
CIRP Annals - Manufacturing Technology 72 (2023) 101�104

Contents lists available at ScienceDirect

CIRP Annals - Manufacturing Technology

journal homepage: https:/ /www.editorialmanager.com/CIRP/default.aspx
Design framework for managing the life cycle of Kinematic Digital Twins
G�abor Erdo��s (2)a,b,*, Gergely Horv�atha,b

a EPIC Centre of Excellence in Production Informatics and Control, Institute for Computer Science and Control (SZTAKI), Budapest, Hungary
b Department of Manufacturing Science and Engineering, Budapest University of Technology and Economics, Budapest, Hungary
A R T I C L E I N F O

Article history:
Available online 24 April 2023
* Corresponding author.
E-mail address: erdos.gabor@sztaki.mta.hu (G. Erdo��s

https://doi.org/10.1016/j.cirp.2023.04.062
0007-8506/© 2023 The Authors. Published by Elsevier Lt
A B S T R A C T

Mass customisation calls for new innovative solutions such as the Digital Twin (DT) concept. DT enhances the
classical sequential design-manufacture-usage life cycle into a more flexible concept that can handle the
changes stemming from the physical realization of the nominal design. One of the greatest challenges of real-
izing a Kinematic Digital Twin (KinDT), where movement modelling is of upmost importance, is the synchro-
nisation of the as-built model with the as-designed model. Consequently, this paper proposes a design
framework to support the synchronisation and feedback information within the DT. The usage of the frame-
work is demonstrated in two robotic applications.
© 2023 The Authors. Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/)
Keywords:
Digital twin

Design method
Robot
).

d on behalf of CIRP. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
1. Introduction

With the dawn of Industry 4.0 the need for higher autonomy in
the manufacturing scene has surfaced, bringing forth the next gener-
ation of smart and autonomous systems. Mass customisation and the
ever-growing need for flexible production systems call for new inno-
vative solutions such as the Digital Twin (DT) concept. In the authors’
interpretation, Digital Twin enhances the classical, sequential design-
manufacture-usage life cycle of a product or process into a more flex-
ible concept that can handle the changes stemming from the physical
realization of the nominal design concepts. Stark et al. [1] define an
8-dimensional model where the Digital Master model defines the
nominal design, while the Digital Shadow allows the integration of
the physical product’s characteristics. This multi-model concept is
emphasized by Erkoyuncu et al. [2] and it defines DT as a set of mod-
els with varying granularity, describing various aspects across the life
cycle. Also, for specific requirements, specialized Digital Twins exist.
One such example is System Digital Twin [3], which is specialized for
the Markovian representation of the system resources and their
interactions.

The difference between the design and its realized physical arte-
fact—the so called as-built model—was always known to engineers.
Schleich et al. [4] introduced the Skin Model concept to capture the
deviations resulting from manufacturing and assembly processes.
Tolerancing, verification and validation of the nominal design are the
traditional tools that ensure the product, service or system accom-
plishes its intended functional requirements [5]. The Geometric
Design and Tolerancing (GD&T) approach ensures that even though
the as-built model diverges from the designed model, it can be mea-
sured, verified and validated. If the as-built model becomes valid,
then it meets its respective specification and fulfils its intended pur-
pose [5]. In case it fails validation, it is considered as scrap product.

This GD&T approach is also utilized for classical, offline robotic
process planning, at the workcell level. In this process planning
approach, the as-designed cell components and movement trajecto-
ries of the robots are paired with their real counterparts in the real-
ized, as-built cell. At the workcell level GD&T as-built cell can be
measured and validated, but unlike the standard GD&T approach, the
process failing validation is not wasted. Either a tedious iterative pro-
cess is started to adjust the as-designed model to the as-built one or
switching to on-line programming of the as-built cell happens. In
both cases, process planning is re-executed completely for the as-
built cell. Furthermore, this approach is not prepared for dynamic
obstacles, autonomous real time planning of the robot motions or
any features of the cell unknown at design time [6].

