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Model-based motion control of the F1TENTH autonomous electrical vehicle 
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Abstract

F1TENTH is a 1/10 scale, electric model of a real car. The aim of its developers was to
create an open-source vehicle platform that can support autonomous systems research and
education. The main objective of this work is the development of the nonlinear, dynamic
model of the F1TENTH vehicle. Then, with the help of the obtained model, accurate
path-following control algorithms are designed that are capable of agile maneuvering.

First, the dynamic model of the F1TENTH platform is derived. This model can be split
into three main part. The nonlinear vehicle dynamics describes the general behaviour of
the race car. The drivetrain model expresses the connection between the motor control
input and the force acting on the wheels. Finally, the tire model incorporates the lateral
behaviour of the wheels. After the introduction of the model structure, the parameters
are obtained. While some of these can be directly measured, there are also empirical
parameters that can only be estimated from measurements. Here the design process and
execution steps of the identification experiments and the data acquisition is also outlined.
Then, the collected data is processed and the model parameters are calculated, using
optimization algorithms. The resulting dynamic model is validated by comparing it with
the observed behavior the real car.

The next part of the work describes the design of model-based trajectory-tracking control
algorithms. First, the nonlinear dynamics are decoupled into lateral and longitudinal
subsystems. After further simplifications, individual lateral and longitudinal controllers
are developed for both of the subsystems, via full state feedback. The robustness and
performance of the designed controllers are then examined in both numerical simulations
as well as in real world, implemented on the F1TENTH platform.

In addition to the modelling and control, the work presented in this paper also required
a software framework for the management of the F1TENTH platform. This framework
is responsible for the operation of onboard and external sensors, the data acquisition and
the control of the vehicle actuators. The main advantage of this software is its Python
interface, that provides an easy solution for the high-level control and the management
of the onboard – ROS based – software stack of the vehicle. Furthermore, the framework
is also capable of managing multiple vehicles simultaneously, so a group of cars can also
be controlled. As a result to this development, a vehicle test environment based on the
F1TENTH platform is designed, which can provide the fundamentals for further research
projects related to autonomous mobile robots.
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Notations

The table contains the names of the notations that occur several times, and in the case of
physical quantities, its unit of measurement. The designation of each quantity is, where
possible, the same as that accepted in the domestic and international literature. An
explanation of the rarely used notations can be found at their first location.

Latin letters

Notation Name, comment, value Dimension
a acceleration m s−2

cc path curvature m−1

d motor reference input 1
eη lateral orthogonal error m
l wheelbase length m
lf front axle distance from center of mass m
lr rear axle distance from center of mass m
m mass kg
nu number of system inputs
nx number of system states
s curvilinear abscissa of the path m
s1 longitudinal position in the moving coordinate frame m
t time s
u system input vector
v absolute velocity m s−1

vη lateral velocity m s−1

vξ longitudinal velocity m s−1

x system state vector
z1 lateral position in the moving coordinate frame m
A system matrix
B input matrix
Cf front wheel cornering stiffness N rad−1

Cr rear wheel cornering stiffness N rad−1

Cm{1,2,3} drivetrain parameters N, Ns m−1, N
E disturbance matrix
Iz inertia around the Z axis kg m2

Ff,η lateral tire force of the front wheel N
Ff,ξ longitudinal tire force of the front wheel N
Fr,η lateral tire force of the rear wheel N
Fr,ξ longitudinal tire force of the rear wheel N
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Notation Name, comment, value Dimension
K feedback matrix
Q LQR state weighting matrix
R LQR input weighting matrix
X position in the X axis m
Y position in the Y axis m

Greek letters

Notation Name, comment, value Dimension
αf front tire side-slip angle rad
αr rear tire side-slip angle rad
β center of mass side-slip angle rad
δ steering angle rad
ϵ disturbance vector
θe heading error rad
θp rotation angle of the moving coordinate frame rad
φ heading angle rad
ρ general scheduling variable
ω yaw rate rad s−1

Indices, exponents

Notation Name, comment, value
i general running index (integer)
n general quantity (integer)
k discrete system time step index (integer)
p path property
max maximum
min minimum
ref reference

XIII



1 Introduction

Nowadays, autonomous systems are becoming increasingly important. As a result of the
continuous development, intelligent mobile robots such as drones or ground vehicles are
getting deployed in many different areas of industry. From transportation and logistics
to manufacturing and production support, there are a growing number of applications.

In order to unlock the full potential of these autonomous systems, efficient algorithms are
required that can solve problems related to mobile robot navigation and control. To aid
the research and development, there has been a growing interest in small scale vehicle plat-
forms on which such algorithms can be properly evaluated. At SZATKI, an autonomous
vehicle test area, called AIMotionLab, has been developed for the research of algorithms
related to cooperative navigation, path planning and precise trajectory tracking. While
small scale quadcopters have already been integrated into the environment, autonomous
ground vehicle research has just started. This motivates the main contributions of this
work: the development of well applicable modelling and identification techniques for these
types of small scale vehicles, and the design of motion control solutions that are capable
of agile maneuvering.

In the relevant literature, many different vehicle platforms can be found. In [19], 1/43
scale RC cars were used for the evaluation of path planning and path following algorithms.
Another vehicle, namely a 1/24 scale mobile robot was used in [2], to test localization
algorithms. MIT has also developed its own platform, called racecar [22], which is a 1/10
scale autonomous racing car for educational purposes. Taking inspiration from the MIT
racecar, [29] presents MuSHR, an alternative vehicle platform, with cheaper hardware
components and an open-source software environment. Designed mainly for autonomous
racing purposes, [1] also introduces an 1/10 scale platform called F1TENTH. While this
vehicle shares most of its hardware components with the MIT racecar, it has much better
software support thanks to its large developer community. Consequently, this platform
has been chosen at AIMotionLab.

Figure 1.1: Different small-scale vehicle platform used in research and the industry:
SuperDroid1(left), MuSHR2(center), F1TENTH3(right).

1https://www.superdroidrobots.com/
2https://mushr.io/
3https://f1tenth.org/
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The first step of the work is to construct the dynamical model of the F1TENTH vehicle.
An accurate model is not only essential for the design of efficient control algorithms, but
it can also be used to perform realistic simulations, e.g., for validation of the control
algorithms or collect accurate data later for machine learning purposes, as in [23]. While
the modelling of cars has a rich scientific literature [35] [13] [3], the specialties of small
scale vehicles are often not considered by them. Although [19] and [37] present modelling
techniques for these small scale platforms, their solutions mainly focus on autonomous
racing instead of precise navigation. Therefore, a different approach is presented in this
work, with the used models and parameter estimation methods adjusted to our goals.
As a result, an accurate digital representation of the vehicle can be obtained with well
applicable identifications steps, to allow fast and straight forward modelling that can be
used not only for the F1TENTH, but also for other small scale platforms.

The introduced model consists of three different parts. First, the dynamic single track
model [3] describes the motion of the vehicle. This model is chosen according to [37],
where it was deemed sufficient for the F1TENTH platform. It is then complemented
with a drivetrain model, which expresses the connection between the motor control input
and the forces acting on the tires. This model incorporates the motor characteristics and
the transmission between the drive shaft and the wheels. In most relevant publications,
the motors are described as a first order system that can be augmented augmented with
friction effects and the gear ratio of the transmission [37] [19] to obtain this drivetrain
model. The last important part is the application of a tire model, which is used to describe
the interaction between the tires of the vehicle and the ground surface. There is a wide
range tire models that engineers can use, from analytical [11] [8] to empirical ones [4],
depending on the complexity of the current task. For this work, a linear tire model is
used, like in [25]. After the derivation of the required components, an important task is
to determine the unknown parameters of these models. While some of these parameters
can be measured directly, there are also empirical ones, that can only be estimated from
measurements. In the literature, there are multiple estimation procedures and techniques
outlined, such as [37] [25]. This work uses a combination of these methods to achieve
precise model identification, specifically in environments where the size of the test area is
limited.

In order to accomplish precise navigation with the vehicle, accurate trajectory tracking
is required. The problem of autonomous trajectory tracking can be achieved by multiple
control approaches [36]. The most simple ones originate from geometric relations such
as the Pure Pursuit [5] or the Stanley controller [14]. One step in complexity is the
introduction of proportional–integral–derivative (PID) based control, but the tuning of
the controller gains can be a challenging task for rapidly changing environments [15]. To
tackle the problematic gain adjustment, model-based feedback control, tuned by linear
quadratic regulator LQR [27] can be applied. Nowadays, model predictive control (MPC)
[10] is also getting more attention in the field of autonomous vehicles, but the application
is currently constrained by the limited computational capacity of the onboard systems.
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The introduced model-based control methods often require simplified, linear systems for
the control design. However, to achieve better performance, linear parameter-varying
(LPV) [26] models are developed in this work. The utilization of LPV models can be
beneficial, as they can describe complex, nonlinear behavior, while preserving the ad-
vantageous properties of the linear model structure. A simple solution for the control
of parameter varying systems is the application of a gain-scheduling [18] control. With
the varying parameters considered as scheduling variables, a set of linear controllers can
be designed for different operating points of the nonlinear system. Then, the optimal
gains of the controller can be chosen from this set, based on the current values of the
scheduling variables. Beyond gain scheduling, advanced LPV control design [7] has also
matured to a powerful framework of methods with mathematically guaranteed stability
and performance properties for all possible scheduling trajectories.

The main contributions of this work can be summarized as:

• Configuration of the AIMotionLab area to provide a test environment for the
F1TENTH platform;

• Derivation of a dynamic model for F1TENTH cars, completed with the estimation
of the model parameters, to obtain an accurate representation of the vehicle;

• Design of model-based, gain-scheduled and LPV control algorithms for accurate
trajectory tracking with the vehicle;

• Development of a complete software framework, not only with the implementation
of designed control algorithms, but also for simulations and convenient high-level
management of the cars in the lab.

This work is organized into seven sections. First, the AIMotionLab environment is pre-
sented, where all the development takes place. In Section 3, the mathematical model
of the F1TENTH vehicle is derived. Next, Section 4 details the experiments required
for the estimation of the unknown model parameters. After the model parameters are
obtained, open-loop validation measurements confirm the accuracy of the identified sys-
tem. Section 5 details the control design procedure. Here, the nonlinear vehicle model
is decoupled into LPV subsystems for control purposes. Then, for the decoupled models,
gain-scheduled and LPV feedback control algorithms are designed and evaluated. In Sec-
tion 6, real world experiments are presented, with the control algorithms implemented on
the F1TENH platform. Finally, the conclusions and the future work are summarized in
Section 7.

Complementing the thesis, the theoretical background of the work is collected in the
appendix. Appendix A contains the derivation of the vehicle models used in this thesis.
In Appendix B, the fundamentals of optimal control theory is presented for both time
invariant and parameter-varying systems. Lastly, Appendix C contains a brief description
of the control framework developed for the F1TENTH platform.

3



Thanks to the continuous development of autonomous systems, intelligent mobile robots
such as drones or ground vehicles are getting deployed in many different areas of the
industry. In order to unlock the full potential of these autonomous systems, efficient
algorithms are required that can solve problems related to mobile robot navigation and
control. To aid the research and development, there has been a growing interest in
small scale vehicle platforms on which such algorithms can be properly evaluated. This
presentation introduces modelling and control techniques specifically developed for these
vehicle platforms. The motion of the vehicles are described by a nonlinear dynamic model,
which is complemented with drivetrain and tire models. To easily obtain the parameters
of the model, experiment based parameter estimation methods are introduced. Then,
based on the resulting model, a low-level path-following algorithm is introduced, which
is capable of precise maneuvering in constrained space. The introduced modelling and
control techniques can provide the proper foundation for high level navigation and control
algorithm research and development.
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2 The F1TENTH test environment

This sections presents the F1TENTH test environment developed at SZTAKI as part of
AIMotionLab. The main objective of AIMotionLab is to provide a test area where complex
trajectory-tacking and path-planning algorithms can be evaluated not only in simulation,
but also on real vehicles. While miniature quadcopters are already successfully integrated
into the vehicle management system, autonomous ground vehicle development has just
started recently. Therefore, at first, an F1TENTH autonomous vehicle test environment
was built, with the utilization of the existing lab infrastructure. The structure of the
environment is depicted in Figure 2.1. The main components of the system are introduced
in the following subsections.

MoCap cameras

OptiTrack
Server PCF1TENTH vehicle ROS master PC

Pose dataVehicle poseHigh level control 
commands

Raw marker data

Command PC

Registration

Figure 2.1: The hardware configuration of the F1TENTH test environment.

2.1 F1TENTH vehicle

F1TENTH is a 1/10 scale autonomous vehicle [1], developed and maintained by the
F1TENTH community [9]. It is an open-source platform to aid autonomous systems
research and education.

Figure 2.2: The F1TENTH vehicle and its main components.
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The vehicle is built on the Traxxas Slash 4x4 Ultimate [32] chassis. It is a four wheel
driven car, powered by a brushless DC motor, while the steering is controlled by a high-
torque servo. These actuators are driven by a Vedder Electronic Speed Controller (VESC)
[33]. This device handles the electrical commutation and allows the BLDC motor to
be controlled with a simple PWM input. This is a useful feature, because the motor
characteristics can be modelled as a first order system, like a simple DC motor. Moreover,
the device has voltage and current sensors, but there is also an IMU and a speed sensor
built in the VESC board.

The main computation unit is an Nvidia Jetson TX2 embedded computer. Thanks to its
multiple implemented communication ports, sensors and other hardware interfaces can
be easily integrated into the system. In the current configuration that is used throughout
this work, there are two external devices connected to the board. First, the VESC uses
serial communication through an USB port to receive control inputs and send sensor
information from the motor. Second, the data from external motion capture system,
described in Section 2.2, is accessed via the Wifi module of the Jetson.

2.2 OptiTrack motion capture system

Sensing and environment mapping have a key part in the development of efficient mobile
robots. For model-based motion control algorithms, it is essential to have reliable infor-
mation about the current state of the actuated robot and the environment. In normal
sized autonomous vehicles, there are usually a large collection of sensors, such as IMUs
and speed sensors, lidars, cameras and GPS. Using their individual measurements, sensor
fusion techniques can provide sufficiently accurate position and velocity measurements.
However, this work introduces a different localization approach.

