
An application programming interface for the
widely used academic version of the UVA/Padova

Type 1 Diabetes Mellitus Metabolic Simulator
Máté Siket∗,†,§, Rebeka Tóth∗, László Szász∗, Kamilla Novák∗,§, György Eigner∗,‡, and Levente Kovács∗,‡

∗Physiological Controls Research Center, Óbuda University
‡Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Óbuda University

§Applied Informatics and Applied Mathematics Doctoral School, Óbuda University,
H-1034, Budapest, Bécsi street 96/B.

Email: {siket.mate, toth.rebeka, szasz.laszlo, novak.kamilla, eigner.gyorgy, kovacs }@uni-obuda.hu
†Institute for Computer Science and Control,

Kende utca 13-17, H-1111, Budapest, Hungary
Email: siket.mate@sztaki.hu

Abstract—The UVA/Padova Type 1 Diabetes Simulator is a
widely applied tool to test control algorithms among diabetes
researchers. The academic version is implemented in Matlab;
while Matlab is very popular in the academic field, Python is the
most popular programming language. We developed an applica-
tion programming interface (API) for the simulator in Python,
and a representational state transfer (REST) API for additional
extension route with a Python reference implementation for
easier usage. The interface is designed with the specific purpose
of testing control algorithms, thus it maps the functionalities
that are needed to implement closed-loop control and virtual
patient simulation. The developed API is tested for different
simulation scenarios, showcasing identical results between the
API and the programming interface of the original simulator.
Additional information and the source code can be found in
https://github.com/NeuroDiab/UVAPadovaAPI.

I. INTRODUCTION

UVA/Padova Type 1 Diabetes Metabolic simulator [1], [2]
is a widely used tool among diabetes researchers during the
development, testing and validation phase of their work [3]–
[8]. The simulator serves as an in-silico trial, which allows
the replacement of animal trials, as it was approved by FDA
(U.S. Food and Drug Administration) in 2008 [1], [9]. Multiple
studies exist not only using but also expanding and improving
the simulator. For instance, Man and colleagues expanded the
original system, including a glucose and an insulin subsystem,
with a glucagon subsystem [9]. This extended version of
the simulator was published in 2013 and it has also been
approved by the FDA. Visentin and colleagues also had a role
in the validation process [10] and continued working on this
version of the simulator; in multiple steps [11] they managed

The work was supported in part by the Eötvös Loránd Research Network
Secretariat (Development of cyber-medical systems based on AI and hybrid
cloud methods) under Agreement ELKH KÖ-37/2021. Project no. 2019-1.3.1-
KK-2019-00007. has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary, financed
under the 2019-1.3.1-KK funding scheme. This project has been supported
by the National Research, Development, and Innovation Fund of Hungary,
financed under the TKP2021-NKTA-36 funding scheme.

to upgrade the original ”single-meal” validation option with
a more realistic ”single-day” one [12]. Due to its complexity,
reliability and the FDA approval, researchers often use the
UVA/Padova simulator to validate their software. However,
this procedure can be complicated, if the language of their
algorithm differs from MATLAB, in which the simulator
was written. This happens often, as other languages, such
as Python, are more popular to use in this scientific field.
In this case, researchers need to correspond their software
with the simulator, for example by implementing their algo-
rithms in MATLAB. Schmitzer and colleagues implemented
the algorithms of AndroidAPS in MATLAB/Simulink to speed
up their simulation [13]. Another solution is to implement
the simulator into the language of the software requiring
validation. Xie did this in 2018, using the original 2008 version
of the simulator [14]. However, the complete implementation
requires further validation. Even in case of proper validation
results, it is difficult to guarantee the perfect match in all
parameters, values and structure of the model. To avoid these
uncertainties, a possibly better option is to develop an interface
between the system and the simulator, leaving both in their
original form and environment.