These new requirements call for a more flexible process planning
and implementation approach, which could be supported by the so-
called Kinematic Digital Twin (KinDT) model. KinDT is a specialized
DT for system, where movement and geometric modelling is of
utmost importance. One of the greatest challenges of realizing DT
concepts is synchronising the as-built model with the as-designed
model. This synchronisation is more than validation, because it
requires more elaborate feedback information from the measure-
ments than a single go/no-go that is present in case of validation. As
Tomiyama et al. [7] recognized, the feedback mechanism between
the as-built model and the as-designed model—in the context of
smart product development—is not yet sufficiently understood and
in that paper it is concerned as a future research topic.

To support the development of KinDT and to arm the next genera-
tion of robots with smart and advanced functions, a design frame-
work is developed that supports the synchronisation and
information feedback between the as-designed and as-built models.
The as-designed model is principally the digitised design intent,
while the as-built model is derived from the physical artefact through

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cirp.2023.04.062&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:erdos.gabor@sztaki.mta.hu
https://doi.org/10.1016/j.cirp.2023.04.062
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cirp.2023.04.062
https://doi.org/10.1016/j.cirp.2023.04.062
http://www.ScienceDirect.com
http://https://www.editorialmanager.com/CIRP/default.aspx


102 G. Erdo��s and G. Horv�ath / CIRP Annals - Manufacturing Technology 72 (2023) 101�104
measurement. The two-branched, complexity based hierarchical
framework, with multiple levels of geometrical representations is
displayed in Fig. 1, where the hierarchical geometry representation
addresses problems of varying complexity, while its multiple levels
offer the necessary granularity to choose just the right tool for the
particular synchronisation goal.
Fig. 1. The proposed framework.
2. Framework

The digital twin is a digital representation of a physical workcell
that is periodically updated based on the constant flow of sensor
data. However, the way sensor data fits into the digital twin is not
always evident, since raw sensor data in itself is not necessarily valu-
able. What makes it valuable is interpretation that requires domain-
specific knowledge about the task at hand. Design intent is the mani-
festation of such domain-specific knowledge. Formalization of this
interpretation is carried out through a newly elaborated design
framework that is visualized in Fig. 1. This framework establishes a
connection between the functional requirements—the design
intent—and the physical artefact, through the definition of features.
Established connection is utilized for validation during design, con-
struction and all along maintenance, repair and overhaul tasks, how-
ever, it is also used while operating a workcell.

The newly developed framework creates a link between mea-
sured data and design information or between the as-designed and
as-built models of various objects. The distinction between as-built
and as-designed models have been present in the engineering prac-
tice for a long time. Although these models are often deemed equal
to either the design intent or the physical object, they are just simpli-
fied digital models of the infinitely more complex vision of the
designing engineer or the real instance in question. In general, the
as-designed model is created by applying CAD technology to the
design intent, while the as-built model is generated by measuring
the real world.

The proposed framework is built up of geometrical object repre-
sentations, with operations carried out over the multiple levels of rep-
resentations. Geometrical representation levels are mostly worked
out in the literature of reverse engineering. The framework consists
of two distinct branches with hierarchies of multiple levels of geo-
metrical representations. Design usually creates solid models by uti-
lizing CAD technology, while measurement—according to [8,9]—
primarily produces some kind of point cloud. The hierarchical levels
from highest complexity to lowest complexity are the following:

� Solid model representation.
� Polygonal mesh representation.
� Voxel representation.
� Point cloud representation.

3. Operations on the framework

The usefulness of the framework is tightly coupled with the corre-
sponding operations that are available within its scope. Operations
can be classified into the following distinct operation classes: trans-
formation, morphing, feature generation, feature distance, feature com-
parison and feature dictionary. From now on, the phrases As-Designed
and As-Built—as seen in Fig. 1, and later in Fig. 4 and Fig. 6—will
appear capitalized as well. While as-designed and as-built refer to
the abstract models, As-Designed and As-Built refer to the two
branches of the framework.

3.1. Transformation

The first type of operations is transforming a geometric object
from one level of the hierarchy of geometry representations to
another, e.g., transforming from point cloud to voxel, or from solid
model to polygon mesh. What is crucial in this case, is that levels are
on the same representation branch, either on As-Designed or As-
Built.