As the GPS cannot be used indoors, another external positioning solution is proposed that
relies on the OptiTrack motion capture system. The main advantage of motion capture
is that it can provide submilimeter and milirad position and orientation data. Thanks to
the exceptional accuracy, other vehicle state properties such as velocity and acceleration
information can be estimated by numerical differentiation without the application of other
complementary sensors.

The motion capture system of the AIMotionLab environment consists of 14 high preci-
sion OptiTrack Prime X 13 1 infrared cameras and one central server PC. With reflective
markers placed on the F1TENTH vehicles, each camera tracks the position of the markers
independently and transmits the information to the OptiTrack Server PC at 120 Hz. On
the server, the OptiTrack motion capture software, called Motive2, is responsible for pro-
cessing the incoming raw data. In Motive, rigid bodies can be defined from unique marker
configurations, corresponding to the objects that should be tracked. Then, the position

1https://optitrack.com/cameras/primex-13/
2https://optitrack.com/software/motive/
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and orientation data of these objects can be broadcasted through the local network, as
shown in Figure 2.1.

2.3 Robotic Operating System

The test environment introduced in this work is built with the utilization of the Robotic
Operating System (ROS) [24]. ROS is an open-source robotics framework, that provides
useful tools for the development of robotic applications. There are multiple reasons to
use ROS. First, the existing, out-of-the-box software stack of the vehicle created by the
F1TENTH community [9] is built around it. Second, thanks to the large developer com-
munity, there is a great collection of drivers and hardware interfaces already implemented
in the framework.

ROS is a modular, distributed communication and computation environment. The inde-
pendent tasks running in the environment are organized into separate processes, so-called
nodes, that can run individually, even across multiple machines. For the inter-process
communication, a TCP and UPD based data transfer solution is provided, that enables
convenient and fast information transmission between nodes, even across multiple ma-
chines on the same network. In the current environment, the ROS master PC is respon-
sible for the overall management. It keeps track of the available devices and the running
processes and provides a central access point for external connections.

Based on the ROS architecture, a complete management framework is developed for the
vehicles as part of this work. More details on this software can be found in Appendix C,
and the associated GitHub repository1.

2.4 Command PC

As the lab architecture in Figure 2.1 shows, the Command PC is responsible for the high
level management the cars. During normal operation, its main job is to start up the
selected vehicles and to provide reference trajectories for them to follow.

It is important to note, that the tasks of the Command PC and the ROS master PC can
be handled by one single computer. They are now separated only for multitasking and
more convenient development purposes in the lab.

1https://github.com/AIMotionLab-SZTAKI/aimotion-fleet1tenth
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3 Dynamic model of the F1TENTH car

The goal of this work is to achieve precise trajectory tracking with the F1TENTH vehicles.
To design control algorithms for this task, an accurate model of the car is required.
Therefore, in this section, the dynamic model of the F1TENTH vehicle is presented.
The modelling is mainly based on [37], where the author constructs the model for the
F1TENTH vehicle and proposes different experiments for estimating the parameters of
it. However, parts of the models and the methods, such as the utilized tire model and
the identification procedures differs from the ones used in that thesis. The main reason
for that is to provide a more faster and more convenient modelling workflow and to adapt
the to the environment setup of AIMotionLab.

3.1 Vehicle dynamics

This section gives an overview of the single track models which are used to describe
the motion dynamics of the F1TENTH vehicle. These models are often referred to as
bicycle models, because they lump together the front and rear wheel pairs into one single
wheel each. This simplification results in a much more compact formulation, while they
can accurately describe the motion of the vehicle. In this work, multiple models are
developed with different complexity levels. First, the most simple kinematic single track
model is introduced. Next, building on the basic geometric relations of it, a more complex
dynamic model is derived.

The kinematic single track model can be expressed by the following equations [3]:

ẋ = v cos(φ), (3.1a)
ẏ = v sin(φ), (3.1b)

φ̇ = v

l
tan(δ), (3.1c)

v̇ = a, (3.1d)

where (x, y) is the position of the center of mass, φ denotes the heading angle measured
from the X axis, v is the length of the velocity vector and l is the wheelbase. The two
inputs of the system are the steering angle δ and the acceleration a. The model is also
depicted in Figure 3.1 and the derivation steps are detailed in Appendix A. While this
low complexity model can be easily utilized for control design, the control performance is
limited by the simplifications and assumptions that were used in the model construction
(see Appendix A). Another key limitation is the fact that the kinematic models can not be
used to forward simulate the dynamics of the system, hence model-based control solutions
require dynamic models.
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Figure 3.1: Kinematic single track model.

Therefore, to archive a more accurate digital representation of the vehicle, the introduc-
tion of a dynamic model is necessary. These models build on top of the fundamentals
introduced by kinematic ones, but they representation capabilities are extended, as they
also consider the dynamic effects.

Considering the F1TENTH platform, [37] used a dynamic single track model, as their
validation tests showed that it can sufficiently describe the motion of the vehicle. It is
also stated, that more advanced dual track modelling solutions [3] do not lead to notable
accuracy improvements, but their computational cost increases significantly. Moreover,
[19] also uses the dynamic single track representation to model a 1/43 sized RC car in
their autonomous racing research, which also shares some similarities with this project.
Therefore, for the F1TENTH vehicles, the dynamic single track model is chosen in this
work.

The model is defined by the following differential equations [3]:

ẋ = vξ cos(φ) − vη sin(φ), (3.2a)
ẏ = vξ sin(φ) + vη cos(φ), (3.2b)
φ̇ = ω, (3.2c)

v̇ξ = 1
m

(Fr,ξ + Ff,ξ cos(δ) − Ff,η sin(δ) +mvηω) , (3.2d)

v̇η = 1
m

(Fr,η + Ff,ξ sin(δ) + Ff,η cos(δ) −mvξω) , (3.2e)

ω̇ = 1
Iz

(Ff,ηlf cos(δ) + Ff,ξlf sin(δ) − Fr,ηlr) , (3.2f)

where (x, y) is the position of the center of mass, φ denotes the heading angle measured
from the X axis and vξ, vη, ω represent the longitudinal, lateral and angular velocity
respectively, as it is depicted in Figure 3.2. Constant parameters of the model are the dis-
tance of the front and rear axis from the centre of mass, denoted as lf and lr, respectively,
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and the mass of the vehicle m. The inputs are the steering angle δ and the longitudinal
tire forces Ff,ξ, Fr,ξ acting on the front and rear wheels. As the F1TENTH is a four wheel
driven vehicle, it is assumed that the longitudinal force acting on the two tires are equal,
therefore

Fξ = Ff,ξ = Fr,ξ, (3.3)

where Fξ will be obtained from the drivetrain model, described in Section 3.2. The lateral
tire forces Ff,η and Fr,η are computed with the help of tire models in Section 3.3.

Figure 3.2: Single track vehicle model. The longitudinal (vξ) and lateral velocity (vη)
of the center of mass is defined in the moving (ξ, η) coordinate frame, which is fixed to
the vehicle. The heading angle φ denotes the angle between the ξ and the x axis and the
yaw rate is defined as its time derivative: ω = φ̇.

Throughout this work, this dynamic representation of the vehicle will be used for the
control design and simulation tasks. The only exception, where the kinematic one is
utilized instead, is the design of the steering controller for backward driving, as this
simpler model can eliminate undesired side-effects of non-collocated control.

3.2 Drivetrain model

As it was already mentioned in Section 3.1, the longitudinal tire force (Fξ) is generated
by the drivetrain. In this section a model for this drivetrain is presented, to provide a
connection between the motor control input and the acting forces. The model incorporates
the characteristics of the BLDC motor, the transmission between the drive shaft and the
wheels of the vehicle and also the effect of dry and viscous friction.

The VESC board provides two different ways to actuate the motor. It can be used as a
voltage controller where the control input is the PWM duty cycle, which corresponds to
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the speed (rpm) of the motor. Another approach is actuating the applied direct current,
which has a direct effect on the torque output. This section gives an overview of the
modelling method for both of these approaches, but in the latter sections the VESC will
be used only in voltage control mode.

As the BLDC motor dynamics are significantly faster than the vehicle dynamics, it is
unnecessary to use a complex motor model. Therefore, this work models the motor
characteristics as a first order system, extended with the effect of static friction. A
variation of this approach was presented in [19] with 1/43 scale RC cars and in [37], the
author used the same first order model for the F1TENTH vehicles.

The first order characteristics of the motor model are derived from the steady state equa-
tions of the DC motor. If the control input, is a unitless value, denoted as d, that varies
in the range of [−1, 1], the voltage applied on the motor can be calculated as

U = Umaxd, (3.4)

where Umax is the maximal voltage and U is the actual voltage value, respectively. Simi-
larly, if the input current is actuated

I = Imaxd, (3.5)

where Imax is the maximal current value and I is the actual current value, respectively.

The steady-state torque-speed characteristics of a DC motor can be represented by the
following equation, as detailed in [34]:

Tm = ψ

R
U − ψ2

R
Ω, (3.6)

where U is the input voltage, ψ is the amplitude of the motor flux vector, R is the
armature resistance and Ω is the shaft speed. The value of ψ is assumed to be constant.
The connection between the applied current and the motor torque can also be expressed
as a linear equation, using a lumped model from [34]:

Tm = KT I, (3.7)

where I is the input current and KT is the motor torque constant. Tm denotes the motor
torque.

The relation between the torque applied by the motor and the longitudinal force acting
on the wheels can be expressed using the wheel radius (r) and the gear-ratio (G) of the
drivetrain:

Fξ,m = G

2rTm. (3.8)

Similarly the relation between the shaft speed and the longitudinal velocity of the model
is known:

vξ = r

G
Ω. (3.9)
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To consider the mechanical losses, the following linear model can be introduced:

Fd = Cd,1vξ + sign(vξ)Cd,0, (3.10)

where Cd,1 is the viscous friction constant and Cd,0 represents the dry friction. Note that
this model is only valid for moving vehicles (vξ ̸= 0), since the dry friction acting on a
stationary object requires a more elaborate jump flow model than a single constant.

By subtracting the friction force from the motor force, Fξ can be obtained:

Fξ = Fξ,m − Fd. (3.11)

Next, by substituting (3.4), (3.6), (3.9), (3.8) and (3.10) into (3.11), the following driv-
etrain model can be obtained for the calculation of the longitudinal force, under voltage
actuation:

Fξ = ψUmax

2rR d−
(
G2ψ2

2r2R
+ Cd,1

)
vξ − sign(vξ)Cd,0. (3.12)

Similarly, from (3.5), (3.7), (3.8), (3.10) and (3.11), the current actuated drivetrain model
can be expressed in terms of the actuation command d as

Fξ = GKT Imax

2r d− Cd,1vξ − sign(vξ)Cd,0. (3.13)

Both (3.12) and (3.13) can be rewritten to the following form:

Fξ = Cm1d− Cm2vξ − sign(vξ)Cm3. (3.14)

where Cm1, Cm2 and Cm3 are the drivetrain parameters that can be identified as detailed
in the subsequent sections.

3.3 Tire model

Tire models are used to describe the interaction between the tires of the vehicle and
the ground surface, namely the acting tire forces. There are many different tire models
from complex FEM based models to simplified and empirical formulas. The more complex
methods are applicable for both longitudinal and lateral tire force calculations, but are also
harder to identify. Since the drivetrain model introduced in Section 3.2 already provides
the longitudinal tire force, the tire model in our current application is only required for
the lateral tire force calculation.

In [19], the tire model of a 1/43 sized autonomous car was described by the Simplified
Pacejka magic formula [4]. In [37], the same model was used for the modeling and iden-
tification of an F1TENTH vehicle. The formula is described by the following equations:
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Ff,η = DP,f · sin(CP,f · arctan(BP,f · αf)), (3.15a)
Fr,η = DP,r · sin(CP,r · arctan(BP,r · αr)), (3.15b)

αf = − arctan
(
ωlf + vη

vξ

)
+ δ, (3.15c)

αr = arctan
(
ωlr − vη

vξ

)
, (3.15d)

where BP,f , CP,f , DP,f and BP,r, CP,r, DP,r are the Pacejka parameters of the front and
rear wheel of the model respectively. αf and αr represent the lateral slip angles.

Considering that our work focuses on indoor navigation and motion planning for an
obstacle rich environment, the vehicle rarely accelerates to high velocities. This means
that a simpler, linearized model may also be sufficient. As vξ is magnitudes larger than
vη, ωlr and ωlf , the tire side slip angles can be approximated as:

αf ≈ −ωlf + vη

vξ

+ δ, (3.16a)

αr ≈ ωlr − vη

vξ

. (3.16b)

For small α angles the lateral force can also be approximated as:

Fη = DP · sin(CP · arctan(BP · α)) ≈ DPCPBPα. (3.17)

By introducing Cf = DP,fCP,fBP,f and Cr = DP,rCP,rBP,r, the so-called cornering stiffness
parameters, a linear tire model can be obtained, which is described by the following
equations:

Fr,η = Crαr, (3.18a)
Ff,η = Cfαf , (3.18b)

αr = −vη + lrω

vξ

, (3.18c)

αf = δ − vη + lfω

vξ

. (3.18d)

This model only has two unknown parameters Cr and Cf that are needed to be estimated
compared to the 6 parameter Pacejka magic formula. However, it is important to note,
that this simplified, linear model introduces a singularity at vξ = 0, because of the tire
slip estimation in (3.16).
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4 Parameter estimation

In this section, the identification procedure of the above described dynamical model is
outlined. Some of the model parameters can be measured directly such as m, l. Another
set of parameters can be estimated from the measured ones like lr, lf and Iz. However,
the parameters of the drivetrain (Cm1, Cm2, Cm3) and the tire model (Cf , Cr) can only be
obtained by performing experiments and fitting measurement data.

First, the onboard velocity sensor of the motor controller is configured and calibrated, as
it will be used later in the drivetrain identification. Then, it is followed by the direct mea-
surement and calculation of the physical parameters. Next, the steering servo parameters
are obtained, which is followed by the drivetrain parameter identification. Lastly, the tire
model parameters are estimated.

The estimation procedures heavily rely on the methods presented in [37]. However, as
there are new and modified model components in this work, the identification methods also
differ. New experiments are introduced for the linear tire model estimation, and a different
curve fitting approach is used for the calculation of the drivetrain model parameters.

