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Hatékony irányítási módszerek kidolgozása autonóm kvadkopterek agilis 
manőverezésének támogatására 

Az autonóm kvadkopterek számos területen alkalmazhatók, a felderítési, mentési feladatoktól a profi filmfelvételek 

készítésén át a látványos bemutatókig. Az alkalmazási kör szélesedése egyre összetettebb feladatok megoldást igényli. 

Olyan eljárások kidolgozására van szükség, amelyekkel új, összetett képességek (pl. tanult pilóta számára is bonyolult 

manőverek végrehajtása) könnyen elsajátíthatók, azaz gyorsan megtervezhetők és precízen végrehajthatók.  A 

diplomaterv célja olyan hatékony szabályozási eljárások, pályatervezési algoritmusok és gépi tanulásra épülő módszerek 

kidolgozása, amelyek lehetővé teszik az autonóm drónok számára új, agilis manőverek gyors megtanulását.  Az eljárásokat 

egy konkrét, nehéz manőver, a backflip megvalósításán kell bemutatni, először szimulációban majd valós rendszeren, a 

Bitcraze Crazyflie miniatűr drónjain.    

Megoldandó feladatok: 
Első félév 
1. Végezzen irodalomkutatást autonóm drónok dinamikus modellezése, pályakövető szabályozása és pályatervezési 

algoritmusai témakörben, előnyben részesítve olyan irányítási módszereket, amelyeket gyors manőverezésre 

dolgoztak ki. 

2. Hozzon létre Crazyflie drónok szimulációjára alkalmas szoftverkörnyezetet Python programozási nyelven a PyBullet 

OpenAI Gym szoftverek felhasználásával.   

3. Tervezzen nyílt hurokban alkalmas beavatkozójel-sorozatot a bukfenc manőver megvalósítására. Törekedjen az 

optimalizálási feladat minél egyszerűbb felírására! 

4. Oldja meg az előző feladatot zárt köri szabályozással is! Ehhez tervezzen pályakövető szabályozást a Crazyflie 

kvadkopterhez, majd pontos pályakövetést feltételezve tervezzen spline trajektóriát a bukfenc manőverre! 

5. Implementálja az eljárásokat a 2. pontban kidolgozott szimulációs környezetben. Hasonlítsa össze az algoritmusokat 

robosztusság, performancia (pontosság) és számítási komplexitás szempontjából!   

Második félév 
6. Vizsgálja meg, hogy miként lehet megerősítő tanulást alkalmazni a bukfenc manőver kivitelezésében.  Hasonlítsa össze 

ezt a megközelítést a korábbi módszerekkel.  

7. Ismerkedjen meg a Sztaki-ban felépített AIMotionLab hardver- és szoftverkörnyzetével, különös tekintettel a 

nagypontosságú beltéri pozíciónálórendszer és a kommunikációs interfészek használatára. 

8. Ismerje meg a Crazyflie kvadkopter működését, a rendelkezésre álló szoftverkomponenseket.  

9. Implementálja korábban tervezett eljárásokat a valós drónon is a Crazyswarm keretrendszer felhasználásával! 

10. Értékelje a kapott eredményeket a valós alkalmazhatóság szempontjából! Hasonlítsa össze a szimulációban kapott 

