rank correlations 𝜌 and 𝜏 (averages are taken by the number
of edges) in the case of 𝑛 = 6 items and 0.15 perturbation. Figs. 6
and 7 show the values belonging to the optimal graphs in the case
of fixed edge numbers. One can see the monotone decreasing features
of the Euclidean distances and the monotone increasing feature of the
correlations, as expected.

In the case of 4 objects, the weakest graph structure with 4 edges is
better than the best graph structure with 3 edges. This is true for 4 and
5 edges, too. In the case of 5 and 6 objects, although the best graphs
with 𝑘 edges are always weaker than the best graphs with 𝑘+ 1 edges,
nevertheless one can find such cases when the best graph with 𝑘 edges
is better than the worst graph with 𝑘+ 1 edges. We draw the attention
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Fig. 10. Correlation coefficients PE_M, PE_W, Spearman 𝜌 and Kendall 𝜏 defined by (48),(49),(50) and (51), respectively, in the function of the perturbation values in the case of
𝑛 = 4 objects to compare. PE_M and PE_W are very close to each other.
Fig. 11. The standard deviations of the similarity measures EU_M, EU_W, PE_M, PE_W, 𝜌 and 𝜏 defined by (46), (47), (48), (49), (50) and (51), respectively, in the function of
the perturbation values in the case of star graph with 𝑛 = 4 objects to compare.
that every measure indicates this observation, which is presented in
Fig. 8 for 𝑔30 and 𝑔49. The same conclusion can be drawn for all
perturbation values. This fact also supports that the reason resides in
the structures of the graphs. Therefore it is worth planning the structure
of the comparisons to gain the most information that is possible.

Fixing a graph structure, let us investigate the similarity measures
in the function of the perturbation. We can realize that by increasing
the perturbation, the distances get larger, while the correlations get
smaller, as expected. The standard deviations of the similarity measures
are also growing in all cases. Presenting the data belonging to the star
graph, Figs. 9–11 illustrate this ascertainment, too.

The smallest number of comparisons, if the results can be evaluated,
equals 𝑛 − 1, therefore it is especially interesting which comparison
graph is worth using to get as much information as possible. According
to the simulation results, the star graphs proved to be the best whatever
similarity measure and perturbation were applied, independently of
11
the number of compared items. This result coincides with the observa-
tion published in Bozóki and Szádoczki (2022) for the EM and LLSM
methods, too. In the case of 𝑛 = 6 objects and 0.15 perturbation,
the correlation coefficients are presented in Fig. 12. The first (black)
columns belong to the star graph. It is clear that they are the highest.

As in Orbán-Mihálykó et al. (2019b) were proved, the axiomatic
properties of the Thurstone-motivated models are similar, indepen-
dently of the distribution of the random variables. As a robustness
analysis, the simulations were also performed for the Thurstone model
(standard normal c.d.f. instead of logistic (6)) allowing two options in
decisions (worse and better). Based on those, we can conclude that
the observations stated in this section are all valid for this model, as
well. Once again, this supports the ascertainment that the information
retrieval depends on the structure of the comparisons’ graph and not
on the model itself, and the method of the evaluation. The detailed
data of the simulations are available in the online appendix at https:
//math.uni-pannon.hu/~orban.

https://math.uni-pannon.hu/~orban
https://math.uni-pannon.hu/~orban
https://math.uni-pannon.hu/~orban
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Fig. 12. The correlation coefficients between the results belonging to the different graph structures having 5 edges and the complete case for 6 objects and 0.15 perturbation.
7. Conclusion

In this paper, we investigated some of the connections between the
PCM-based decision making techniques and the stochastic models. One
of the main contributions of the study is the similar definition to the
concept used in the AHP and the deeper investigation of the consistency
in the case of the Bradley–Terry model (see Theorems 1 and 2, and
Definition 7).

The information retrieval of the different graphs of comparisons
was examined for the case of the Bradley–Terry (and the Thurstone)
model(s) with the help of many different measurements. We found that
the measures almost always provide the same ranking of the different
structures of comparison. For spanning trees the star graph provided
the most information (comparing all possible comparison structures to
the complete one). It is also true that the best graphs for a given number
of objects to compare and a given number of comparisons were always
the same as the ones found by Bozóki and Szádoczki (2022), which
suggests that the optimality of these graphs is more general, it is not
restricted to the AHP model or the domain of PCMs.

Future research could explore whether these graphs are optimal in
the case of other models – such as some incomplete fuzzy decision mod-
els, e.g., different kinds of incomplete linguistic preference relations –,
and what can be the (analytical) reasons behind this. Are the reasons
derived from the comparisons’ structures? In the current study, we did
not label the different objects. One could study the labeled structures
of comparisons: what are the best graphs in those cases? In particular,
which star graph is optimal, the one centered around the best, the worst
or another object? In our view, it would be also important to continue
the investigation of the connections between the AHP and the stochastic
models, especially in connection with the properties of inconsistency
and inconsistency indices.
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