4.1 Onboard velocity sensor

Despite high sampling frequency and precision, the motion capture system has limita-
tions. With the current configuration of the lab, the 14 OptiTrack cameras are capable of
covering a 4.5x5 m surface. While this is sufficient for most applications, some identifica-
tion procedures cannot be carried out, as accurate position data is limited to this area. To
obtain the drivetrain parameters, the required acceleration and braking maneuvers need
larger operating space than the available covered area. To resolve this issue, the onboard
sensor built into the VESC motor controller is utilized, which is capable of measuring
the rotational speed of the motor. As this is a scalar value, most of the properties of the
vehicle such as lateral velocity or side-slip cannot be estimated from this sensor. On the
other hand, for straight line experiments it can produce accurate results, assuming that
no longitudinal slip occurs between the ground surface and the tire.

Another issue is that the sensor measures the electric revolutions per minute (ERPM)
of the motor. So the relationship between the longitudinal velocity vξ [m/s] and ERPM
[rpm] must be determined. To achieve this, a set of straight line drive experiments have
been performed. First, the vehicle is accelerated to reach a steady-state velocity. Then,
the measured ERPM can be compared with the vξ longitudinal velocity, which is com-
puted by the differentiation of the OptiTrack position data, logged at 25 Hz. From the
measurements, it is clear that the connection is linear, therefore

vξ = kv,1 · ERPM + kv,0, (4.1)

where vξ is the longitudinal velocity of the vehicle and kv,1 and kv,0 are the unknown
parameters. The kv,0 offset parameter is necessary, as the sensor sends nonzero velocity
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measurements for stationary vehicles. By the least squares method, a linear model can
be fitted on the collected data to identify the vξ-ERPM relationship. The measurements
and the line fitted on the collected data points are shown in Figure 4.1, and the identified
parameters are summarized in Table 4.1, located in Section 4.6.
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Figure 4.1: Onboard velocity sensor calibration. The collected velocity data from the
different sensors and the line fitted on the data points.

4.2 Physical parameters

The distance of the front and the rear axis (l) and the mass of the vehicle (m) can be
measured directly. By measuring the weight of the front and rear axis separately, the
mass distribution can also be approximated. With the following equations, the lf and lr
values can be obtained:

lr = l
(

1 − mr

m

)
, (4.2a)

lf = l
(

1 − mf

m

)
, (4.2b)

where mr and mf denote the mass measured at the rear and at the front axis, respectively.

The inertia around the z axis can also be approximated from the previously obtained
parameters as

Iz = mrl
2
r +mf l

2
f . (4.3)
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4.3 Steering angle

One of the control inputs of the dynamic vehicle model from Section 3 is the steering
angle, denoted as δ. This is realized with a steering servo that can directly actuate the
heading of the front wheels of the vehicle. The input signal to the servo is defined by the
actuator hardware as us ∈ [0, 1], where 0 represents a full left and 1 represents a full right
turn. However, due to the mechanical construction of the vehicle, there is an offset in the
steering angle as well as a backlash between a servo and the actual position of the wheels.
This effect is easily observable: for us = 0.5 the trajectory of the vehicle will be an arc,
rather than the expected straight line.

The goal in this section is to obtain the steering offset (kδ,0) and calculate the gain (kδ,1)
between the steering angle δ and input to the servo us.

us = kδ,1δ + kδ,0 (4.4)

To determine these coefficients multiple measurements were performed with different us

values, ranging from us = 0.1 to us = 0.9 with 0.1 step size. To drive the vehicle, a
low d = 0.05 reference control input was used to minimize the effect of side slip. The
trajectory of the vehicle was recorded with the OptiTrack camera system. In the post
processing, a circle is fitted on the collected position data, from which the actual steering
angle can be determined by the following equation, introduced in [21]:

δ = arcsin
(
l

R

)
, (4.5)

where l is the wheelbase of the vehicle and R is the radius of the circle fitted on the
measurement data. From multiple measurements, kδ,1 and kδ,0 can be identified by fitting
a linear model on the (us, δ) data pairs with the least squares method.
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Figure 4.2: Linear connection between the steering angle and the steering servo actuator
input. The model is obtained by linear regression using the logged control input and the
steering angle calculated from the measurement. The calculated parameters are collected
in Table 4.4 of Section 4.6.

4.4 Drivetrain model

In the following section, the parameters of the drivetrain model described in Section 3.2
are estimated. During the identification experiments, the VESC is used in voltage control
mode. After the parameters are obtained, the effect of static friction is observed by
mapping out a hysteresis curve of the acceleration and deceleration experiments.

4.4.1 Model parameters

The model parameter estimation is carried out by performing multiple acceleration and
braking maneuvers with different d reference input values and constant δ = 0 steering
angle, as it is described in [37].

These maneuvers can be described with the following steps: take a stationary vehicle with
initial conditions q(0) = [x(0) y(0) φ(0) vξ(0) vη(0) ω(0)]T = 0. At t = 0, the motor
reference input is set to d = dacc,i until t = tacc, where the reference is reduced to d = 0.
The time evolution of the test input is also displayed in Figure 4.3.
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Figure 4.3: Time evolution of the test input used in the drivetrain identification.

The experiments are performed with dacc,i ranging from 0.05 to 0.225 with 0.025 steps.
The d reference input is nonzero for tacc = 6 s and the tests finished at tend = 8 s.
For higher d values, the vehicle could not keep the steady-state velocity for the whole
t ∈ [0, tacc] period as the testing area of the lab is limited. To overcome this issue, in the
processing of the measurement data, the steady-state segment was artificially lengthened
as in [37].

By constraining the trajectory of the vehicle to a straight line, it can be assumed that
no side-slip will occur (αf = αr = 0). Based on the tire model in (3.18) and the vehicle
model in (3.2), this implies zero lateral tire forces (Fr,η = Ff,η = 0) and zero lateral
velocity (vη = 0).

With this assumption, the drivetrain model in (3.14) can be substituted into the longitu-
dinal dynamics of the vehicle in (3.2d) to get the following formula:

v̇ξ = 2
m

(Cm1d− Cm2vξ − sign(vξ)Cm3) . (4.6)

The obtained equation describes a one dimensional linear time-invariant (LTI) system
that can be rewritten into the standard state-space representation as ẋ = Ax+Bu:

v̇ξ︸︷︷︸
ẋ

= −2Cm2

m︸ ︷︷ ︸
A

vξ︸︷︷︸
x

+
[

2Cm1
m

−2Cm3
m

]
︸ ︷︷ ︸

B

 d

sign(vξ)


︸ ︷︷ ︸

u

. (4.7)

The inputs of the system are the d reference input and sign(vξ).The first input (d) is
piecewise constant with values d = dacc,i for t ∈ [0, tacc] and d = 0 for t ∈ (tacc, tend]. The
second input, sign(vξ), is 1 during the measurements, as the identification is performed
in forward motion.

Next, the obtained continous system is discretized by zero order hold method with 0.04 s
sampling time. The discrete time state-space model can be expressed as

vξ[k + 1] = Advξ[k] +Bdu[k], (4.8)

where Ad and Bd are the discrete time state and input matrices. Using the discrete time
response, the longitudinal velocity of the vehicle model can be easily simulated by a simple
iteration, since the initial conditions and the control inputs are all known at every time
step.
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The simulated velocity then can be fitted on the measurement data, collected from the
conducted experiments. This results in an unconstrained nonlinear optimization problem:

min
Cmi

N∑
k=1

(vξ[k] − vξ,mes[k])2, (4.9)

where vξ[k] is the simulated velocity and vξ,mes[k] is the velocity data collected form the
measurements at k. The curve fitting was carried out using nonlinear least squares fitting,
with the MATLAB lqscurvefit function from the Optimization toolbox [30].
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(a) d = 5 % reference input
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Figure 4.4: Comparison of the drivetrain model with real world measurements. The
estimated parameters can be found in Table 4.5 of Section 4.6.

4.4.2 Effect of static friction

Since the vehicle model is only valid for a non-stationary vehicle, due to the linear tire
model and the dry friction constant in the drivetrain, the friction effects that are dominant
at low speeds have not been considered.

To investigate the vehicle behavior at low reference speeds a hysteresis curve is presented
that maps the longitudinal velocity of the vehicle to the corresponding control input in
both acceleration and deceleration case.

The experiments required for the data acquisition are straight line (δ = 0) acceleration
and deceleration tests with motor control inputs ranging from 0 to 0.08. The longitudinal
velocity of the vehicle is calculated by numerical differentiation, using the OptiTrack
position data, logged at 25 Hz.
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Figure 4.5: The hysteresis curve between the control input d and vξ longitudinal velocity
for both the acceleration and the deceleration.

From the Figure 4.5, it is visible that for d < 0.05 there is significant difference between
the acceleration and deceleration case. Moreover, these experiments highlighted another
undesired effect. As the motor controller provides stable torque, and the desired rotational
speeds are set to low values by the d reference input, the vehicle starts to shake. As this
effect cannot be eliminated in voltage control mode without the modification of the VESC
controller, such low speeds should be avoided.

Therefore, to eliminate these undesired effects, a minimal velocity |vξ,min| = 0.75 m/s is
introduced. Above vξ,min the motor characteristics are linear, the hysteresis effect does
not occur.

4.5 Tire model

In this section the cornering stiffness values of the linear tire model, introduced in Section
3.3, are estimated.

The tire model identification can be carried out in different ways. In [37], the author used
manually executed high-speed slip maneuvers to identify the parameters of the Simplified
Pacejka magic formula. However, as these maneuvers require high velocities, it was unsafe
to perform them in the limited space of the lab.

The authors in [35] present another technique, that uses a quasi-steady state ramp-up
maneuver for the identification experiments. Here the steering angle δ is slowly increased
while the throttle input is kept constant so the vehicle can be assumed to be in a steady-
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state condition. However, due to the capture volume limitations of the OptiTrack system,
we could not perform this maneuver. In [25], they overcome the same limitation by
running a sequence of circular motion tests with different δ angles as a substitute. During
these tests, both the steering angle and the throttle input are kept constant to achieve
steady state condition after the initial acceleration transients.

If the motion of the vehicle is assumed to be in steady-state condition (v̇ξ = 0, ω̇ = 0),
the lateral acceleration can be approximated with the following equation:

ass
η ≈ ωvξ, (4.10)

and the lateral tire forces can be expressed from the vehicle model described in (3.2):

Ff,η = mlr
(lf + lr) cos(δ)vξω = mlr

(lf + lr) cos(δ)a
ss
η , (4.11a)

Fr,η = mlf
(lf + lr)

vξω = mlf
(lf + lr)

ass
η . (4.11b)

Since the tire forces from (4.11) and the side slip angles from (3.18) both can be calculated
by substituting the measured vehicle states into the equations, the cornering stiffness
values can be obtained by fitting a linear model with least squares onto the data.
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(b) Rear tire characteristics

Figure 4.6: Linear tire model fitted on the measurement data, obtained by performing
a sequence of circular motion tests with different δ steering angle and d reference input.
The calculated cornering stiffness values are collected in Table 4.2.
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4.6 Summary of model equations and parameters

In this section all the equations are collected to get a clear view of the model.

ẋ = vξ cos(φ) − vη sin(φ) (4.12a)
ẏ = vξ sin(φ) + vη cos(φ) (4.12b)
φ̇ = ω (4.12c)

v̇ξ = 1
m

(Fξ + Fξ cos(δ) − Ff,η sin(δ) +mvηω) (4.12d)

v̇η = 1
m

(Fr,η + Fξ sin(δ) + Ff,η cos(δ) −mvξω) (4.12e)

ω̇ = 1
Iz

(Ff,ηlf cos(δ) + Ff,ξlf sin(δ) − Fr,ηlr) (4.12f)

Fξ = Cm1d− Cm2vξ − sign(vξ)Cm3 (4.12g)
Fr,η = Crαr (4.12h)
Ff,η = Cfαf (4.12i)

αr = −vη + lrω

vξ

(4.12j)

αf = δ − vη + lfω

vξ

(4.12k)

The two control inputs of the system are d motor reference and δ steering angle.

Parameter Value Dimension
kv,1 2.2894 · 10−4 30m · π−1rad−1

kv,0 7.4655 · 10−3 s−1

Table 4.1: VESC sensor parameters.

Parameter Value Dimension
Cr 41.7372 N · rad−1

Cf 29.4662 N · rad−1

Table 4.2: Tire model parameters.

Parameter Value Dimension
mr 1.439 kg
mf 1.484 kg
m 2.923 kg
l 0.33 m
lr 0.168 m
lf 0.163 m
Iz 0.0796 kg · m2

Table 4.3: Vehicle model parameters.

Parameter Value Dimension
kδ,1 0.8288 rad−1

kδ,0 0.4615 1
δr,max 0.4967 rad
δl,max 0.5162 rad

Table 4.4: Steering parameters.
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Parameter Value Dimension
Cm1 41.7960 N
Cm2 2.0152 Ns · m−1

Cm3 0.4328 N

Table 4.5: Drivetrain model parameters.

4.7 Validation

After all parameters of the vehicle are obtained, the resulting dynamic model is validated
by comparing it with the observed behavior the real car. During the validation, two
types of experiments are performed. In both cases the full state and the control inputs
of the vehicle have been recorded at 25 Hz. After the experiments, using the log files, the
same control input sequence is applied on the simulated vehicle, that uses the identified
dynamic model in (4.12).

First, the validation procedure is carried out with manually performed maneuvers. Here,
the remote controller application of the Command PC is used by a human driver, to send
d and δ control inputs directly to the vehicle. As these control inputs are logged during
the experiments, a simulation is done using the same input sequence, to compare the
accuracy of the model to the real vehicle. Two experiments have been performed: one
for forward and one for backward motion. The results of these experiments are shown in
Figure 4.7 where both the logged and the simulated position are displayed. Since these
are open-loop simulations, some divergence from the logged trajectory is expected, as
time proceeds, due to numerical errors and integrated effects of small inaccuracies.
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(a) Forward motion.
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(b) Backward motion.

Figure 4.7: The results of the manually driven validation experiments. The maximal
deviation of the simulated path compared to the logged trajectory was 0.168 [m] in the
forward moving scenario (fig a) and 0.203 [m] in the backward motion scenario (fig b).

The second type of validation experiment is a circular motion test where the vehicle is
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driven around a circle with a constant steering angle. It was performed with δ = ±0.3 rad
and δ = ±0.5 rad while the motor reference input was d = 0.06. After the measurements,
the same control inputs are applied to the simulated vehicle model. Using the simulation
results and the measured states, the model and the real car is once again compared with
each other. The results of these validations are depicted in Figure 4.8.
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(a) δ = 0.3 rad steering angle.
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(b) δ = 0.5 rad steering angle.