The literature of such operations is vast. Typical direction of trans-
formation is from top-to-bottom on the As-Designed branch (from
more complex to less complex), while bottom-to-top on the As-Built
branch. On the As-Designed branch, decomposition of the original
solid geometry into lower complexity levels of the hierarchy is
straightforward in most situations (e.g., creating a polygon mesh
from a solid geometry). This attribute is expected, as the higher com-
plexity levels include much more detail than the lower levels, which
means the decomposition and retrieval of lower complexity level
data is possible. The other direction (creating higher complexity level
representations from lower complexity level data) during design is
not a common use-case, however, practices can be borrowed from
the reverse engineering literature.

On the other branch—the As-Built branch—the general operation
direction, opposed to the As-Designed branch, is from lower to higher
complexity. As a consequence of digitisation, during measurement
data point acquisition, the result of most measurements is some kind
of point cloud [8,9]. Accordingly, on the As-Built branch, it is natural
that the most common transformations are starting from point cloud
data to create higher complexity level representations. The technical
details of such operations are out of scope for this paper, however [8]
gives a detailed summary on the topic.
3.2. Morphing

Operations that change the geometric representation, while not
transforming it to another hierarchical representation level are called
morphing operations.

An example of a morphing operation could be the merging of
point cloud measurements created from different angles; filtering
and removing voxels based on some criteria; simplifying or smooth-
ing a polygon mesh by removing polygons, applying boolean opera-
tions on solid models. The input level of all these operations are the
same as their output level.
3.3. Feature operations

The primary operations, however, are related to the features. Fea-
tures form a bridge between the As-Designed and As-Built branches of
the proposed framework. Relationship can be established between
identical features. This means that the same feature should be gener-
ated on both branches of the framework and these features can be
derived even from different geometric representations. In Section 4,
examples are shown of how features are generated and used to bridge
the gap between As-Designed and As-Built framework branches.

Feature distance is a quantitative or in certain cases a qualitative
measure, representing the dissimilarity of two features. As features
can be multi-dimensional vectors, it is not a hard requirement for the
feature distance to be a single numeric value. Also, feature distance
calculations have to be defined on a feature-by-feature basis.

Although a general definition for feature distance cannot be given,
once properly defined, it can be used to carry out feature comparison,
which is just a special use of the calculated distance. Generally, equal-
ity can be defined based on the distance between the two compared
objects, with a predefined threshold, under which the equality of the
two features is realized.



G. Erdo��s and G. Horv�ath / CIRP Annals - Manufacturing Technology 72 (2023) 101�104 103
Feature comparison acts as the basis of classification against a
feature dictionary. Feature dictionary is generated from the As-
Designed branch. Then classification can be executed by calculating
the distance between the feature generated from the As-Built branch
and the features in the dictionary.
Fig. 4. Application of the design framework to workcell calibration.
4. Applications

In this section, two application examples—workcell calibration and
gesture control of a robot arm—are shown. These examples are used to
demonstrate how to utilize the framework to generate the features in
both branches and by comparing these features, how to extract mean-
ingful information to operate the KinDT. The steps of the applications
are marked with the symbols that can be seen in Fig. 2. Blunt arrow
heads mark the start of the algorithm in either branch. The short but
wide arrows, pointing up or down between the different geometrical
representations, mark transformation operations. There are curved,
forked-tail arrows, starting and finishing by pointing on the same level
box, representing morphing operations, which change the underlying
representation, but do not move it to another level. The three consecu-
tive forked-tail arrows—pointing either from the As-Designed or the
As-Built box to the Feature box—are feature generation operations. To
ease the visual reception of the images, the white arrows, labelled
“Feature generation”, are removed. Generated feature names are
printed inside the Feature box.
Fig. 2. Operation symbols.
4.1. Workcell calibration

Workcell calibration is the calculation of the transformation
between a reference coordinate frame and the local coordinate frame
of the workcell to be calibrated. To that end, the transformation must
be established between the homogeneous transformation matrix
representing the reference frame of the workcell and the one repre-
senting the local reference frame of a workcell component. This
workcell component was a UR5 robot arm in that case. The whole
process is demonstrated in detail in [10], while in this paper only the
essentials are mentioned. Fig. 3 visualizes the main steps of the origi-
nal algorithm, while Fig. 4 visualizes the same steps utilizing the
framework.
Fig. 3. Workcell calibration: a) bounding box fitting, b) segmentation, c) cylinder
fitting.
A brief summary of the calibration process is the following. A
Microsoft Kinect v2 sensor, which is a time-of-flight camera, is
installed in the workcell and its detector origin is used as the work-
cell origin. During calibration, point cloud data is acquired from the
workcell by the Kinect, containing the UR5 robot, among other
objects in the cell. This point cloud is transformed into voxels from
which the voxel connectivity graph (VCG) is built that is used to
segment the cloud. The segmentation is based on the size of the axis
aligned bounding box sides of the robot, as it can be seen in Fig. 3a.