We propose a Python interface for the academic version
of the UVA/Padova Type 1 Diabetes Simulator. The interface
is developed with the aim of simulating various carbohydrate
and insulin intakes and testing control algorithms. Thus, on
the one hand the solution makes those features easier to use,
on the other hand it does not provide full functionality of
the Matlab simulator. To connect the two platforms we used
MATLAB Engine API for Python [15]. This appeared to be
a better solution than the complete implementation of the
simulator into Python. One advantage is that the whole system
is more consistent this way since the simulator runs in its
original form without making any changes of potential errors.
Moreover, a REST API is wrapped around the Python interface
for two reasons. First, it makes separating the virtual patient

SAMI 2023 • IEEE 21st World Symposium on Applied Machine Intelligence and Informatics • January 19-21, 2023 • Herl'any, Slovakia

979-8-3503-1986-6/23/$31.00 ©2023 IEEE 000287

20
23

 IE
EE

 2
1s

t W
or

ld
 S

ym
po

si
um

 o
n

A
pp

lie
d

M
ac

hi
ne

 In
te

lli
ge

nc
e

an
d

In
fo

rm
at

ic
s (

SA
M

I)
 |

97
9-

8-
35

03
-1

98
6-

6/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SA

M
I5

80
00

.2
02

3.
10

04
44

85

Authorized licensed use limited to: Institute for Computer Science and Control. Downloaded on July 13,2023 at 07:59:59 UTC from IEEE Xplore. Restrictions apply.

from the rest of the components possible, providing easier
embedding in software-in-the-loop and hardware-in-the-loop
environments; the REST API [16] allows the Python wrapper
to be re-implemented in any preferred language.

II. MATERIALS AND METHODS

A. Interfacing the simulator

In the original simulator the scenarios can be defined via
a graphical user interface or by a text file. Then the input
data is transformed and fed to the run simulation function.
In our work, we bypass the scenario definition and data
transformation steps and directly feed the input data from
Python to the run simulation, which is embedded in the
connect function shown in Figure 1. Its results are gathered
using the Matlab Engine API and stored in a Python class.

The project implements a client and a host side of the
interface. The client wraps the REST API call functions for the
creation of the virtual patient, input definitions and simulation.
The server side implements the actual interfacing between
the Python and Matlab, and simulation by using the Matlab
Engine API. Important to note, the Matlab simulator can be
interfaced without the REST API layer as well. To do that,
the V irtualPatientT1DMS class has to be used; examples
are given in [17].

B. Client side

The UvaPadovaAPI class is a reference implementation
of the API in Python, it contains the top-level features and
implements the virtual patient creation, device settings and
the one-step forward simulation via API requests. While the
wrapper makes it easy to test control algorithms, it also
poses constraints, for example, the doSimulation function
propagates the model with a fixed sampling time of 5 minutes.
The API requests are wrapped in the following functions:

• UvaPadovaAPI: Constructor for the API wrapper, the
host address can be set, defaults to local host.

• initializePatient: Initializes the virtual patient by defin-
ing the ID, additionally the type of the insulin pump and
the glucose sensor can be defined.

• setPump: Sets the type of the insulin pump.
• setSensor: Sets the type of the glucose sensor.
• doSimulation: Implements the one-step forward propa-

gation of the virtual patient.
An important note for the correct working of the

doSimulation method is that the first call must always be pre-
ceded by a patient initialization using the initializePatient
method. Otherwise, the server will return a 409 HTTP error
code with ”Patient wasn’t initialized.” error message.

Another note that, based on the operation of the
UVA/Padova simulator, carbohydrate intake cannot occur at
any time. If the doSimulation method is called with carbo-
hydrate value at a time when carbohydrate intake would not be
possible, the server ignores the carbohydrate value, continues
the simulation and will return a ”Carbohydrate intake was
ignored.” alert message in addition to the result. Such scenarios

are when consecutive meal intakes are not at least an hour apart
or meal intake occurs in the first hour of the simulation.

C. Documentation

Besides storing the source code, the repository provides
information on the goals of the project, requirements and
setup. A schematic layout of the project can be seen in Fig.
1. Circles in different colors represent alternative ways for
interfacing the UVA/Padova simulator. Black circle represents
the native Python implementation without the REST API layer,
blue circle represents the reference implementation of the
client side in Python, while the white circle indicates the
extension route for other platforms and languages.