Figure 4.8: Results of the circular motion validation experiments.

As the experiments show, deviation that develops over time between the simulated re-
sponse and the measured one is relatively small. Such model inaccuracy can be easily
handled by integral action added to model based controller design, therefore the identified
model is deemed satisfactory for further utilization.
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5 Control design for trajectory tracking

The aim of the following sections is to develop accurate path-following algorithms for the
F1TENTH vehicle, utilizing the previously derived and identified model.

5.1 Control problem formulation

The trajectories to follow are given as two dimensional spline curves ψ(sref), defined by
coordinate functions (x(sref), y(sref)). Both x(sref), and y(sref) are monotonic in sref and
we assume 0 ≤ sref ≤ sref

max, where (x(0), y(0)) and (x(sref
max), y(sref

max)) assign the endpoints
of the curve. The speed profile vref(sref) along the trajectory is also given. During this
work, the arc length of the prescribed trajectory will be used as the sref parameter. These
types of reference motion trajectories can be obtained by regular path planning algorithms.

Figure 5.1: Vehicle coordinates in the global and in the moving coordinate frames.

To formulate the control objective, it is useful to express the vehicle model in path coor-
dinates, as described in [28]. The trajectory tracking scenario is depicted in Figure 5.1. I
represents the fixed global coordinate, P is the reference point that is moving along the
desired trajectory ψ(s). F is the moving coordinate frame that is associated with P so
that one of its axes is tangent to the trajectory curve. The signed curvilinear abscissa of
P along the path is denoted by s. The center of mass of the vehicle Q can be expressed
in both I as (x, y) and in F as (s1, z1). Additionally, the rotation matrix from I to F is

R(θp(s)) =
 cos(θp(s)) sin(θp(s))
− sin(θp(s)) cos(θp(s))

 , (5.1)

where θp(s) is the angle of the path tangent measured from the x axis. Let the curvature
of the path at s be denoted as cc(s). Moreover, define ωp(s) = θ̇p(s). Then ωp(s) can be
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expressed as
ωp(s) = cc(s)ṡ. (5.2)

From [28], the dynamics of Q can be expressed in the moving coordinate frame as

ṡ1 =
[
cos(θp(s)) sin(θp(s))

] ẋ
ẏ

− ṡ (1 − cc(s)z1) , (5.3a)

ż1 =
[
− sin(θp(s)) cos(θp(s))

] ẋ
ẏ

− cc(s)ṡs1. (5.3b)

The control objective is to achieve s1(t) = 0 and z1(t) = 0 over the entire reference
trajectory, as the vehicle travels through it. In the following parts of this section, the
previously introduced kinematic and dynamic models are expressed in terms of path
coordinates using (5.3). After these so-called path-following models are obtained, model
based control solutions can be developed to achieve the control objective.

First, the kinematic bicycle model is expressed in path coordinates. Substituting (3.1a)
into (5.3) yields:

ṡ1 = vξ cos(φ− θp) − ṡ(1 − cc(s))z1, (5.4a)
ż1 = vξ sin(φ− θp) − cc(s)ṡz1, (5.4b)

φ̇− θ̇p(s) = vξ

l
tan(δ) − cc(s)ṡ, (5.4c)

v̇ξ = a. (5.4d)

Let the heading error and its derivative be defined as θe = φ− θp(s) and θ̇e = φ̇− θ̇p(s).
Furthermore, if P is constructed by projecting Q onto the trajectory ṡ1 = s1 = 0 will hold,
which means that the control objective s1 = 0 is achieved, and (5.4) can be simplified as

ṡ = vξ cos(θe)
1 − cc(s)z1

, (5.5a)

ż1 = vξ sin(θe), (5.5b)

θ̇e = vξ

l
tan(δ) − cc(s)ṡ, (5.5c)

v̇ξ = a. (5.5d)

Next, the dynamic path-following model is calculated. By substituting the vehicle dynam-
ics from (4.12) into (5.3), the motion of the dynamic vehicle model can also be expressed
in F with the following equations:

ṡ1 = vξ cos(φ− θp(s)) − vη sin(φ− θp(s)) − ṡ (1 − cc(s)z1) , (5.6a)
ż1 = vξ sin(φ− θp(s)) + vη cos(φ− θp(s)) − cc(s)ṡs1. (5.6b)

With executing the same projection step (ṡ1 = s1 = 0) as in the kinematic model and the
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substitution of the introduced heading error term (θe), the model can be expressed as:

ṡ = vξ cos(θe) − vη sin(θe)
1 − cc(s)z1

, (5.7a)

ż1 = vξ sin(θe) + vη cos(θe) (5.7b)
θ̇e = ω − cc(s)ṡ, (5.7c)

v̇ξ = 1
m

(Fξ + Fξ cos(δ) − Ff,η sin(δ) +mvηω) , (5.7d)

v̇η = 1
m

(Fr,η + Fξ sin(δ) + Ff,η cos(δ) −mvξω) , (5.7e)

ω̇ = 1
Iz

(Ff,ηlf cos(δ) + Ff,ξlf sin(δ) − Fr,ηlr) , (5.7f)

Fξ = Cm1d− Cm2vξ − sign(vξ)Cm3, (5.7g)
Fr,η = Crαr, (5.7h)
Ff,η = Cfαf , (5.7i)

αr = −vη + lrω

vξ

, (5.7j)

αf = δ − vη + lfω

vξ

. (5.7k)

It is important to note that these path-following models introduce a singularity at
z1 = (cc(s))−1. As the maximal steering angle of the vehicle is known from Section
4.3, the upper limit of cc(s) can be obtained using (4.5):

max
s

{cc(s)} = 1
Rmax

= sin(δmax)
l

= 1.44 1
m , (5.8)

which results in the following limit for z1:

max
s

{z1} = 1
maxs{cc(s)}

= 0.69 m. (5.9)

However, this limitation should not raise any concerns, because a precise path tracking
controller should not allow such high deviation from the reference trajectory.

5.2 Decoupling of the dynamics

In the following sections, to simplify the control design procedure, the dynamic nonlinear
model in (5.7) is decoupled into two SISO subsystems, describing the lateral and lon-
gitudinal motion of the vehicle, respectively. This way two independent controllers can
be designed for stabilizing the whole dynamic system. In case of the lateral motion, a
decoupled kinematic model is also introduced for the control design of backward moving
vehicles.

The first, longitudinal controller is designed to track the the speed profile vref(s) along the
path accurately by actuating the motor reference input d. The second, lateral controller

27



is responsible for path tracking by controlling the steering angle δ of the system. The
overall control structure is depicted in Figure 5.2. From the vehicle position data, a
state estimator module is implemented which can calculate the full state of the vehicle
by numerical differentiation. Using this data, full state feedback control algorithms are
designed.

Longitudinal controller

Lateral controller

Vehicle

Vehicle state

Reference trajectory

Figure 5.2: The proposed path-following control structure.

5.2.1 Longitudinal dynamics

In this section, the longitudinal dynamics of the vehicle is described with respect to the
desired path. Considering a forward moving vehicle, ṡ from (5.7) can be expressed as

ṡ = v cos(γ)
1 − cc(s)z1

, (5.10)

where v =
√
v2

ξ + v2
η is the absolute velocity of the center of mass and γ is the angle

between the path tangent and v. The geometric relations are also shown in Figure 5.3.

Figure 5.3: The geometric relations of the decoupled longitudinal model.

In this case, the absolute velocity v can also be expressed as

v = vξ

cos(β) , (5.11)
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where β = arctan2(vη, vξ) is the side slip angle of the center of mass. Using β, γ can also
be expressed:

γ = φ+ β − θp(s). (5.12)

Considering (4.12d), it can be observed that the lateral dynamics only have substantial
effects on the longitudinal characteristics when the vehicle drives above 3 m/s. However,
due to the limited space available in the lab, it would not be safe to operate the cars
with such high velocities. Therefore, under the assumption of operation speed lower than
3 m/s, the lateral parts can be neglected from the longitudinal dynamics which results
in the following motion equation:

v̇ξ = 2
m

(Cm1d− Cm2vξ − sign(vξ)Cm3) . (5.13)

From (5.10) and (5.13), the longitudinal dynamics can be described as

ṡ = vξ cos(γ)
cos(β)(1 − cc(s)z1)

, (5.14a)

v̇ξ = 2
m

(Cm1d− Cm2vξ − sign(vξ)Cm3) . (5.14b)

By introducing scheduling variable p = cos(γ)
cos(β)(1−cc(s)z1) , a linear parameter-varying (LPV)

model can be obtained: ṡ
v̇ξ

 =
0 p

0 −2Cm2
m

 s
vξ

+
 0

2Cm1
m

 d+
 0
−2Cm3

m

 sign(vξ). (5.15)

To design a gain scheduling or parameter varying controller for this model, the range of p
must be determined. The calculation of the absolute upper limit of p is straight forward:

max{p} = 1
cos (max{β}) (1 − max{cc(s)} max{z1}) . (5.16)

From the data collected during the high speed circular motion tests in Section 4.5,
max{β} = 0.16. The extremum of z1 depends on the efficiency of the lateral path tracking
controller. For normal operation, max{z1} = 0.2 m is a reasonable limit. By substituting
the maximal values into (5.16), the range of p can be determined:

p ∈ (− max{p},max{p}) = (−3.52, 3.52) . (5.17)

5.2.2 Lateral dynamics

After the longitudinal dynamics, the lateral behavior of the system is also decoupled
to obtain the models for the controller design. First, the lateral system based on the
kinematic model is derived, which will be used for the control design of a reversing vehicle.
This system can be described by the following equations:

ż1 = vξ sin(θe), (5.18a)

θ̇e = vξ

l
tan(δ) − cc(s)ṡ. (5.18b)
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Assuming small steering angles and heading errors, the trigonometric functions can be
linearized as sin(α) ≈ α and tan(α) ≈ α. Furthermore, vξ is considered as a scheduling-
parameter to obtain a linear parameter-varying model:ż1

θ̇e

 =
0 vξ

0 0

 z1

θe

+
 0

vξ

l

 δ
0
1

ωp(s). (5.19)

As (5.19) solely relies on the kinematics of the vehicle, better control performance can be
achieved if the control algorithm is based on the dynamic vehicle model. Therefore, the
more complex, dynamic single track model is also decoupled, to obtain a more accurate
representation of the lateral behavior.

The lateral dynamics of the full nonlinear dynamic model in (4.12) can be expressed as

v̇η = Cr(−vη + lrω)
mvξ

+ Fξ

m
sin(δ) + Cf

m

(
δ − vη + lfω

vξ

)
cos(δ) − vξω, (5.20a)

ω̇ = Cf

Iz

(
δ − vη + lfω

vξ

)
lf cos(δ) + Fξ

Iz

lf sin(δ) − Cr

Iz

(
−vη + lrω)

vξ

)
lr. (5.20b)

(5.20c)

Figure 5.4: Lateral dynamics in path coordinates.

If the longitudinal acceleration is assumed to be minimal during normal operation, the
longitudinal tire force can be neglected (Fξ = 0 N) to simplify the model. Here, the
longitudinal velocity (vξ) is also considered as a scheduling parameter for an LPV model.
Furthermore, for small steering angles (less than 0.5 rad) sin(δ) ≈ δ, cos(δ) ≈ 1 approxi-
mations can be used to linearize the model:

v̇η = −(Cr + Cf)
mvξ

vη +
(
Crlr − Cf lf

mvξ

− vξ

)
ω + Cf

m
δ, (5.21a)

ω̇ = lrCr − lfCf

Izvξ

vη + −(l2fCf + l2rCr)
Izvξ

ω + lfCf

Iz

δ. (5.21b)
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The obtained equations can also be reorganized into the standard state-space representa-
tion: v̇η

ω̇

 =
−(Cr+Cf)

mvξ

Crlr−Cf lf
mvξ

− vξ

lrCr−lfCf
Izvξ

−(l2f Cf+l2r Cr)
Izvξ

vη

ω

+
 Cf

m
Cf lf
Iz

 δ. (5.22)

The next step is to include the path dynamics into the lateral model. Using the notation
described in Section 5.1, the reference yaw rate derived from the path can be expressed
as

ωp(s) = cc(s)|vξ|, (5.23)

and the path defined lateral acceleration is

v̇η(s) = cc(s)v2
ξ . (5.24)

The introduction of the absolute sign in (5.23) is necessary for the model to be valid in
reversing path tracking scenarios. Let the lateral error eη be defined as the orthogonal
distance of the center of mass from the path. Furthermore, the heading error and its
derivative are denoted and calculated as θe = φ−θp(s) and θ̇e = ω−ωp(s). The introduced
variables are also depicted in Figure 5.4. The dynamics of eη is described by

ëη = (v̇η + vξω) − v̇η(s) = v̇η + vξ(ω − ωp(s)) = v̇η + vξθ̇e, (5.25a)
ėη = vη + vξ sin(θe). (5.25b)

Substituting (5.25) into (5.21) yields the following equations, where the lateral dynamics
is expressed with the lateral and heading errors as state variables:

ėη

ëη

θ̇e

θ̈e

 =


0 1 0 0
0 −(Cr+Cf)

mvξ

Cr+Cf
m

lrCr−lfCf
mvξ

0 0 0 1
0 lrCr−lfCf

Izvξ

lrCr−lfCf
Iz

−(l2r Cr+l2f Cf)
Izvξ




eη

ėη

θe

θ̇e

+


0
Cf
m

0
Cf lf
Iz

 δ+


0

lrCr−lfCf
mvξ

− vξ

0
−(l2r Cr+l2f Cf)

Izvξ

ωp(s).

(5.26)

5.3 Longitudinal control

As a result of the previous modelling presented in Section 5.2.1, an individual SISO LPV
model has been obtained that describes the longitudinal behavior of the vehicle. Based
on this model, a longitudinal controller is designed for the vehicle, which is responsible for
tracking the given speed profile, that is defined along the path as vref(s). However, it is
also important to track the time evolution of the position along the reference trajectory.
To achieve this objective, model-based feedforward and feedback controllers are developed.