eredményekkel. 
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Abstract

Continuous development of quadcopters in recent years has led to their wide application in
industry and in many research areas, including rescue missions, agricultural monitoring,
making camera footages or spectacular entertainment shows. As the application fields are
continuously growing, more and more capabilities are expected from the drones. Agile
maneuvering in a cluttered environment, working in team, cooperating with humans or
performing acrobatic maneuvers, just to name a few. These tasks require to perform
complex, fast maneuvers that pushes the drones to their physical limits. Classical flight
controllers based on a linearized dynamical model can no longer cope with these tasks
and more advanced control methods that exploit the entire operating domain are needed.
These control algorithms can be developed by mathematically well-grounded nonlinear
design techniques (e.g. differential geometry) or machine learning approaches.
In this work, trajectory planning and motion control design to execute a flip maneuver
is presented for a nano quadcopter. Such a maneuver is a challenging task even for
experienced drone pilots. The complexity and speed of the maneuver is characterized by
the fact that it takes less than a second to complete, during which the vehicle is able to
make a full turn around one of the horizontal axes.
After presenting the theoretical background and relevant literature, two approaches are
proposed to perform the flip maneuver. The first is a simple, open-loop strategy which
is designed by optimizing the sequence of specific motion primitives describing the flip
maneuver using a digital twin model of the quadcopter. The second approach is based on
a nonlinear geometric controller, designed by using a dynamic model of the drone, that
is able to track even highly challenging reference trajectories. In order to compensate the
effect of modelling uncertainties and external disturbances, we collect measurement data,
and design a novel robust adaptive geometric controller based on an augmented dynamic
model of the quadcopter. To perform the backflip maneuver, a feasible reference trajectory
is designed that describes the intended state evolution. Then, the designed trajectory is
precisely tracked by the proposed geometric controller. The advantages and disadvantages
of the two control methods are evaluated both in simulations and by real-world experiments
using Bitcraze Crazyflie 2.1 quadcopters.
Finally, a reinforcement learning framework is introduced to improve the performance
of the proposed control schemes. Gaussian Process based model augmentation is used
to account for the unknown dynamics of the real quadcopter using measurement data.
Then, policy learning is applied to train an augmented feedback controller and improve
the control performance of the geometric method.



Összefoglaló

A kvadkopterek folyamatos fejlődése az elmúlt évek során ahhoz vezetett, hogy ma már
számos területen alkalmazzák őket az iparban és kutatások során egyaránt, mint például
felderítés mentőakciók során, kamerafelvételek készítése hírközlés céljából, illetve mező-
gazdasági monitorozás. Alkalmazási területeik folyamatos bővülésével a kvadkoptereknek
egyre több képességgel kell rendelkeznie, mint agilis manőverezés akadályok közötti szűk
helyeken, kooperáció több drónnal, emberekkel való együttműködés, illetve akrobatikus
manőverek bemutatása. Ilyen feladatok végrehajtásához gyors, komplex manőverezésre
van szükség a drón fizikai határait teljes mértékben kihasználva. Ehhez a linearizált di-
namikai modellre tervezett klasszikus szabályozók nem alkalmazhatóak, komplexebb irá-
nyítási stratégiára van szükség, ami az egész működési tartományon képes szabályozni a
kvadkopter mozgását. Ilyen algoritmusok tervezéséhez felhasználhatóak nemlineáris irá-
nyítási módszerek, például differenciálgeometria vagy gépi tanulás alapján.
Dolgozatom során egy bonyolult, tapasztalt emberi pilóták számára is kihívást jelentő
manőver, a bukfenc pályatervezését és pályakövető szabályozását mutatom be egy kismé-
retű kvadkopteren szemléltetve. A manőver komplexitását és gyorsaságát jellemzi, hogy a
végrehajtása kevesebb, mint egy másodpercet vesz igénybe, ami alatt a jármű egy teljes
fordulatot képes megtenni.
Az elméleti háttér és releváns irodalom bemutatása után a manőver végrehajtására két
különböző megközelítést demonstrálok. Az első egy nyílt hurkú irányítási stratégia a buk-
fencet leíró paraméterezett primitívekből álló szekvenciának a drón digitális ikermodelljén
való optimalizációja alapján. A második egy nemlineáris geometriai elvű szabályozás a
kvadkopter dinamikai modelljére tervezve, ami igen bonyolult referenciapálya követésére
is képes. A modellezési bizonytalanságok és külső zavarások hatásainak kompenzációja-
ként mérési adatokat gyűjtünk, majd az adatok alapján kiterjesztett dinamikai modellre
továbbfejlesztjük a geometriai szabályozót, így elérve egy újfajta robusztus, adaptív irá-
nyítási algoritmust. A bukfenc manőver végrehajtásához szükséges egy alkalmas referen-
ciapálya tervezése is specifikálva a kívánt mozgás állapotait, amit optimalizációval oldunk
meg, majd ezt a kvadkopter a javasolt pályakövető szabályozással precízen tudja követ-
ni. A két irányítási stratégia előnyeinek és hátrányainak elemzését szimulációs és a valós
rendszeren végzett mérési eredmények alapján mutatjuk be.
Végül egy megerősítő tanulásra épülő keretrendszer kerül bemutatásra a javasolt szabályo-
zási algoritmusok teljesítményének növelésére. A valódi kvadrokopter és az ideális modell
közötti eltérés mérési adatok felhasználásával, Gauss-folyamatok formájában kerül iden-
tifikációra. Ezután policy learning algoritmust alkalmazunk a geometriai módszer kiter-
jesztésére, ezzel a szabályozás teljesítményének növelésére.