The evaluated test scenarios can be found in the repository
and serve as examples. Examples which do not use the REST
API layer utilize further libraries which were designed with the
purpose of easier scenario definition and data processing. The
documentation [17] of these libraries with the documentation
of the API can be found also in the repository in HyperText
Markup Language format. If the REST API layer is used,
Numpy [18] arrays can be defined to describe the schemes of
insulin and meal intakes.

III. RESULTS

We tested the interface on two levels: on the level of the
Python link to the Matlab simulator and on the API level as
well. The differences between the glucose values across all
timepoints were 0 for all the predefined 6 scenarios. Table I
summarizes the test scenarios, where we aimed for a wide
range of settings. Two simulated blood glucose traces can be
seen in Fig. 2 and 3, subplot on the left is the result obtained
through the API, while the right subplot is generated from the
UVA/Padova simulator.

We also measured the running times in the two versions in
all test cases. For comparability, we started the measurements
just before the run simulation function was called, and
finished when the function gave back the final results. In the
Python version it means the points before and after the call of
the Matlab Engine API. Table II shows the measured times.

Table II: Runtimes in the original (Matlab) version and the
API version (Python) in all cases.

Test ID Runtime Matlab [s] Runtime Python [s]
First run Average of next 10 runs

1 1.239176 31.120796 0.989194
2 0.984779 19.295156 0.864834
3 3.431623 25.137429 3.043499
4 2.165344 21.783566 2.026083
5 0.939902 19.448893 0.914267
6 3.255037 21.710503 2.297150

IV. DISCUSSION

During the test of the developed API, 18 simulations were
evaluated; 6 scenarios for the original Matlab version, for the
Python implementation and for the REST API reference im-
plementation. For the evaluated test scenarios the differences

M. Siket et al. • An Application Programming Interface for the Widely Used Academic Version of the UVA/Padova Type 1 Diabetes …

000288

Authorized licensed use limited to: Institute for Computer Science and Control. Downloaded on July 13,2023 at 07:59:59 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Project layout, which represents the three major goals: 1) Black circle represents the native Python virtual patient 2)
The Blue circle represents the reference implementation of the REST API, and 3) The white circle represents the possibility
of additional interfaces for the API.

Table I: Summary of test cases. The default Generic 1 insulin pump was selected in all cases.

Test ID Simulation time
[min]

Basal insulin
[U/hour]

Insulin bo-
lus [Unit]

Bolus time [min] Meal amount [g] Meal time [min] Patient Sensor
type

1 60 0.0 0.1 in every 5 min-
utes

- - adult #5 Guardian

2 60 1.2 - - - - adult #5 Guardian

3 1440 1.0 1/2 every two hours 30/45 every two hours adolescent
#3

Dexcom

4 1440 0.0 - - - - adult #2 Dexcom25

5 60 0.0 increasing
by 0.1 in
every 5
minutes,
starting from
0.1

in every 5 min-
utes

- - adult #1 Guardian

6 1440 0.0 [4, 7, 2, 8, 2] [420, 720, 960,
1080, 1380]

[45, 70, 20, 80, 20] [420, 720, 960,
1080, 1380]

adolescent
#1

Guardian

were 0, which indicate that the API can be used to simulate
various patients with different basal, bolus insulin profiles and
meal intakes. Although in Table I the results are simulated
using the Generic 1 insulin pumps, others were also tested.

Runtimes significantly increase during the first simulation
using the API, where the Matlab Engine API initializes. The
consecutive simulations average close to the runtime of the
Matlab simulations as Table II suggests. Tests were done
by Matlab versions 2020a and 2021a, while 2022a supposed
to implement significant improvements regarding the Matlab
Engine API, so the differences are expected to be lower.

V. CONCLUSION

In this paper we introduced an API for the academic version
of the UVA/Padova Type 1 Diabetes Metabolic Simulator. The
interface achieves three goals: First, it can be used directly in
Python; through REST API using a reference implementation;

and also can be extended to other platforms using the API. Re-
sults show that the original Matlab version, and the interfaced
versions do not differ in terms of the glucose values for the
test scenarios, but due to the Matlab Engine API the runtimes
of the interfaced versions are significantly increased.