First, Section 5.3.1 introduces a gain-scheduled control design, then the LPV method is
discussed in Section 5.3.2.
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5.3.1 Gain-scheduled control

The desired position of the vehicle along the defined path can be calculated by the inte-
gration of the speed profile as sref =

∫ t
0 v

ref(s)dt, therefore the desired state reference can
be defined as

xref =
 sref

vref(s)

 , (5.27)

and the LPV model to control in state-state representation is ṡ
v̇ξ


︸ ︷︷ ︸

ẋ

=
0 p

0 −2Cm2
m


︸ ︷︷ ︸

A

 s
vξ


︸ ︷︷ ︸

x

+
 0

2Cm1
m


︸ ︷︷ ︸

B

d︸︷︷︸
u

+
 0
−2Cm3

m


︸ ︷︷ ︸

E

sign(vξ)︸ ︷︷ ︸
ϵ

, (5.28)

where the value of ϵ is either -1 or 1, depending on the direction. Therefore, it is considered
as another scheduling variable next to p. As (5.28) is an LPV model with scheduling
variables ϵ and p, gain scheduled controllers are designed.

To achieve the desired state reference, the following feedforward-feedback control law is
applied:

u = uff + ufb, (5.29)

where uff is the feedforward and ufb is the feedback term of the control input. The
feedforward term is calculated from the steady-state condition of the system and the
feedback term is obtained with a gain scheduled LQR controller.

First the feedforward term of the control law is calculated. In steady-state condition,
ẋss = 0 holds and the steady-state vector needs to be equal to the control reference
(xss = xref) which results in

0 = Axref +Buff + Eϵ, (5.30)

where uff is the feedforward control input, required to achieve xss = xref . From (5.30), uff

can be expressed as

uff = −(BTB)−1BT (Axref+Eϵ) =
m
(
Cm2v

ref(s) + Cm3sign(vξ)
)

Cm1
= flong,1v

ref(s)+flong,2(ϵ).
(5.31)

Next, the feedforward term is complemented with an LQR based feedback term to
improve the disturbance rejection and the system transients.

First, introduce error variables as

∆x = x− xref , (5.32a)
∆u = u− uff . (5.32b)

Substituting (5.32) into the system dynamics in (5.28) yields

ẋ = ẋss + ∆ẋ = A(xref + ∆x) +B(uff + ∆u). (5.33)
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As ẋss = Axref +Buff = 0 thanks to the feedforward term, (5.33) can be simplified as

∆ẋ =A∆x+B∆u, (5.34a)

d
dt

 s− sref

vξ − vref(s)

 =
0 p

0 −2Cm2
m

 s− sref

vξ − vref(s)

+
 0

2Cm1
m

 d. (5.34b)

As the controllability matrix of this system Mc =
[
B AB

]
= 2 has full rank for the whole

range of the scheduling variables, the system can be stabilized with full state feedback.
Next, the design process follows the steps detailed in Section B.2.2. After the system is
discretized with the zero order hold method using 0.025 s sampling time, a discrete time,
infinite horizon LQR based feedback control law is obtained, that has the following form:

ufb[k] = −KGS
long(p)∆x[k] = −

[
kGS

long,1(p) kGS
long,2(p)

]  s[k] − sref [k]
vξ[k] − vref(s)[k]

 , (5.35)

kLPV
long,2(p) are third order polynomials.

The controller can be tuned by altering Q and R weighting matrices. The weights are
chosen to emphasize accurate position tracking compared to the speed profile tracking
and the penalty of the control input is increased to avoid hard transients:

Q =
20 0

0 2

 , R = 100. (5.36a)

In the case of the longitudinal control of a reversing vehicle, the above proposed algorithm
can perform effectively, only minor modifications are required. While the curvilinear
abscissa of the path (s) has been defined as a non-negative number in Section 5.1, sref

needs to redefined for reversing motion as sref = −
∫ t

0 v
ref(s)dt.

5.3.2 LPV control

After the gain-scheduling control has been successfully tested in simulations, a more
advanced LPV-LQR controller is also synthesised. This controller is also split into two
main components.

u = uff + ufb. (5.37)

The feedforward term is the same as that used in the gain-scheduled controller:

uff = flong,1v
ref(s) + flong,2(ϵ). (5.38)

The feedback term is also calculated from the error model introduced in (5.34a). Using
the LPV-LQR controller introduced in Section B.2.3, the following controller can be
obtained:

ufb[k] = −KLPV
long (p)∆x[k] = −

[
kLPV

long,1(p) kLPV
long,2(p)

]  s[k] − sref [k]
vξ[k] − vref(s)[k]

 (5.39)
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where kLPV
long,1(p) and kLPV

long,2(p) are third order polynomials.

Tuning the controller can be done by altering the Q and R matrices. Based on simulation
results, the following weights are chosen, to penalize the position error more aggressively
compared to the velocity error:

QLPV =
2 0
0 1

 , RLPV = 1000. (5.40a)

There is a clear difference between the weighting matrices of the gain-scheduled and the
LPV controller. This is a result of the fact that the LPV controller considers the whole
operating range and not only the local design points. Moreover, the LMI-based method
is a suboptimal solution to the LQR problem, which can also result in deviation from the
Ricatti equation based solution.

5.4 Lateral control

After the longitudinal controller of the vehicle has been successfully designed, the lateral
control of the vehicle is the next step. The objective of the lateral controller is to enable
accurate path tracking, by eliminating the lateral and the heading errors. All the control
algorithms developed are model-based feedback control methods, using the models derived
in Section 5.2.2.

This section heavily relies on the work presented in [27]. However, unlike in [27], vξ

longitudinal velocity is considered as a varying parameter. Therefore, gain-scheduled
controllers are developed first, with the design steps outlined in B.2.2. Then, after finding
a sufficient control architecture, more advanced LPV-LQR controllers are designed, which
is based on the theory introduced in Section B.2.3.

5.4.1 Gain-scheduled LQR feedback control

The first solution for the lateral control is a simple gain-scheduled stabilizing feedback
control that is based mainly on [28]. From (5.26), the system and can be expressed as

ėη

ëη

θ̇e

θ̈e


︸ ︷︷ ︸

ẋ

=


0 1 0 0
0 −(Cr+Cf)

mvξ

Cr+Cf
m

lrCr−lfCf
mvξ

0 0 0 1
0 lrCr−lfCf

Izvξ

lrCr−lfCf
Iz

−(l2r Cr+l2f Cf)
Izvξ


︸ ︷︷ ︸

A


eη

ėη

θe

θ̇e


︸ ︷︷ ︸

x

+


0
Cf
m

0
Cf lf
Iz


︸ ︷︷ ︸

B

δ +


0

lrCr−lfCf
mvξ

− vξ

0
−(l2r Cr+l2f Cf)

Izvξ


︸ ︷︷ ︸

E

ωp(s)︸ ︷︷ ︸
ϵ

,

(5.41)
where δ is the control input and ϵ is considered as external disturbance. As the disturbance
ϵ = ωp(s) = cc(s)|vξ| is continuous and only changes slowly, it is neglected from the control
design.
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After the model is specified, the control design procedure follows the steps presented in
Section B.2.2. First, the controllability of the system is checked by calculating the rank
of the controllability matrix Mc =

[
B AB A2B A3B

]
. As rank(Mc) = 4 for the whole

range of vξ scheduling parameter, the system is controllable, therefore it can be stabilized
with full state feedback. As the implemented algorithms will run on an embedded com-
puter, a discrete time feedback control is designed. Accordingly, the continuous system
discretized with zero order hold method, using 0.025 s sampling time. Then, for the dis-
crete time system, a full state feedback control is designed which has the following linear
law:

δ[k] = −KGS
lat,LQR(vξ)x[k]. (5.42)

The controller is designed by LQR technique, to enable convenient tuning by the alteration
of Q and R weighting matrices. To increase the cost of the lateral error compared to the
heading error, the following gains are chosen:

QGS =


139 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , RGS = 100. (5.43a)

After calculating the optimal gains for different vξ values, ranging from 0.5 m/s to 3.5 m/s
with 0.05 m/s steps, a third order polynomial is fitted on the gain-velocity data pairs to
obtain the parameter varying feedback gains.

To properly evaluate the performance of the designed controller, the simulator package
detailed in Section C is used, which utilizes the nonlinear dynamic vehicle model identified
in Section 4.6. The reference trajectory is a 2 dimensional spline curve that is completely
realizable with the vehicle and the reference velocity is constant 1.5 m/s for the whole
track. The comparison between the reference and the realized trajectory is shown in
Figure 5.5.
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Figure 5.5: Reference path and the actual path of the vehicle using state feedback
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It is clear from the figures that although the system has been successfully stabilized, it
builds up significant lateral error, as a result of the external disturbance. Therefore this
steering method fails to deliver accurate path tracking and improvements are necessary,
which are presented in the following sections.

5.4.2 Gain-scheduled LQ-servo control

This section presents an improved control design approach, the LQ-servo, to compensate
the effects of external disturbance ϵ. In the LQ-servo, the integral of the lateral error
q =

∫
eη dt is introduced as a state variable. The extended system in state-space form can

be expressed as

d
dt



q

eη

ėη

θe

θ̇e


︸ ︷︷ ︸

ẋ

=



0 1 0 0 0
0 0 1 0 0
0 0 −(Cr+Cf)

mvξ

Cr+Cf
m

lrCr−lfCf
mvξ

0 0 0 0 1
0 0 lrCr−lfCf

Izvξ

lrCr−lfCf
Iz

−(l2r Cr+l2f Cf)
Izvξ


︸ ︷︷ ︸

A



q

eη

ėη

θe

θ̇e


︸ ︷︷ ︸

x

+



0
0
Cf
m

0
Cf lf
Iz


︸ ︷︷ ︸

B

+δ



0
0

lrCr−lfCf
mvξ

− vξ

0
−(l2r Cr+l2f Cf)

Izvξ


︸ ︷︷ ︸

E

ωp(s)︸ ︷︷ ︸
ϵ

. (5.44)

If this system is stabilized by feedback control, the steady-state condition ẋ = 0 corre-
sponds to zero lateral error, as q̇ = eη. This means that the effects of the disturbance can
be compensated if the controller is sufficiently fast, compared to the rate of ωp(s).

After the introduction of the extended system, the control design is carried out with the
steps detailed in Section B. As

rank(Mc) = rank
([
A AB A2B A3B A4B

])
= 5 (5.45)

for the whole range of vξ, the system is controllable, therefore full state feedback is applied.
After discretization with 0.025 s sampling time, an LQR state feedback control is designed.
The control law has the following form:

δ[k] = −KGS
lat,LQ−servo(vξ)x[k]. (5.46)

The weighting matrices of the LQR are tuned to enhance the cost of lateral error compared
to the heading error for more accurate path tracking:

QGS =



65 0 0 0 0
0 328 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0


, R =GS 392. (5.47a)

The performance of the controller was evaluated using the simulator detailed in Section
C. During the simulation the same reference trajectory is used as in Section 5.4.1. A
comparison between the the reference and the actual vehicle trajectory is displayed in
Figure 5.6.
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It is clear, that the application of the LQ-servo can successfully compensate the steady
state error of the system. However, another important issue is raised. As a result of the
system dynamics, the feedback gains of eη and θe need to have high values to stabilize the
system. Furthermore, these values cannot be reduced by altering the weighting matrices
of the LQR, as lower gains would result in an unstable closed loop system. Consequently,
because of the large gains, there are rapid changes in the control input of the system, as
shown in Figure 5.7.

As the dynamics of the steering servo motor is not included in the model, the controller
performs well in simulations. However, the real hardware cannot realize such fast changes
in the input. Therefore, this control method cannot be implemented on the real system
with the same performance as shown in the simulations.
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Figure 5.6: Reference track compared to the actual path of the vehicle with the gain-
scheduled augmented state feedback control.
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Figure 5.7: The steering inputs of the simulation with the feedback law based on the
augmented lateral dynamics.

5.4.3 Enhanced Stanley method with simplified gain-scheduled control

The issues of the controllers designed in the previous sections are all originate from the
same problem. The dynamics of the model in (5.26) require high feedback gain of the
heading error to be able to stabilize the system. As the lateral and the heading error work
against each other, one cannot be eliminated without the temporary increase of the other.
While the augmented system produces more accurate results, the gains are increased even
further to guarantee the closed loop stability and the control input alternates too quickly
to realize it on a real system, or leads to saturation.

To eliminate this undesired effect of the control gains “working against each other”, a
third control solution is presented. This includes the introduction of a third, simplified
lateral model. Here, the dynamics of the heading error is first neglected from the extended
system model and considered only as disturbance. However, the integral term from the
LQ-servo is preserved, as it has been successfully applied in disturbance compensation.
The model can be expressed as:

q̇

ėη

ëη


︸ ︷︷ ︸

ẋ

=


0 1 0
0 0 1
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mvξ


︸ ︷︷ ︸
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ėη


︸ ︷︷ ︸
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0
0
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m


︸ ︷︷ ︸
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δ︸︷︷︸
u

+


0 0 0
0 0 0
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Izvξ

lrCr−lfCf
mvξ

− vξ


︸ ︷︷ ︸

E


θe

θ̇e

ωp(s)


︸ ︷︷ ︸

ϵ

.

(5.48)
As Mc =

[
B AB A2B

]
controllability matrix has full rank, the system can be stabilized

by full state feedback. After discretization, the control law can be expressed as

δ[k] = −KGS
lat,Stanley(vξ)x[k] (5.49)
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The optimal feedback gains are calculated using LQR with weighting matrices

QGS =


4 0 0
0 15200 0
0 0 2580

 , RGS = 2340. (5.50a)

The performance of the controller is evaluated in the fleet1tenth simulator module.
Using the same test trajectory as in the previous sections, a comparison between the
actual and the reference path is shown in Figure 5.8.
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Figure 5.8: Reference track compared to the actual path of the vehicle with the gain-
scheduled simplified state feedback control.

Despite the fact that this controller completely neglects the dynamics of the heading error,
the tracking already outperforms the previously designed controllers. To further increase
the accuracy, θe is introduced as a feedforward term in the control law, like it is used in
the so-called Stanley controller [14]. The final proposed control law can be expressed as

δ[k] = −θe[k] −KGS
lat,Stanley(vξ)x[k]. (5.51)

The control algorithm is validated with the same numerical simulation as the previous
ones. As it is shown in Figure 5.9, the combined controller with the Stanley-like feed-
forward term and the model-based feedback term provide further accuracy improvement,
therefore this control algorithm is implemented on the F1TENTH vehicle for real world
experiments.
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Figure 5.9: Reference track compared to the actual path of the vehicle with the gain-
scheduled enhanced Stanley control algorithm.