Chapter 1

Introduction

The aim of this work is to develop and implement trajectory planning and motion control
algorithms that allow a nano quadcopter to perform complex maneuvers at high speed.
The backflip maneuver has been chosen as an example, because it is a challenging task
even for an expert human pilot, and it emphasizes the complex nonlinear behaviour of
the drone. The complexity and speed of the maneuver is characterized by the fact that it
takes less than a second to complete, during which the vehicle is able to make a full turn
around one of the horizontal axes.
The maneuver is performed by miniature quadcopters, more generally micro aerial vehicles
(MAVs). MAVs are a type of unmanned aerial vehicles (UAVs) that has small size and are
usually autonomous. Due to the small-sized and low-power sensor and computer units,
they are now continuously developed and applied both in industry and research. Their
most common applications include military purposes (exploration and observation), search
and rescue missions, aerial photography, distributed sensing and information processing
while working in team, or agile maneuvering in a cluttered environment. In Figure 1.1,
three micro aerial vehicles are shown: the first two developed for military applications,
and the third for research and education.
Many common tasks of a miniature quadcopter, such as navigating in a cluttered envi-
ronment or flying in strong wind require to perform complex, fast maneuvers that push
the drones to their physical limits. In these cases, classical flight controllers designed for a
linearized dynamical model are no longer applicable and more advanced control methods
that exploit the entire operating domain are needed. These algorithms can be developed
based on nonlinear control techniques, or machine learning approaches.