After the points corresponding to the robot are found, a reference
coordinate frame has to be fit on the robot. As the axes of the frame
are tied to particular joints, these have to be identified first. To that
end, another segmentation method is applied to find the various
parts of the robot as seen in Fig. 3b. This segmentation is applied onto
the voxels, throwing away ones that are not part of any links. Finally,
cylinders are fit onto the joint voxels, laying out the direction of the
reference frame, which can be compared to the reference frame of
the STL model of the robot. This step can be seen in Fig. 3c.

In Fig. 4 the following operations are present:

� First, the operations to identify the UR5 robot in the scene.
� Second, the joints of the robot have to be recognized, as the frames
are aligned with the direction of the joints. Once the robot and its
joints are found, the correct transformation matrix can be calcu-
lated.

Point cloud data acquisition is visualized with the blunt arrow
next to the Point cloud box on the As-Built branch. Converting the
point cloud representation to voxel representation is a transforma-
tion operation—marked with the short but wide arrow—while the
VCG generation, segmentation and box size calculation is generating
the feature, which is the axis aligned bounding box. On the As-
Designed branch, the bounding box is calculated, based on the STL
model, generated from the original CAD model of the UR5 robot. So,
the As-Designed branch starts at the solid model level (CAD model),
utilizes a transformation to move to the polygon mesh layer (corre-
sponding to the STL generation), and calculates the axis aligned
bounding box, which is feature generation.

As both the input and the output of voxel segmentation are vox-
els, this is a morphing operation, carried out on the As-Built branch
(see the markers, in Fig. 4 next to the Voxel level, in the As-Built box).
Fitting cylinder on the joints and calculating the predefined frame
from these cylinders is a feature generation on the As-Designed
branch. The comparison is a feature distance calculation which—in
this case—is defined as calculating the homogeneous transformation
matrix transforming one reference frame to another.

4.2. Gesture control

The second application is gesture control of a collaborative robot.
This application has been chosen to demonstrate the flexibility of
the framework. The task has been carried out by capturing the pose
of the human operator, interpreting it and controlling the robot.
Central for such undertaking is the dictionary which translates ges-
tures to robot commands. A solution for the task has been imple-
mented in [11], visualization by the applied framework can be seen
in Fig. 6.

To achieve gesture control, a feature dictionary, where human
gestures are accumulated, has been built and each feature is linked to
robot commands. Raising the right arm to stop or holding out a
straight left arm to the side to signal “move to the left” is considered
as the design intent of the gesture control system. Gestures are
defined through the relative position of the arm of the human opera-
tor compared to the operator’s body.



104 G. Erdo��s and G. Horv�ath / CIRP Annals - Manufacturing Technology 72 (2023) 101�104
The general skeleton of the human body (see Fig. 5) is taken as a
reference. The 26 joint skeleton model is given as a CAD model, so
the As-Designed branch starts from a solid model. Joints are
described by their spatial coordinate, so limb positions can be
expressed by the normalized vector between the two corresponding
joints. Calculating these limb vectors in the various gesture poses cre-
ates the basis of the dictionary. For every gesture the corresponding
limb vector list—i.e., the feature—is derived and labelled. As this
list incorporates every limb of the human body, complex gestures
involving multiple body parts, e.g. two-handed gestures could also be
handled.
Fig. 5. Gesture control: a) example gesture on solid, As-Designed model, b) feature
classification on the skeleton model.
The current position of the operator is captured using a Microsoft
Kinect v2 sensor, generating point clouds (measurement in Fig. 6).
From that point cloud (As-Built branch), the proprietary Microsoft
Kinect SDK can extract the labelled position of 26 joints. The vectors
between the respective joints create the skeleton information of the
different body parts. Combination of the Kinect SDK joint position
estimation and the vector subtraction is the feature generation
operation, leading to a vector list feature in the same structure as the
As-Designed branch.
Fig. 6. Application of the design framework to gesture control.
The last step in gesture control is using feature distance and
feature comparison operations to classify the feature (and the
respective pose) from the As-Built branch, based on the dictionary
created on the As-Designed branch. Fig. 5b shows example classifi-
cation ranges of the relative joint positions to label the current
arm pose.
5. Conclusion