5.4.4 Enhanced Stanley method with simplified LPV control

As the simulations show, the enhanced Stanley method proved to be efficient for the path
following task, with the gain-scheduled LQR feedback term.

To further improve the algorithm, this section designs the feedback term with an LPV-
LQR technique, introduced in Section B.2.3. The utilization of this LPV controller is
beneficial, as it can provide mathematically guaranteed stability and performance for the
whole range of the scheduling variables of the system, whereas gain-scheduling only takes
into account the design points.

The control law is identical to the one introduced in the previous section:

δ[k] = −θe[k] −KLPV
lat,Stanley(vξ)x[k]. (5.52)

where the feedback gains are tuned by altering the weighting matrices of the LPV-LQR.
Based on simulation results, the following weights are chosen:

Q =


1 0 0
0 15.24 0
0 0 2.58

 , R = 567. (5.53a)

These differ from the gain-scheduled results, as the LPV controller considers the whole
operating range of the scheduling variable, unlike the gain-scheduled technique which only
takes into account the local design point.

The performance of the resulting controller is examined with numerical simulations, using
the same parameters as in the previous sections. The results of path tracking is displayed
in Figure 5.10. As the figure shows, the performance of the LPV-LQR is similar to the
gain-scheduled one.
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Figure 5.10: Reference track compared to the actual path of the vehicle with the LPV
enhanced Stanley control algorithm.

5.4.5 Comparison of lateral control algorithms

The previous pages have introduced multiple lateral control strategies. To get a better
view of the accuracy and performance of these controllers, this section presents a brief
comparison between them.

While the first, simple model based controller was able to stabilize the lateral system,
the tracking accuracy was insufficient. To increase the accuracy, an integral term was
introduced, to improve the disturbance rejection of the controller. This method showed
promising results in terms of accuracy, but the jumps in the control inputs made it im-
possible for the controller to be implemented on the real hardware. From simulations, it
became clear that the controllers are unable to compensate the lateral and the heading
error simultaneously. Therefore, the two effects were countered separately, with the intro-
duction of the enhanced Stanley-controller. This solution used a simplified lateral model,
that neglects the dynamics of the heading error. The lateral error was countered with
a state-feedback controller based on this model and the heading error was compensated
with an introduced feedforward term.

The last, Stanley-based control method showed the most promising results in simulations.
Therefore, this controller was not only designed with the gain-scheduled LQR method,
but the more advanced LPV-LQR, as the latter can provide mathematical guarantees for
the stability and performance in whole operation range.

A comparison between the all the introduced controllers are also displayed in Figure 5.11.
It is clear, that the enhanced Stanley-based algorithms were the most effective, with minor
differences between the gain-scheduled and the LPV controllers. Therefore, both of these
methods are also implemented on the real hardware, to conduct further experiments.
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Figure 5.11: Comparison of the simulated time evolution of the lateral errors using the
different control algorithms.

5.4.6 Backward driving

Special consideration is required in the case of a backward driven vehicle. For better
visualization the path-tracking scenario, for a forward and backward driven car is depicted
in Figures 5.12a and 5.12b, respectively.

(a) Forward motion (b) Backward motion (c) Backward motion with re-
placed reference

Figure 5.12: The geometry of path tracking of the forward and backward driven vehicles
with different reference points, considering Ackermann steering [21].

In case of the forward driven vehicle, the application of the appropriate steering angle will
immediately result in the decrease of the lateral error. However, in the case of backward
driving, there is a momentary increase on the lateral error at the start of the actuation,
called the initial undershoot. As a consequence, the lateral controller provides an even
larger actuation signal, which leads to oscillations. This is the result of the non-collocated
control of the lateral behavior also described in [16].

This effect can be countered by replacing the reference point of the vehicle to the rear axle
as shown in Figure 5.12c. While dynamic models are hard to derive for points other than
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the center of mass, the kinematic model already has its reference placed at the desired
location. Therefore, for the reversing control design, the model in (5.19) is used.ż1

θ̇e


︸ ︷︷ ︸

ẋ

=
0 vξ

0 0


︸ ︷︷ ︸

A

z1

θe


︸ ︷︷ ︸

x

+
 0

vξ

l


︸ ︷︷ ︸

B

δ︸︷︷︸
u

0
1


︸︷︷︸

E

ωp(s)︸ ︷︷ ︸
ϵ

(5.54)

First, using the obtained LPV model with scheduling variable vξ, a gain-scheduled
state feedback controller is designed to counter the effect of the external disturbance ϵ.
As Mc =

[
A AB

]
has full rank for the range of vξ, the system can be stabilized by full

state feedback control. After discretization with 0.025 s sampling time, the control law
can be expressed as

δ[k] = −KGS
lat,kin(vξ)x[k] (5.55)

To calculate the optimal feedback gains a discrete time, infinite horizon LQR is used, with
weighting matrices

QGS =
50 0

0 3.3

 , RGS = 34. (5.56a)

In simulations, this gain-scheduled controller showed promising results. However, the
interpolation of the feedback gains cannot provide mathematical guarantees for stability
and performance. Therefore, a more advanced LPV-LQR based feedback controller is
also designed, based on the theory introduced in Section B.2.3. The feedback law can be
expressed as

δ[k] = −KLPV
latkin(vξ)x[k]. (5.57)

The optimal weighing matrices based on simulations are

QLPV =
50 0

0 6.67

 , RLPV = 650. (5.58a)

The designed controllers are validated with the same numerical simulations as introduced
in the previous section. As it is shown in Figure 5.13, this simpler kinematic model based
method provides accurate path tracking for the reversing vehicle, with both the gain-
scheduled and the LPV controllers. Therefore, these controllers are also implemented on
the F1TENTH vehicles for real world experiments. The only concern raised is the vehicle
behavior at higher speeds, as the kinematic model does not consider dynamic effects such
as the tire behavior. However, this does not impose problems in our applications since
backward driving is only applied for small length trajectories with limited prescribed
velocities (vξ > −1 m/s).
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Figure 5.13: Path tracking simulation of a backward driven vehicle compared with the
reference. During the simulations the center of mass of the vehicle was logged, not the
front axle, therefore the experienced 10 cm deviation is normal.
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6 Real world experiments

This section presents the performance of the developed motion control algorithms, imple-
mented on the F1TENTH vehicles. To show a proper evaluation of the control algorithms,
complex sequence of maneuvers are performed in an obstacle rich environment to illus-
trate the navigation capabilities of the cars. A video recording of the experiments is also
available online: https://youtu.be/X_GDFcN_bQE.

The reference trajectory of the experiment can be split into six sections, that are con-
structed individually. Each section is defined as a two dimensional, third order spline
curve representing the desired path, and a one dimensional spline that describes the
speed profile along the path, as introduced in the control problem formulation in Section
5.1. The paths are designed with the limitations of the vehicle taken into consideration,
therefore, the resulting path is fully realizable by the car. The speed profile in the current
experiment is piecewise constant for the sections: 1.2 m/s for forward and −0.75 m/s
for backward motion. The reference trajectory, with each section marked is displayed in
Figure 6.1. After the construction of the path and speed splines, only the vector knots,
the coefficients and the degree of the splines are stored, as this information is sufficient
for the vehicle to reconstruct the path.
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Figure 6.1: The six sections of the reference trajectory used in the experiment.

As part of this work, a complete vehicle control framework was developed for the test
environment. This framework is introduced in Appendix C, therefore, this section only
gives an overview of the used algorithms, without going into the implementation details.
After the necessary components of the test environment, such as the OptiTrack server and
the ROS master have been successfully started, the Command PC executes the high-level
experiment management script shown in Algorithm 1.
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Algorithm 1 Experiment management
1: Load the six parts (see Fig. 6.1) of the reference trajectory (vector of knots, spline

coefficients, degree) into a list T ref .
2: Set control parameters and start up the F1TENTH onboard stack
3: for i = 1, ..., len(T ref) do
4: Send the vector of knots, coefficients and the degree from T ref(i) to vehicle
5: Wait for the vehicle to execute the trajectory
6: if trajectory execution was unsuccessful then
7: Notify the user about the error
8: break
9: end if

10: end for
11: Shut down the vehicle

On the vehicle side, after software startup, the system waits for reference trajectories.
After a trajectory is received, it is first validated by checking if the vehicle is at the staring
position of the path. If the validation is successful, the low-level motion control algorithm
starts and guides the vehicle through the provided reference. The implementation is
explained in Algorithm 2.

Algorithm 2 Low level motion control (F1TENTH)
1: while the trajectory is not completed do
2: Get the state from the state estimator module
3: Obtain control model in path coordinates (5.7)
4: Calculate the control inputs (5.31), (5.35) and (5.51)
5: Apply control inputs on the vehicle
6: end while

A comparison between the resulting and the reference path is shown in Figure 6.2, with
both the gain-scheduled (GS) and the LPV-LQR (LPV) controller. Is is clear, that the
vehicle was capable of tracking the provided reference accurately with both controllers.. In
case of forward motion, there is no significant difference between the gain-scheduled and
the LPV controller. For backward motion, the LPV performs slightly better. However,
most of the deviation of the gain-scheduled controller is the result of the reference point
replacement. While in case of forward motion, the vehicle center of mass is used as
reference, in the backward driving scenario it is placed on the rear axle, but during the
experiments only the position of the center of mass is recorded.
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Figure 6.2: Comparison between the reference the actual path realized by the vehicle.

The speed profile tracking can also be examined with both of the implemented controllers.
A comparison between the reference and the actual realized velocities of the vehicle is
shown in Figure 6.3. As it is displayed, after the initial overshoot, the speed profile of the
path was tracked accurately by the longitudinal controllers. The overshoot is a result of
the steps in the reference signal, as the vehicle not only tries to track the speed profile,
but also its integral sref . The overshoot of the LPV controller is also noticeably smaller,
but this means that the controller also reacts slower to changes in the reference. While
fine tuning can further reduce the effect of the overshoot, it increases the lag between s

and sref , and the agile maneuvering capability of the vehicle weakens.
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Figure 6.3: Comparison between the reference velocity and the actual velocity of the
vehicle.

The results of this experiments show that the controller design was successful, and the
vehicle is capable of tracking the reference path and speed profile accurately. Considering
the speed profile references the trajectory execution was accomplished with up to 1.5 m/s
in forward and −0.9 m/s in backward motion. As the curvature values of the designed
path are quite high, larger velocity values result in significant side-slip and the tracking
performance decreases. This issue can be countered with a more complex speed profile
reference, where the prescribed velocity is decreased near the high curvature values. On
the other hand, in the current limited space of the lab, driving much faster also has safety
concerns.

The experiments were also recorded to showcase the performance of the designed control
algorithms. A composite image of it is displayed in Figure 6.4, and the full video is
available at https://youtu.be/X_GDFcN_bQE. As it is shown, the vehicle can precisely
dock into the predefined parking spaces, both in case of forward and backward driving.
The final position error of the vehicle was below 5 cm for every section of the trajectory.

Figure 6.4: Composite images of the performed experiment.
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7 Conclusions and future work

The aim of this work has been to develop a ground vehicle research framework with precise
low-level control methods to provide a test environment for high-level algorithms. After
a thorough literature survey about the available small scale ground vehicle platforms, the
F1TENTH has been deemed the most fitting to our tasks. For the development of a
motion-control solution that enables agile maneuvering and high performance reference
tracking, an accurate mathematical model of the chosen vehicle is necessary. Therefore,
a nonlinear, dynamic single track model with linear tires and a custom drivetrain model
has been obtained and identified.

After the control problem formulation, two independent SISO LPV subsystems, that de-
scribe the longitudinal and lateral behavior of the vehicle, have been derived from the
nonlinear model, for control purposes. Then, gain-scheduled feedback controllers have
been developed with LQR technique. To present the performance of the designed con-
trollers, a simulation framework has been designed, that utilizes the previously obtained
nonlinear vehicle model.

After successful simulations, the designed control algorithms have been implemented in
the F1TENTH vehicle. With real world experiments the control algorithms have been
proven to work effectively. To aid future research, a complete control and management
framework have been also been developed, that integrates the the F1TENTH cars into
the AIMotionLab autonomous vehicle test environment.

The future goal of this project is to develop more versatile control methods for fast and safe
maneuvering, in an obstacle rich environment. This includes the further improvement of
the low-level path-following algorithms, with learning-based or model predictive methods,
as well as the high-level path-planning and navigation tasks. In addition, to support
the continuous research and development, the designed software framework is planned to
extended with more advanced simulation tools, such as HIL simulations or the integration
of a high fidelity physical simulator like MuJoCo1.

1https://mujoco.org/
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Összefoglaló

Az F1TENTH egy valós gépjármű 1/10-ed méretarányú, elektromos hajtású modellje.
Fejlesztői egy olyan nyílt járműplatformot szerettek volna megalkotni, amely hatékonyan
tudja támogatni az autonóm járműirányítással kapcsolatos kutatási és oktatási felada-
tokat. Jelen szakdolgozat célja, az F1TENTH nemlineáris, dinamikus mozgás modelljének
megalkotása, majd annak felhasználásával agilis manőverezésre alkalmas, pályakövető sz-
abályozási algoritmus tervezése volt.

Első lépésként, a szakirodalmi áttekintést követően, az F1TENTH jármű dinamikus mod-
ellje került bevezetésre. Ez a modell magában foglalta a nemlineáris járműdinamikát,
a motorbemenet és a kerekeken ható nyomaték között kapcsolatot teremtő hajtásláncot,
valamint a kerekek laterális, súrlódási viselkedését leíró egyenleteket is. A modellstruktúra
megválasztását után modellparaméterek meghatározása követte. A közvetlenül mérhető
fizikai jellemzők mellett az empirikus paraméterek becslésének folyamata is részletezésre
került, ami magában foglalta az identifikációhoz alkalmazott kísérletek megtervezését és
kivitelezését, valamint a mérési adatgyűjtés megvalósítását is. Ezt követte a gyűjtött
adatok feldolgozása és az optimalizáció alapú paraméterbecslés. A kapott modellt a valós
rendszerrel összehasonlítva kísérletek validálták.