Figure 1.1: Micro aerial vehicles: RQ-16 T-Hawk (left), Black Hornet Nano (center),
and Bitcrcaze Crazyflie 2.1 (right).
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At the AIMotion Lab of ELKH SZTAKI, there is a flying arena with a fleet of Bitcraze
Crazyflie 2.1 miniature quadrotors. These drones are designed for research and education
purposes, therefore they are open both in terms of hardware and software details, making
it possible to implement our own algorithms on-board. In order to achieve precise indoor
positioning and provide fly safely, an external OptiTrack motion capture system provides
position and orientation information for the drone, the data of which is fed back to the
on-board controller via radio communication. With the highly reliable and precise local-
ization, the Crazyflie is able to track complex trajectories with high performance using a
suitable flight controller.
Backflipping with a quadcopter is an interesting control problem both from theoretical
and application point of view. Flying vehicles are often subject to significant disturbances
(e.g. strong wind or collision) which results in being upside-down. The recovery from that
state is very complex, but a quadcopter that can perform a backflip has a higher chance
to regain stability and follow its mission. From theoretical point of view, the problem is
interesting not only because it emphasizes the nonlinearity of the dynamic model, but also
requires special considerations regarding the attitude representation and control.
In the literature, there are several different control strategies to perform the flip maneuver.
In [15], energy-based control is applied to overcome the uncontrollability of the quadcopter
at singular configurations to follow a circular or clothoidal reference trajectory. In [10],
Lyapunov-based controller synthesis is used to execute multi-flip maneuvers with quad-
copters. Machine learning approaches are utilized in many cases, for example to imitate
the maneuver performed by an expert drone pilot with apprenticeship learning [1], or de-
sign time-optimal trajectories with deep reinforcement learning [48] and learn acrobatic
maneuvers [26, 24].
A simple learning strategy for adaptive feedforward control is proposed in [34], based on the
optimization of a parametric motion primitive sequence. Backflipping pushes the actuators
of the quadcopter to their physical limits, as application of near-maximal and minimal
control inputs are required. This approach builds on the theory of bang-bang control
and first-principles motion primitive design to perform and optimize the flip maneuver.
The proposed method is easy to implement and it is well suited for generating a feasible
trajectory, however, many trials on the real robot are necessary to optimize the parameters
of the motion, and the feedforward control is sensitive to parameter uncertainties.
Geometric control is a nonlinear, model based approach for the feedback control of rigid
bodies in 3D space. In [30], it is theoretically proven that geometric control is able to sta-
bilize the orientation of a quadcopter in the whole operating domain based on differential
geometric considerations and Lyapunov stability. In [31], the geometric control is aug-
mented by robust terms to guarantee uniformly ultimately bounded tracking errors in the
presence of disturbances in the quadcopter dynamics. However, the control design requires
a priori knowledge of the magnitude of external disturbances which can be challenging in
unknown situations and environments or lead to poor performance. An adaptive augmen-
tation of geometric control is proposed in [21], where the adaptive terms compensate the
effects of uncertainties in the quadrotor dynamics, while the stability of the closed loop
system is proven mathematically. Artificial neural networks are used in [6] to develop
an adaptive geometric control law that renders the quadcopter able to perform complex
maneuvers in wind fields. Although neural networks can be implemented efficiently, the
training often requires many data points, and it is difficult to estimate the uncertainty
of the outputs. Geometric control has been improved and extended by other researchers,
as well, and it is the basis of several advanced trajectory design and agile maneuvering
control algorithms, e.g. [49, 36].
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Recently, the research of reinforcement learning (RL) and its fusion with control systems
is also a very popular topic. Reinforcement learning is a type of machine learning, where
there are no labeled outputs for the inputs of the algorithm, only rewards, and the aim
of the learning scenario is to find the optimal actions, which maximize the cumulative
reward of the achieved states. In quadrotor control, RL is used to extend the capabilities of
classical, optimization-based trajectory planning and control methods by interacting with
the real robot and collecting measurement data. Typical research applications include
simulation to reality transfer [39], increasing the agility and speed of racing drones even
more [48], and learning agile maneuvers [23, 46].
Motivated by the challenges of the introduced state-of-the art research, our aim is to
compare existing trajectory planning and control methods for backflipping, and develop
novel algorithms to overcome their observed limitations. The main contributions of our
present work are as follows:

1. We improve the convergence and the training time of the feedforward control design
of [34] by applying Bayesian optimization with Gaussian Process surrogate func-
tion, making it possible to effectively apply the method with real experiments based
tuning.

2. By Gaussian Process (GP) based augmentation of a nominal quadcopter model, we
achieve adaption to unknown model dynamics and external disturbances together
with quantification of the remaining model uncertainty. A robust geometric control
scheme is designed that exploits the GP model for improved robust performance
compared to previous methods. We also show convergence and robustness of the
resulting method.

3. To execute the flip maneuver by the robust geometric approach, we propose an
optimization-based trajectory planning method. The algorithm is based on quadratic
programming and it is computationally efficient.

4. We compare the proposed methods in simulation and experimentally in performing
the backflip maneuver.

5. We discuss possibilities to improve the performance and achieve online adaption
capabilities of the proposed control systems using reinforcement learning methods.

The structure of this thesis is depicted in Figure 1.2, and builds up as follows. First, we in-
troduce Gaussian Process regression, an efficient, inference based function approximation
method, on which our proposed Bayesian optimization and adaptive control schemes are
based on. Second, we give an overview of the modelling of the quadrotor flight dynamics
in Chapter 3. In Chapter 4, we propose a Bayesian optimization based design of a motion
primitive sequence that provides a feedforward control scheme for the backflipping maneu-
ver. In Chapter 5, we introduce geometric control of quadrotors, we propose a GP model
augmentation based nonlinear robust adaptive geometric control approach for the precise
tracking of complicated reference trajectories, and an optimization-based trajectory plan-
ning method for performing the backflip. In Chapter 6, we evaluate and compare the
performance of the introduced feedforward and feedback control approaches via numerical
simulations. In Chapter 7, we present the implementation of the proposed algorithms, and
demonstrate their performance in experiments. In Chapter 8, we introduce a reinforce-
ment learning framework to improve the performance of the proposed geometric control
by model augmentation and policy learning. Finally, the conclusions and possibilities for
further improvements are summarized in Chapter 9.