REFERENCES

[1] B. P. Kovatchev, M. Breton, C. Dalla Man, and C. Cobelli,
“In Silico Preclinical Trials: A Proof of Concept in Closed-Loop
Control of Type 1 Diabetes,” Journal of Diabetes Science and
Technology, vol. 3, no. 1, pp. 44–55, Jan. 2009. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/193229680900300106

[2] “Diabetes Simulation.” [Online]. Available: https://tegvirginia.com/
services/diabetes-simulation/

[3] B. Kovatchev, C. Cobelli, E. Renard, S. Anderson, M. Breton,
S. Patek, W. Clarke, D. Bruttomesso, A. Maran, S. Costa,
A. Avogaro, C. D. Man, A. Facchinetti, L. Magni, G. De Nicolao,
J. Place, and A. Farret, “Multinational Study of Subcutaneous
Model-Predictive Closed-Loop Control in Type 1 Diabetes Mellitus:
Summary of the Results,” Journal of Diabetes Science and Technology,

SAMI 2023 • IEEE 21st World Symposium on Applied Machine Intelligence and Informatics • January 19-21, 2023 • Herl'any, Slovakia

000289

Authorized licensed use limited to: Institute for Computer Science and Control. Downloaded on July 13,2023 at 07:59:59 UTC from IEEE Xplore. Restrictions apply.

0.0 0.2 0.4 0.6 0.8 1.0
time [hour]

119.40

119.45

119.50

119.55

119.60

119.65

bl
oo

d
gl
uc

os
e
[m

g/
dl
]

Test #1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time [hour]

119.35

119.4

119.45

119.5

119.55

119.6

119.65

119.7

b
lo

o
d

 g
lu

c
o

s
e

 [
m

g
/d

l]

Glucose Trace subj: adult#005

Figure 2: Result of test #1 regarding the Engine API version (left) and the original version of the simulator (right).

0 5 10 15 20 25
time [hour]

100

150

200

250

300

bl
oo

d
gl
uc

os
e
[m

g/
dl
]

Test #6

0 5 10 15 20 25

time [hour]

50

100

150

200

250

300

350

b
lo

o
d

 g
lu

c
o

s
e

 [
m

g
/d

l]

Glucose Trace subj: adolescent#001

Figure 3: Result of test #6 regarding the Engine API version (left) and the original version of the simulator (right).

vol. 4, no. 6, pp. 1374–1381, Nov. 2010. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/193229681000400611

[4] VisentinRoberto, GiegerichClemens, JägerRobert, DahmenRaphael,
BossAnders, GrantMarshall, D. ManChiara, CobelliClaudio, and
KlabundeThomas, “Improving Efficacy of Inhaled Technosphere Insulin
(Afrezza) by Postmeal Dosing: In-silico Clinical Trial with the
University of Virginia/Padova Type 1 Diabetes Simulator,” Diabetes
Technology & Therapeutics, Sep. 2016, publisher: Mary Ann Liebert,
Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.
[Online]. Available: https://www.liebertpub.com/doi/10.1089/dia.2016.
0128

[5] A. Molano-Jiménez and F. León-Vargas, “UVa/Padova T1DMS dynamic
model revision: For embedded model control,” in 2017 IEEE 3rd
Colombian Conference on Automatic Control (CCAC), Oct. 2017, pp.
1–6.

[6] M. D. Breton, R. Hinzmann, E. Campos-Nañez, S. Riddle,
M. Schoemaker, and G. Schmelzeisen-Redeker, “Analysis of the
Accuracy and Performance of a Continuous Glucose Monitoring
Sensor Prototype: An In-Silico Study Using the UVA/PADOVA Type
1 Diabetes Simulator,” Journal of Diabetes Science and Technology,
vol. 11, no. 3, pp. 545–552, May 2017. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1932296816680633

[7] E. Campos-Náñez, J. E. Layne, and H. C. Zisser, “In Silico Modeling

of Minimal Effective Insulin Doses Using the UVA/PADOVA Type
1 Diabetes Simulator,” Journal of Diabetes Science and Technology,
vol. 12, no. 2, pp. 376–380, Mar. 2018. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1932296817735341

[8] “Long-acting Insulin in Diabetes Therapy: In Silico Clinical Trials with
the UVA/Padova Type 1 Diabetes Simulator,” Jul. 2018, pp. 4905–4908,
iSSN: 1558-4615.