A dolgozat második része a modell alapú pályakövető irányítási algoritmus megtervezésév-
el foglalkozott. A tervezéshez a teljes nemlineáris rendszert először szétcsatolásra került
külön laterális, illetve longitudinális részrendszerre, majd külön-külön, mindkét alrendsz-
erre, az egyszerűsített dinamikus modellt felhasználva, állapotvisszacsatolás alapú szabá-
lyozási alogitmusok fejlesztése valósult meg. Ezután a tervezett szabályzók robusztusságát
és performancia tulajdonságait, mind szimulációs környezetben, mind pedig az F1TENTH
platformon implementálva is vizsgálta a dolgozat.

Mindezek mellett megvalósítás elengedhetetlen része volt egy, az F1TENTH platformot
kezelő, szoftveres keretrendszer kialakítása, a modellezési és irányítási feladatok meg-
valósításához. Ez a keretrendszer felelős a jármű beépített és külső szenzorjainak vezér-
léséért, a mérési adatok gyűjtéséért, valamint az autó irányításához szükséges aktuátorok
működtetéséért. A szoftvercsomag fő előnye, hogy egy tisztán Python interfészt ad, ame-
lyen a jármű magas szintű vezérlése és a platformon futó — ROS alapú — szoftverek
egyszerű kezelése megvalósítható. A szoftverkörnyezet lehetővé teszi több jármű szimultán
vezérlését is, ezzel járműcsoportok irányítására is alkalmas. Így az F1TENTH autóra
építve könnyedén létrehozható egy olyan laboratóriumi tesztkörnyezet, amely további ku-
tatási és fejlesztési projektek alapjául szolgálhat.

Kulcsszavak: modellezés, identifikáció, mozgássszabályozás, pályakövetés,
gain-scheduling, LQR, LPV

53



A Derivation of the single track model

Single tracks models are commonly used in motion planning and motion control tasks as
they can describe the behavior of car-like vehicles accurately, despite the obvious simpli-
fications. As the authors present in [3], the single track model uses only two wheels to
model the vehicle. This is achieved by lumping together the front and rear wheel pairs
of the car. This simplification neglects the roll and pitch dynamics and constrains the
motion into a 2 dimensional space. In [3], there are multiple models introduced, based on
the single track principle. The most simple one is the kinematic single track model, which
describes the vehicle motion only based on the kinematic relations. While this model can
also be sufficient for basic motion control tasks, agile maneuvering — where the speed is
significantly increased – cannot be achieved with such simple model. Therefore, a more
complex, dynamic single track model is introduced to consider the effects of side slip
behavior.

A.1 Kinematic single track model

The kinematic single track model is one of the most simple vehicle models used for de-
scribing the behavior of car-like robots as it incorporates the non-holonomic constraints
of their motion. As this model completely neglects the side slip behavior, it is assumed
that the velocity vector v is always parallel with the link between the front and rear tires
[3]. The proposed model is depicted in Figure A.1a. To derive the equations of motion,
the first step is finding the instantaneous center of rotation (ICR). From the geometric
relations the following equations hold:

ẋ = v cos(φ), (A.1a)
ẏ = v sin(φ), (A.1b)

φ̇ = v

R
, (A.1c)

tan(δ) = l

R
, (A.1d)

where (x, y) is the global position of the vehicle, φ is the heading angle measured from
the X axis, δ is the steering angle and l is the wheelbase of the vehicle. By substituting
(A.1d) into (A.1c) and considering a = v̇ acceleration and δ steering angle as the inputs
of the system, the kinematic single track model can be obtained:

ẋ = v cos(φ), (A.2a)
ẏ = v sin(φ), (A.2b)

φ̇ = v

l
tan(δ), (A.2c)

v̇ = a. (A.2d)
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A.2 Dynamic single track model

Unlike the kinematic model from the previous section, the dynamic single track model
also considers the forces acting on the tires. As a result, a more complex model, that
incorporates the side-slip behavior of the vehicle, is introduced. First, define a local
coordinate frame V with its axes denoted as (ξ, η), so that the origin of this system is in
the center of mass (CoM) of the vehicle and the ξ axis is parallel to the link between the
two tires of the model. Based on this coordinate frame, the velocity of the CoM, denoted
as vV , can either be expressed with a longitudinal and a lateral part or with the absolute
value vV , and the angle between the velocity vector and the ξ axis. This angle is the
so-called side slip angle, represented as γ.

vV =


vξ

vη

0

 =


v cos(γ)
v sin(γ)

0

 (A.3)

Next, the tire forces Ff,∗ and Fr,∗ are introduced for the front and rear tires respectively.
These forces can also be slit into a lateral (denoted with subscript η) and longitudinal
(denoted with subscript ξ) part, as shown in Figure A.1b. Summing up the lateral and
longitudinal forces in Figure A.1b yields the following equations:

maξ = Fr,ξ + Ff,ξ cos(δ) − Ff,η sin(δ), (A.4a)
maη = Fr,η + Ff,ξ sin(δ) + Ff,η cos(δ). (A.4b)

where δ is the steering angle, as shown in Figure A.1b. Substituting aξ = v̇ξ − vηω and
aη = v̇η + vξω into (A.4), v̇ξ and v̇η can be obtained as

v̇ξ = 1
m

(Fr,ξ + Ff,ξ cos(δ) − Ff,η sin(δ) +mvηω) , (A.5a)

v̇η = 1
m

(Fr,η + Ff,ξ sin(δ) + Ff,η cos(δ) −mvξω) , (A.5b)

where ω = φ̇ is the angular rate about the yaw axis. The yaw moment balance equation
is expressed as

Izω̇ = Ff,ηlf cos(δ) + Ff,ξlf sin(δ) − Fr,ηlr, (A.6)

where lf and lr are the distance of the front and rear wheels from the CoM, respectively.
Using (A.6), ω̇ can be calculated as

ω̇ = 1
Iz

(Ff,ηlf cos(δ) + Ff,ξlf sin(δ) − Fr,ηlr) (A.7)

With the kinematics discussed in Section A.1, the motion in the global (X, Y ) coordinate
frame is obtained from

ẋ = vξ cos(φ) − vη sin(φ), (A.8a)
ẏ = vξ sin(φ) + vη cos(φ). (A.8b)
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Combining the derived equations, the motion of the dynamic single track model is de-
scribed by the following equations:

ẋ = vξ cos(φ) − vη sin(φ), (A.9a)
ẏ = vξ sin(φ) + vη cos(φ), (A.9b)
φ̇ = ω, (A.9c)

v̇ξ = 1
m

(Fr,ξ + Ff,ξ cos(δ) − Ff,η sin(δ) +mvηω) , (A.9d)

v̇η = 1
m

(Fr,η + Ff,ξ sin(δ) + Ff,η cos(δ) −mvξω) , (A.9e)

ω̇ = 1
Iz

(Ff,ηlf cos(δ) + Ff,ξlf sin(δ) − Fr,ηlr) . (A.9f)

The physical parameters of the model such as m, lr, lf and Iz can be measured directly
or estimated from other parameters. The other unknown variables are the lateral and
longitudinal tire forces and δ steering angle. In most applications, the steering angle can
be directly controlled, so it is considered a control input. Tire forces are computed with
the help of different tire models that are not discussed in this section, as they are not
strictly connected the vehicle dynamics.

(a) Kinematic single track model (b) Dynamic single track model

Figure A.1: Single track models with different complexity
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B LQR optimal control

This section summarizes the theoretical background of the control design steps used in this
thesis. First, Section B.1 describes the handling of linear time invariant (LTI) systems.
Then, Section B.2 extends the introduced concepts to linear parameter-varying (LPV) [7]
systems.

B.1 Linear time invariant systems

This section provides an overview of the LTI control techniques that this work relies on.
First, Section B.1.1 details the zero order hold (ZOH) method, which is used to obtain
the discrete time state space representation of continuous systems. Next, Section B.1.2
introduces a discrete time infinite horizon linear quadratic regulator (LQR) [17], which is
an optimal control method, used for state feedback control. Finally, Section B.1.3 proposes
a linear matrix inequality (LMI) based solution for the LQR optimization problem that
will be later extended to LPV systems.

B.1.1 Discretization

The models used in this work describe the behaviors of real-world physical systems in
continuous time with the help of differential equations. However, the control algorithms
used for the manipulation of these systems are predominantly implemented on micro-
controllers. Like most modern computers, these also work in discrete time. In order to
successfully develop well-functioning and accurate control algorithms, the derived contin-
uous models need to be converted into discrete time for the control design procedure.

The continuous time state equation of a linear time invariant system is expressed as

ẋ(t) = Ax(t) +Bu(t), (B.1)

where A ∈ Rnx×nx , B ∈ Rnx×nu are the state and input matrices and x(t) ∈ Rnx , u(t)Rnu

are the state and input vectors of the system, respectively. The integers nx and nu denote
the number of system states and the number of inputs, respectively. The equivalent
discrete time system can be obtained by discretizing the continuous system with the zero
order hold method. The obtained discrete time system can be expressed as

x[k + 1] = Adx[k] +Bdu[k], (B.2)

where Ad and Bd are the discrete time state and input matrices respectively. Their values
can be computed analytically [6] asAd Bd

0 I

 = exp
τ

A B

0 0

 (B.3)

where τ is the sampling time of the discretization.
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B.1.2 Linear Quadratic Regulator

Consider a discrete time, linear, time invariant system in state space representation:

x[k + 1] = Adx[k] +Bdu[k]. (B.4)

The asymptotic stability of this system can be checked by calculating the eigenvalues
(denoted as µi) of the system matrix. If |µi| < 1 holds for all µi eigenvalues the system is
considered asymptotically unstable. Therefore, to stabilize the system, full state feedback
control is applied.

Before further steps, it is important to check if the state-space representation of the system
is controllable. The controllability of a linear time invariant system can be examined by
calculating the rank of the controllability matrix, which has the following form:

Mc =
[
Bd · · ·Ai

dBd · · ·An−1
d Bd

]
, (B.5)

where n is the size of Ad system matrix. If Mc has full rank, the system is controllable
and full state feedback van be applied. The control law is defined as

u[k] = −Kx[k], (B.6)

where K is the feedback gain vector. Combining (B.2) and (B.6), the closed loop can be
expressed as

x[k + 1] = (Ad −BdK)x[k]. (B.7)

Equation (B.7) shows that if the system is controllable, the eigenvalues of the closed
loop system matrix can be replaced with the proper choice of K. In this work, rather
than calculating the feedback gains manually, a discrete time, infinite-horizon LQR is
utilized [17], which was used in [27] for the development of steering control algorithms.
This approach forms and optimization problem to obtain the optimal feedback gains of
the controller. For the optimization, the performance requirements are expressed by a
quadratic cost function:

J =
∞∑

k=0

(
x[k]⊤Qx[k] + u[k]⊤Ru[k]

)
, (B.8)

where Q ⪰ 0 and R ≻ 0 are manually selected weighting matrices. The goal is to minimize
J by calculating the optimal control sequence. This results in the following optimization
problem:

min
u[·]

∞∑
k=0

(
x[k]⊤Qk[k] + u[k]⊤Ru[k]

)
subject to x[k + 1] = Adx[k] +Bdu[k] k = 0, 1, 2, ...,∞

(B.9)

The optimal control input is given as

u[k] = −Kx[k], (B.10)
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where K feedback vector is calculated as

K = (R +B⊤
d PBd)−1B⊤

d PAd, (B.11)

and P is the solution to the algebraic Riccati equation:

P = A⊤
d PA− A⊤

d PBd(R +B⊤
d PBd)−1B⊤

d PAd +Q (B.12)

In the cost function, Q is a diagonal weighting matrix which can be used to tune how
much each state contributes to the overall performance. Similarly, R is used to weight
the control effort corresponding to the cost function.

B.1.3 LMI-based LQR

The LQR method is a powerful tool to find the optimal feedback gains of a system and
it can also provide mathematical guarantees for the stability of the closed loop of the
controlled system. However, the Ricatti equation based solution, introduced in Section
B.1.2, only considered LTI systems and cannot be applied directly to LPV systems, with
the mathematical guarantees preserved. Therefore, this section proposes an LMI based
solution for the LQR problem, which can be easily extended to the LPV framework.

Consider the following discrete time LTI system, and the previously introduced LQR
optimization problem:

x[k + 1] = Adx[k] +Bdu[k], (B.13a)

min
u[·]

∞∑
k=0

(
x[k]⊤Qk[k] + u[k]⊤Ru[k]

)
subject to x[k + 1] = Adx[k] +Bdu[k] k = 0, 1, 2, ...,∞.

(B.13b)

If full state feedback is applied (u[k] = −Kx[k]), the closed loop system is asymptotically
stable if a Lyapunov function V (x[k]) exists such that

1, V (x[k]) > 0 ∀k = 0, 1, 2, ...,∞ and x ̸= 0; (B.14a)
2, V (x[k + 1]) − V (x[k]) < 0. (B.14b)

If a quadratic Lyapunov function is chosen in the form of

V (x[k]) = x[k]⊤Px[k], (B.15)

the matrix P ⪰ 0 must be positive semi-definite to satisfy (B.14a). Next, the LQR cost
is substituted into the second condition to obtain:

V (x[k + 1]) − V (x[k]) < −x[k]⊤Qx[k] − u[k]⊤Ru[k]. (B.16)

The right side of the inequality can also be expressed as

−x[k]⊤Qx[k] − u[k]⊤Ru[k] = −x[k]⊤(C1 +D12K)⊤(C1 +D12K)x[k], (B.17)
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where

C1 =
Q 1

2

0

 , D12 =
 0
R

1
2

 . (B.18a)

Substituting (B.17) into (B.16) yields the following inequality:

V (x[k + 1]) − V (x[k]) ≤ −x[k]⊤(C1 +D12K)⊤(C1 +D12K)x[k] − x[k]⊤ϵPx[k], (B.19)

where the x[k]⊤ϵPX[k] term is introduced with ϵ = 10−12 to relax the strict inequality,
as the numerical methods of optimization solvers can only handle non-strict inequalities.
Considering the iteration k = 0, 1, ...∞, the following inequalities need to be satisfied:

V (x[1]) − V (x[0]) ≤ −x[0]⊤(C1 +D12K)⊤(C1 +D12K)x[0] − x[0]⊤ϵPx[0], (B.20a)
V (x[2]) − V (x[1]) ≤ −x[1]⊤(C1 +D12K)⊤(C1 +D12K)x[1] − x[1]⊤ϵPx[1], (B.20b)
V (x[3]) − V (x[2]) ≤ −x[2]⊤(C1 +D12K)⊤(C1 +D12K)x[2] − x[2]⊤ϵPx[2], (B.20c)

...