3



The results of this thesis are partly published in a conference paper [3], while, based on the
results beyond [3], a journal article has also been submitted [4]. A video demonstrating
the simulations and experiments is available at https://youtu.be/AhqfXZ-CPqM.

Gaussian Processes

Chapter 2

Quadcopter Dynamics

Chapter 3

Backflipping by
Feedforward Control

Chapter 4

Experiments

Chapter 7

Simulations

Chapter 6

Backflipping by
Geometric Control 

Chapter 5

Control Improvement by
Reinforcement Learning

Chapter 8

Figure 1.2: Illustration of the main topics of the thesis and their relations.
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Chapter 2

Gaussian Process Regression

The approximation of unknown functions from measurement data is a common problem
in the engineering practice. For this purpose, artificial neural networks (ANNs) have
gained popularity in recent years due to their efficient training properties, generalization
capability, and ability to represent large datasets. The most widely applied type of ANNs
is multilayer perceptron. Although these networks have many relevant applications, they
usually have large number of parameters, can suffer from overfitting, and are sensitive to
hyperparameter tuning. Moreover, the uncertainty of their output is difficult to obtain.
Gaussian Processes (GPs) are universal function approximators representing a single layer
neural network [43]. Due to their nonparametric structure, flexibility, and ability to express
the uncertainty of the approximation, GPs are widely used in robotics and control systems
technology [22, 33, 14]. In this work, first we apply GPs to define a surrogate model for
Bayesian optimization of the backflip motion primitive sequence parameters, which is
detailed in Chapter 4. Second, we use them to augment geometric control with robust
and adaptive terms, which is proposed in Chapter 5. The reinforcement learning based
algorithms proposed in Chapter 8 include applying GPs both for modelling and control
design.

2.1 Definition and main principles

GP regression is used for estimating an unknown, possibly nonlinear relation f0 : Rn → R
between input x ∈ Rn and output y ∈ R variables based on noisy observations, in the
form of

y = f0(x) + ϵ (2.1)

where ϵ is an independent noise process with ϵ ∼ N (0, σ2
ϵ ). In fact, y and ϵ are random

variables, but for the sake of simplicity, we will not use a different notation for their sample
realization. Consider that a set of observations DN = {x̄i, ȳi}Ni=1 is available from (2.1).
The core idea of GP based estimation of f0 is to consider that candidate estimates f
belong to a GP, seen as a prior distribution. Then, using DN and this prior, a predictive
GP distribution of f is computed that provides estimate of f0 in terms of its mean and
describes uncertainty of this estimate by its variance.
In terms of definition, a Gaussian Process GP : Rn → R assigns to every point x ∈ Rn
a random variable GP(x) ∈ R such that for any finite set x1 . . . xN , the joint probability
distribution of GP (x1) , . . . ,GP (xN ) is Gaussian. GPs are fully determined by their mean
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and covariance functions, hence if f is a GP with mean m and covariance κ,

m(x) = E{f(x)}, (2.2a)
κ(x, x̃) = E{(f(x)−m(x))(f(x̃)−m(x̃))}, (2.2b)

then the joint Gaussian probability of GP (x1) , . . . ,GP (xN ) is N (Mx,Kxx) with

Mx = [ m (x1) · · · m (xN ) ]⊤ , (2.3a)
[Kxx]i,j = κ (xi, xj) , i, j ∈ {1 . . . N}. (2.3b)