In this paper, a generic design framework was proposed to syn-
chronise the as-designed and as-build digital model of an artefact in
a Kinematic Digital Twin. The as-designed and as-built models are
defined by their digitisation processes. Digitising the design intent
results in the as-designed model, while the realized physical artefact
is digitised by measurements results in the as-built model. The pro-
posed framework establishes a connections between the functional
requirements—the design intent—and the realized part through the
definition of features. The features form a bridge between the As-
Designed and As-Built branch of the developed framework, that can
be generated even from different geometrical representations, while
feature comparison utilizes an abstract distance function. The frame-
work was successfully applied to two different process planning
applications, to prove its usability.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This research has been supported by the ED_18-2-2018-0006
grant on an "Research on prime exploitation of the potential provided
by the industrial digitalisation". The research is part of project no.
TKP2021-NKTA-48 implemented with the support provided by the
Ministry of Innovation and Technology of Hungary from the National
Research, Development and Innovation Fund, financed under the
TKP2021-NKTA funding scheme.

References

[1] Stark R, Fresemann C, Lindow K (2019) Development and Operation of Digital
Twins for Technical Systems and Services. CIRP Annals 68:129–132.

[2] Erkoyuncu JA, del Amo IF, Ariansyah D, Bulka D, Vrabi�c R, Roy R (2020) A Design
Framework for Adaptive Digital Twins. CIRP Annals 69:145–148.

[3] Magnanini MC, Tolio TAM (2021) A Model-Based Digital Twin to Support Respon-
sive Manufacturing Systems. CIRP Annals 70:353–356.

[4] Schleich B, Anwer N, Mathieu L, Wartzack S (2014) Skin Model Shapes: A New
Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering.
Computer-Aided Design 50:1–15.

[5] Maropoulos PG, Ceglarek D (2010) Design Verification and Validation in Product
Lifecycle. CIRP Annals 59:740–759.

[6] Ceglarek D, Colledani M, V�ancza J, Kim D-Y, Marine C, Kogel-Hollacher M, Mistry
A, Bolognese L (2015) Rapid Deployment of Remote Laser Welding Processes in
Automotive Assembly Systems. CIRP Annals 64:389–394.

[7] Tomiyama T, Lutters E, Stark R, Abramovici M (2019) Development Capabilities
for Smart Products. CIRP Annals 68:727–750.

[8] Geng Z, Bidanda B (2017) Review of Reverse Engineering Systems � Current State
of the Art. Virtual Phys Prototyp 12:161–172.

[9] Weckenmann A, Jiang X, Sommer K-D, Neuschaefer-Rube U, Seewig J, Shaw L,
Estler T (2009) Multisensor Data Fusion in Dimensional Metrology. CIRP Annals
58:701–721.

[10] Horv�ath G, Erdo��s G (2017) Point Cloud Based Robot Cell Calibration. CIRP Annals
66:145–148.

[11] Horv�ath G, Erdo��s G (2017) Gesture Control of Cyber Physical Systems. Procedia
CIRP 63:184–188.

http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0001
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0001
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0002
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0002
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0002
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0003
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0003
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0004
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0004
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0004
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0005
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0005
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0006
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0006
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0006
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0006
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0007
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0007
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0008
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0008
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0008
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0009
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0009
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0009
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0010
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0010
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0010
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0010
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0011
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0011
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0011
http://refhub.elsevier.com/S0007-8506(23)00101-4/sbref0011

	Design framework for managing the life cycle of Kinematic Digital Twins
	1. Introduction
	2. Framework
	3. Operations on the framework
	3.1. Transformation
	3.2. Morphing
	3.3. Feature operations

	4. Applications
	4.1. Workcell calibration
	4.2. Gesture control

	5. Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