By summing up the inequalities, the higher index Lyapunov functions cancel out, and the
following expression can be obtained

−V (x[0]) ≤ −
∞∑

k=0

(
x[k]⊤Qk[k] + u[k]⊤Ru[k]

)
− ϵ

∞∑
k=0

(
x[k]⊤Pk[k]

)
, (B.21)

which can also be expressed as
∞∑

k=0

(
x[k]⊤Qk[k] + u[k]⊤Ru[k]

)
+ ϵ

∞∑
k=0

(
x[k]⊤Pk[k]

)
≤ x[0]⊤Px[0]. (B.22)

This inequality shows that x[0]⊤Px[0] is an upper bound to the LQR cost. Therefore,
by minimizing this upper bound, a suboptimal solution for the LQR problem can be
obtained. To minimize x[0]⊤Px[0] for all x[0], we minimize the trace of P which leads to
the following optimization problem

min
K

trace(P )

subject to P ⪰ 0,
(B.19),
x[k + 1] = Adx[k] +Bdu[k] k = 0, 1, 2, ...,∞.

(B.23)

The constraint in (B.19) is a nonlinear matrix inequality, but it can be converted to an
LMI by performing the following steps: substituting the quadratic Lyapunov function
(B.15) and system dynamics (B.13a) into the inequality in (B.19) leads to

x[k]⊤(Ad −BdK)⊤P (Ad −BdK)x[k] − x[k]⊤Px[k] ≤
−x[k]⊤(C1 +D12K)⊤(C1 +D12K)x[k] − x[k]⊤ϵPx[k].

(B.24)
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Multiplying the inequality with x[k]⊤ from the left side and with x[k] from the right side
leads to

(Ad −BdK)⊤P (Ad −BdK) − P ≤ −(C1 +D12K)⊤(C1 +D12K) − ϵP. (B.25)

Next, the inequality is multiplied with X = P−1 from the right and the left side to obtain

(AdX −BdY )⊤P (AdX −BdY ) −X ≤ −(C1X +D12Y )⊤(C1X +D12Y ) − ϵX, (B.26)

where Y = KX. After reorganizing the terms in the inequality, it can also be expressed
in matrix form:

X − ϵX −
[
(AdX −BdY )⊤ (C1X +D12Y )⊤

] P 0
0 I

 [AdX −BdY C1X +D12Y
]

≥ 0,

(B.27)
by Schur decomposition theorem [26], this is equivalent to

X − ϵX (AdX −BdY )⊤ (C1X +D12Y )⊤

(AdX −BdY ) X 0
(C1X +D12Y ) 0 I

 ≥ 0. (B.28)

Finally, the optimization problem that needs to be solved to obtain the optimal feedback
gains can be expressed as

min
X,Y

− trace(X)

subject to X ⪰ 0,
(B.28).

(B.29)

This optimization problem can be easily formulated with YALMIP [20] a high-level mod-
elling language, and can be solved by MOSEK1, a semidefinite solver program.

From the optimization results, the feedback gains are computed as

K = Y X−1. (B.30)

B.2 Linear parameter-varying systems

In the recent years, the LPV framework has become popular, as it can represent complex,
nonlinear behavior, while preserving the advantageous properties of the linear model
structure. The LPV state space representation can be expressed as

ẋ = A(ρ)x+B(ρ)u, (B.31)

where A(ρ), B(ρ) system and input matrices are all a matrix functions of a measurable,
time-varying signal ρ, which is called the scheduling variable, as it is introduced in [7].

1https://www.mosek.com/
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This section extends the previously introduced LTI control concepts to LPV systems.
First, Section B.2.1 describes the ZOH discretization of LPV systems. Then, Section
B.2.2, details the gain-scheduled control design method. While the gain-scheduling is a
convenient way to control parameter varying systems, the prescribed performance and ro-
bustness can only be guaranteed at the design points of the controller. Therefore, Section
B.2.3 introduces an LPV-LQR controller, which can provide mathematically guaranteed
stability and performance properties for the whole operating range of the parameter vary-
ing systems.

B.2.1 LPV discretization

The ZOH discretization from Section B.1.1 can be extended to LPV systems (B.31),
resulting in the discrete time LPV representation in the form of

x[k + 1] = Ad(ρ[k])x[k] +Bd(ρ[k])u[k], (B.32)

where Ad(ρ[k]), Bd(ρ[k]) are the discrete time system and input matrices at k.

Under the assumption that the scheduling variable ρ and the control input u are constant
signals inside the sampling intervals, denoted by ρ[k] and u[k], the discrete time LPV
system can be calculated with the following equations [31]:

Ad(ρ[k]) = eA(ρ[k])τ (B.33a)

Bd(ρ[k]) = A−1(ρ[k])
(
eA(ρ[k])τ − I

)
B(ρ[k]), (B.33b)

where τ is the sampling time of the discretization.

B.2.2 Gain-scheduled control

The first method introduced for the control of parameter varying systems is a gain-
scheduled LQR controller. This control technique can be split into three main steps.

Assuming scalar valued scheduling parameter (i.e. ρ(t) ∈ R ∀t), the first step is the
selection of an appropriate grid over the parameter domain:

Γ = [ρ0 = ρmin ≤ ρ1 ≤ ... ≤ ρn−1 = ρmax], (B.34)

where the ρi grid points correspond to local LTI systems. These LTI systems are first
discretized by ZOH, as it is described in Section B.1.1. Then, at each grid point, LQR
feedback controllers are designed, which is introduced in Section B.1.2. After the local LTI
controllers have been successfully designed for each ρi ∈ Γ, the final step is the polynomial
interpolation of the feedback gains ki,j, i = 1, ..., nx, j = 1, .., nu of the feedback matrix K.
For this a least-squares polynomial regression [12] can be used. This type of interpolation
can easily be carried out with the polyfit MATLAB function.
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Figure B.1: Polynomial interpolation of the feedback gains.

B.2.3 LPV-LQR

In this section, the LMI-based controller, derived for LTI systems in Section B.1.3, is
extended to the linear parameter-varying systems. The LPV systems have the following
representation:

x[k + 1] = Ad(ρ[k])x[k] +Bd(ρ[k])u[k], (B.35)

where Ad and Bd are the discrete time state and input matrices respectively, which are
all depending on the scheduling parameter ρ[k]. The feedback law used can be expressed
as

u[k] = −K(ρ[k])x[k], (B.36)

so the feedback gain is also dependent on the scheduling variable. The cost function of
the LQR, that needs to be minimized is still

J =
∞∑

k=0

(
x[k]⊤Qk[k] + u[k]⊤Ru[k]

)
x[k], (B.37)

and the chosen Lyapunov function is the same quadratic function from Section B.1.3:

V (x[k]) = x[k]⊤Px[k]. (B.38)

As in this case P is not dependent on the scheduling variable ρ[k], the derivation steps
introduced in Section B.1.3 can also be carried out with the parameter dependent state
and input matrices to obtain the following LMI:

X − ϵX (Ad(ρ[k])X −Bd(ρ[k])Y (ρ[k]))⊤ (C1X +D12Y (ρ[k]))⊤

(Ad(ρ[k])X −Bd(ρ[k])Y (ρ[k])) X 0
(C1X +D12Y (ρ[k])) 0 I

 ⪰ 0.

(B.39)
It is important to note, that by choosing a non parameter dependent P , the designed
controller will be more conservative than it would be with P (ρ[k]), as this solution does
not consider the change rate of ρ. Next, the following parameterization is chosen, as it is
linear in the optimization variables:

Y (ρ[k]) = Y0 + ρ[k]Y1 + ρ[k]2Y2 + ...+ ρ[k]nYn, (B.40)
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where n is the order of the polynomial. A grid is also introduced with n grid points on
the range of the varying parameter:

Γ = [ρ0 = ρmin ≤ ρ1 ≤ ... ≤ ρn−1 = ρmax]. (B.41)

Using Γ, the LMIs can be evaluated at the grid points only, relaxing the infinite set of
LMIs to a finite set, that can be used as constraints for the optimization problem:

X − ϵX (Ad(ρi)X −Bd(ρi)Y (ρi))⊤ (C1X +D12Y (ρi))⊤

(Ad(ρi)X −Bd(ρi)Y (ρi)) X 0
(C1X +D12Y (ρi)) 0 I

 ⪰ 0.

(B.42)
The final optimization can be formulated as follows:

min − trace(X)
subject to X ⪰ 0,

(B.42) ∀ρi ∈ Γ.
(B.43)

This optimization problem can also be easily formulated in YALMIP and solved by
MOSEK.

From the optimization results, the parameter dependent feedback gain is computed at
each time instant k as

K(ρ[k]) = Y (ρ[k])X−1 =
(
Y0 + ρ[k]Y1 + ρ[k]2Y2 + ...+ ρ[k]nYn

)
X−1, (B.44)

which means that the elements of the resulting feedback matrix are n order polynomials.
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C AIMotion – Fleet1tenth framework

C.1 General overview

AIMotion – Fleet1tenth is the control and simulation framework, developed for the in-
tegration of the F1TENTH vehicles into the AIMotionLab autonomous vehicle test en-
vironment. It completely replaces the official onboard software stack, developed by the
F1TENTH Community [9], to provide a more versatile control solution. The main ad-
vantages of this framework compared to the previous developments:

• Multiple vehicles can be controlled from a single Python script compared to the
ROS based command line approach;

• Implemented easy manual remote control solutions;

• Implemented motion-capture based state estimation module;

• Implemented trajectory tracking controller module for precise navigation;

• Implemented logging functionalities for measurements;

• Implemented on-the-fly software and parameter update solutions.

The framework consists of three main subpackages, each responsible for different tasks.
The overall software architecture is presented in Figure C.1.

F1TENTH vehicle

Command PC

aimotion-f1tenth-systemfleet1tenth

fleet1tenthpy

Python
scripts

YAML
configuration

ROS ecosystem

Actuators Sensors

Figure C.1: The main software components of the AIMotion – Fleet1tenth framework.

The aimotion-f1tenth-system package is running onboard the F1TENTH vehi-
cles. It includes the ROS based implementation of the trajectory tracking controller,
supported with complementary functions such as the state estimator module and the
different low-level hardware APIs responsible for the serial communication between the
Jetson embedded computer and the VESC board.
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The fleet1tenth is the high-level interface of the onboard stack. It is also a self-
developed and ROS based package, to provide convenient communication with the vehi-
cles. It runs on separate computer, called the Command PC, and oversees the different
processes running in aimotion-f1tenth-system. This is a useful solution, as the
official F1TENTH software stack would require manual remote connection and command
execution which is really slow and unpractical, especially if there are multiple vehicles
present.

Finally, the fleet1tenthpy package is the high-level Python API of the framework,
that provides a set of helpful tools for easier usage and implementation, such as source
file management and online parameter update options. The main advantage of this API
is the fact that it enables the whole system to be controlled from Python scripts only.

In the following sections, the introduced subpackages are described in details. While
this project is under continuous development, the framework is expected to be extended
in the future with additional functionalities, such as a visualization environment for the
simulator or path planning algorithms. The current version of the package is available at
the AIMotionLab Github page1.

C.2 aimotion-f1tenth-system

As it was already introduced, the aimotion-f1tenth-system is the onboard software
stack of the F1TENTH vehicles. The overall structure of the package is depicted in Figure
C.2.

ROS     

Actuators

NatNet client

IMU

VESC driver

Drive bridge

State
estimator

Path-following
controller

Motion Capture
pose data

Reference
trajectories

Figure C.2: The structure of the aimotion-f1tenth-system package.

The VESC driver node is the ROS based interface to the VESC board. It communicates
1https://github.com/AIMotionLab-SZTAKI/aimotion-fleet1tenth
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with other processes through the topic based Publisher/Subscriber model of ROS, and
transfers data to and from the VESC, using a serial communication. It is important to
note that this package is already made available in the Github page1 of the F1TENTH
community [9].

It was already detailed in Section 4.3, that the physical steering angle control input,
determined in radians, cannot be applied directly on the steering. Therefore, the Drive
bridge node is responsible for shaping the control inputs of the system into the signal
format of the VESC, using (4.4).

During autonomous navigation, the control inputs are determined by the Path-following
controller. This package contains the implementation of the trajectory tracking control
algorithms introduced in Section 5.

As the implemented control algorithms rely on full state feedback, it is important to
have the accurate state data of the vehicle. The State estimator module of the system
collects the vehicle pose data, coming from the motion capture system, and the IMU
measurements of the VESC and calculates the current state of the car.

The OptiTrack motion capture data is accessed via the NatNet client node. This pack-
age communicates with the motion capture server and forwards the data to the internal
nodes, using ROS based communication. The implementation of the client application
was provided by Matthew Edwards2.

C.3 fleet1tenth

The main task of this package is to provide the low-level ROS software components,
that are needed to communicate with the F1TENTH vehicles. On top of that, there is
a simulation application implemented in the package that uses the identified nonlinear
dynamic model of the F1TENTH cars. With the help of this simulator, modifications of
the onboard control stack or the different motion scenarios can be evaluated safely in a
virtual environment, prior to the real hardware implementation.

C.4 fleet1tenthpy

Very early during the software development, it became clear that the everyday usage of
the ROS ecosystem can be cumbersome. With multiple cars running, management of
different processes and timing issues raise important concerns. Therefore, to simplify the
general operation, this package provides a Python API to the developed system.

The main task of the fleet1tenthpy package is the high-level control, of the F1TENTH
vehicles. It can be used to remotely drive the cars, but it can also provide reference

1https://github.com/f1tenth
2https://github.com/mje-nz
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trajectories for the them to follow. To ensure proper surveillance there are also logger
functionalities implemented, that can track the state of the running vehicles.

Another important aspect is the management of the onboard stack and parameter tuning.
With the help of this API, the aimotion-f1tenth-system package running on the
F1TENTH vehicles can be easily started remotely and all its parameters can be modified
without accessing the source code. Moreover, there are also other utility tools integrated,
that can remotely install and update the onboard software, to aid the development process.

Although, most of the introduced tasks can be accomplished through the ROS ecosystem,
the everyday usage of such a complex system quickly becomes overcomplicated. The
introduced framework not only tackles these issues, but as a pure Python API, it provides
an intuitive interface that can be used to integrate the F1TENTH cars into larger projects,
running at the AIMotionLab autonomous vehicle test area of SZTAKI.
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