Both m and κ, where the latter is also often called a kernel function due to the relation of
GPs to Reproducing Kernel Hilbert Space (RKHS) estimators, are often parametrized in
terms of hyperparameters θ ∈ Rnθ . In fact, taking f with mean m and covariance function
κ as the prior distribution in the estimation process defines the prior knowledge about f0
in terms of m, while the choice of κ determines the Hilbert space in which an estimate of
the function is searched for. Parametrization of m and κ in terms of θ allows to adjust the
prior, i.e., these choices to the estimation problem of f0 using DN . For the estimation of
a smooth f0, a Squared Exponential (SE) kernel for κ is a common choice. The SE kernel
is characterized by

κSE(x, x̃) = σ2
f exp

(
−1

2(x− x̃)⊤Λ−1(x− x̃)
)
, (2.4)

where hyperparameters are the scaling σf , used for numerical conditioning, and the sym-
metric matrix Λ, which determines the smoothness of the candidate function class along
each xi.

2.2 Bayesian inference

Based on the given dataset DN , and the prior f with mean m and covariance κ,

p(Y | X, θ) = N (Mx,Kxx + σ2
ϵ I) (2.5)

describes the probability density function of the outputs Y = [ y1 · · · yN ]⊤ seen as random
variables conditioned on the observed inputs X = [ x1 · · · xN ]⊤ and hyperparameter
values θ. To predict the value of the unknown function f0 at a test point x∗, the following
joint distribution [

Y
f(x∗)

]
∼ N

([
Mx

m(x∗)

]
,

[
Kxx + σ2

ϵ I Kx(x∗)
K⊤
x (x∗) κ(x∗, x∗)

])

with [Kx(x∗)]i = κ(xi, x∗) holds based on the previous considerations. Hence, the predic-
tive distribution for f(x∗), based on the observed samples {yi}Ni=1 in DN , is the posteriori

p(f(x∗)|DN , x∗) = N (µ(x∗), σ(x∗))

characterized by

µ(x∗) = m(x∗) +K⊤
x (x∗)

(
Kxx + σ2

ϵ IN
)−1

(Y −Mx), (2.6a)

σ(x∗) = k(x∗, x∗)−K⊤
x (x∗)

(
Kxx + σ2

ϵ IN
)−1

Kx(x∗). (2.6b)
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Figure 2.1: Example of prior and posterior distributions with zero mean and Squared
Exponential covariance function [50].

The mean (2.6a) gives as approximation for f0(x∗) while the variance (2.6b) gives measure
of the uncertainty of this approximation. Computation of (2.6) requires only elementary
matrix operations, therefore it is computationally efficient.
The procedure of Bayesian inference is illustrated in Figure 2.1. On the left, a prior
distribution is shown with zero mean and Squared Exponential covariance function. The
66% confidence bound is indicated in orange, and sampled functions are drawn in red
colour. On the right, the posterior distribution is shown, which is obtained by conditioning
the prior on the training samples indicated by red crosses. The mean of the prediction is
depicted in blue. The plot shows that the predicted mean is smooth, and precise near the
training samples, where the uncertainty is small.

2.3 Hyperparameter optimization

To tune the hyperparameters θ and σ2
ϵ associated with the prior, a common method is to

maximize the likelihood, i.e., probability of the observations of Y for (2.5) marginalized
with respect to θ and σϵ: [

θ∗

σ∗
ϵ

]
= arg max

θ,σϵ

log (p(Y |X, θ, σϵ)) , (2.7)

where without loss of generality, the log of the probability density function is taken to
simplify the optimization problem and

log (p(Y |X, θ, σϵ)) = −1
2
(
Y ⊤(K−1

xx + σ2
ϵ IN )Y + log det

(
K−1
xx + σ2

ϵ IN
)

+N log(2π)
)
.

(2.8)

For alternative methods, see [43]. Here, we considered scalar valued GPs, however, GP
regression can be applied under multidimensional outputs, by estimating a predictive
distribution of each output dimension independently.
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Chapter 3

Mathematical Model of a
Quadcopter

In this chapter, the mathematical model of a quadcopter is presented, mainly based on [35].
Firstly, the coordinate frames are characterized to describe the position and orientation of
the drone. The dynamic equations are then written in these frames for translational and
rotational motion using multiple attitude representations. Finally, the input equations
are described which define a mapping between the control inputs and propeller angular
velocities.