[9] C. D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and C. Co-
belli, “The UVA/PADOVA Type 1 Diabetes Simulator: New Features,”
Journal of Diabetes Science and Technology, p. 9.

[10] R. Visentin, C. Dalla Man, B. Kovatchev, and C. Cobelli, “The
University of Virginia/Padova Type 1 Diabetes Simulator Matches
the Glucose Traces of a Clinical Trial,” Diabetes Technology &
Therapeutics, vol. 16, no. 7, pp. 428–434, Jul. 2014. [Online].
Available: http://www.liebertpub.com/doi/10.1089/dia.2013.0377

[11] R. Visentin, C. D. Man, and C. Cobelli, “One-Day Bayesian Cloning
of Type 1 Diabetes Subjects: Toward a Single-Day UVA/Padova Type
1 Diabetes Simulator,” IEEE Transactions on Biomedical Engineering,
vol. 63, no. 11, pp. 2416–2424, Nov. 2016, conference Name: IEEE
Transactions on Biomedical Engineering.

[12] R. Visentin, E. Campos-Náñez, M. Schiavon, D. Lv, M. Vettoretti,
M. Breton, B. P. Kovatchev, C. Dalla Man, and C. Cobelli,
“The UVA/Padova Type 1 Diabetes Simulator Goes From Single

M. Siket et al. • An Application Programming Interface for the Widely Used Academic Version of the UVA/Padova Type 1 Diabetes …

000290

Authorized licensed use limited to: Institute for Computer Science and Control. Downloaded on July 13,2023 at 07:59:59 UTC from IEEE Xplore. Restrictions apply.

Meal to Single Day,” Journal of Diabetes Science and Technology,
vol. 12, no. 2, pp. 273–281, Mar. 2018. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1932296818757747

[13] J. Schmitzer, C. Strobel, R. Blechschmidt, A. Tappe, and H. Peuscher,
“Efficient Closed Loop Simulation of Do-It-Yourself Artificial Pancreas
Systems,” Journal of Diabetes Science and Technology, vol. 16, no. 1,
pp. 61–69, Jan. 2022. [Online]. Available: http://journals.sagepub.com/
doi/10.1177/19322968211032249

[14] J. Xie, “simglucose,” Aug. 2022, original-date: 2017-12-31T19:15:11Z.
[Online]. Available: https://github.com/jxx123/simglucose

[15] “Get Started with MATLAB Engine API for Python - MATLAB
& Simulink.” [Online]. Available: https://www.mathworks.com/help/
matlab/matlab external/get-started-with-matlab-engine-for-python.html

[16] A. Ospanova, A. Zharkimbekova, L. Kussepova, A. Tokkuliyeva, and
M. Kokkoz, “Cloud service for protecting computer networks of en-
terprises using intelligent hardware and software devices, based on
raspberry pi microcomputers,” Acta Polytechnica Hungarica, vol. 19,
no. 4, 2022.

[17] “Welcome to uva/padova api’s documentation.” [Online]. Available:
https://neurodiab.github.io/UVAPadovaAPI/

[18] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

SAMI 2023 • IEEE 21st World Symposium on Applied Machine Intelligence and Informatics • January 19-21, 2023 • Herl'any, Slovakia

000291

Authorized licensed use limited to: Institute for Computer Science and Control. Downloaded on July 13,2023 at 07:59:59 UTC from IEEE Xplore. Restrictions apply.

M. Siket et al. • An Application Programming Interface for the Widely Used Academic Version of the UVA/Padova Type 1 Diabetes …

000292

Authorized licensed use limited to: Institute for Computer Science and Control. Downloaded on July 13,2023 at 07:59:59 UTC from IEEE Xplore. Restrictions apply.