3.1 Coordinate frames

In order to derive the dynamical model or assign the coordinate frames, first the con-
figuration of the quadcopter has to be fixed. The configuration defines the placement
and the direction of rotation of the rotors thus basically determines the structure of the
dynamical model and the control strategy. The most commonly used configurations are
denoted by ’+’ and ’×’, which differ only in the assignment of the front of the vehicle (see
Figure 3.1). Due to practical considerations (e.g. camera placement) the earlier is more
common, therefore we use ’×’ configuration in this work.
After the configuration is fixed, the coordinate frames can be clearly defined. Three
main frames are introduced: the inertial frame F i interpreted as NED (north-east-down)
coordinates, the vehicle frame Fv, and the body frame Fb, which is fixed to the vehicle.

Figure 3.1: Inertial, vehicle, and body frames describing the geometric relations of the
vehicle and the environment. The body frame is depicted both in ’×’ and
’+’ configurations.
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The three frames are displayed in Figure 3.1, with the body frame both in ’×’ and ’+’
configuration. The transformation from F i to Fv is a translation denoted by r ∈ R3, and
from Fv to Fb a rotation denoted by Rbv ∈ SO(3). The notation SO(3) corresponds to
the special orthogonal group, which we introduce here briefly, the proper mathematical
background of group theory and Lie-groups for rigid body orientation can be found for
example in [25, 29].
The orthogonal group O(n) is the group of n× n orthogonal matrices, with the following
property:

A ∈ O(n)⇔ AA⊤ = I, (3.1)

where A is an n×n matrix. The column vectors of these matrices are orthogonal, and their
determinant is always either 1 or −1. The special orthogonal group SO(n) is the subgroup
of orthogonal matrices, in which every matrix has determinant 1. These matrices can
represent rotations in n-dimensional space, therefore they are named rotation matrices.
In order to represent both translations and rotations, SO(n) needs to be extended. Con-
sider the set of all (n+ 1)× (n+ 1) transformation matrices of the form{[

R r
0 1

] ∣∣∣∣ R ∈ SO(n) and r ∈ Rn
}
. (3.2)

The matrix R achieves the rotation, and the vector r the translation. The result is the
special Euclidean group SE(n), which is homeomorphic to Rn×SO(n), because the rotation
matrix and translation vectors may be chosen independently. Rigid body translation
and rotation are described in the 3D space, therefore the representation is in the special
Euclidean group SE(3), and the rotation matrix is in the special orthogonal group SO(3).
In Figure 3.1, the rotation is described by the roll, pitch, and yaw (RPY) Euler angles,
denoted by ϕ, θ, ψ ∈ R, respectively. The rotation matrix of the transformation between
the vehicle and body frames can be written in terms of the RPY angles as follows:

Rbv = Rot(x, ϕ)Rot(z, θ)Rot(z, ψ) =

=

 1 0 0
0 Cϕ Sϕ
0 −Sϕ Cϕ


 Cθ 0 −Sθ

0 1 0
Sθ 0 Cθ


 Cψ Sψ 0
−Sψ Cψ 0

0 0 1

 =

=

 CψCθ CθSψ −Sθ
CψSϕSθ − CϕSψ CϕCψ + SϕSθSψ SϕCθ
SϕSψ + CϕCψSθ CϕSθSψ − CψSϕ CϕCθ

 ,
(3.3)

where C· = cos(·), S· = sin(·). The coloumn vectors of the rotation matrix formulate an
orthonormal basis of the 3D space, therefore

Rvb =
(
Rbv

)−1
=
(
Rbv

)⊤
. (3.4)

Using (3.4), the rotation matrix of the transformation from the body to the vehicle frame
can be formulated simply by taking the transpose of (3.3).
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3.2 Translational dynamics

The vehicle can be modelled as a rigid body with mass and inertia in the 3D space, on
which gravity field acts. The active movement of the drone is generated by four electric
motors and the propellers on them. They produce a collective thrust applied in the center
of mass of the vehicle, and three moments around the three coordinate axes.
The translational dynamics of the quadcopter are characterized by Newton’s equations of
motion, generally expressed as

f = m
dV
dti

, (3.5)

where f is the vector of forces acting on the mass m, and V is the velocity of the mass. The
notation ti expresses that the derivative is calculated with respect to the inertial frame.
In our model, there are two forces acting on the vehicle: the collective thrust generated
by the motors, and the force of the gravitational field. The collective thrust always points
in the negative z direction of the body frame, and gravity always points in the positive z
direction of the inertial frame. The force vector in (3.5) results from these terms, as

f = Rvb

 0
0
−F

+

 0
0
mg

 , (3.6)

where F is the collective thrust of the propellers, and g is the gravitational acceleration.

3.3 Rotational dynamics

There are multiple ways to describe the rotational motion of a rigid body in 3D space,
three of which are presented in this work. The most common and simple way is to use
local coordinates to describe the attitude with three axes, and three rotation angles around
them. An example is the RPY angle representation mentioned in Section 3.1, where the
three axes are the body z, y, x axes, and the three angles are the yaw (ψ), pitch (θ) and roll
(ϕ), respectively. Although this approach is intuitive and commonly used, it has two major
drawbacks. The first is that it is only valid in a certain region of the attitude, for example
−π/2 ≤ ϕ ≤ π/2, −π/2 ≤ θ ≤ π/2, 0 ≤ ψ ≤ 2π. The second is the so called gimbal lock,
meaning that a degree of freedom is lost if two axes become parallel out of the three. In
case of the flip maneuver, when the pitch is 90 degrees, the yaw axis is parallel to the roll
axis, and the compensation for the yaw changes is not possible. Due to these drawbacks,
RPY (or Euler) angles are used only for slower maneuvering and trajectory tracking, but
for aggressive maneuvers other, more suitable modelling approaches are needed.
Another possible representation of rigid body rotations is using quaternions. In this case,
there is no need to deal with the gimbal lock, and a continuous trajectory can be described
by a continuous function of the quaternion elements. However, unit quaternions are am-
biguous, as they double-cover the rotation group SO(3), meaning that quaternions q and
−q represent the same rotation which causes difficulties in control design. Therefore we
use this representation only for reference trajectory design.
The third representation of orientation we describe is the rotation matrix. Any rigid body
rotation can be characterized by a 3 × 3 orthogonal matrix with determinant 1. These
matrices form the configuration space of the orientation of a non-symmetrical object in 3D
space, named the special orthogonal group, SO(3). Advantages of this approach are that
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the product of two rotations is the composition of the rotations, therefore the orientation
can be given as the rotation from an initial frame to a current body frame, and it avoids
singularities and complexities arising when using local coordinates. The disadvantages of
using orientation matrices are that the use of 9 variables (elements of a 3 × 3 matrix) is
computationally less efficient than 3 angles or 4 quaternion elements, and they are less
illustrative.
In this section, the rotational dynamics of the quadrotor is derived using all three men-
tioned representations, in order to be able to use them for trajectory planning and control
design. The translational dynamics from Section 3.2 and the rotational dynamics with
one of the three attitude representations together characterize the dynamic model of the
quadcopter.

3.3.1 Euler angles

The orientation is described with the vector of roll, pitch and yaw angles, [ϕ, θ, ψ]⊤. How-
ever, since the three rotations are in different frames, the vector of derivatives of the three
angles is not equal to the derivative of the vector of the angles. We denote the former
[ϕ̇, θ̇, ψ̇]⊤, and the latter [p, q, r]⊤. The relation of these vectors is described by a matrix
transformation, aspq

r

 =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ


ϕ̇θ̇
ψ̇

 = W

ϕ̇θ̇
ψ̇

 , (3.7)

ϕ̇θ̇
ψ̇

 = W−1

pq
r

 =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ

cos θ
cosϕ
cos θ


pq
r

 . (3.8)

The rotational dynamics can be described by Euler’s equations, as

τ = dJω
dti

, (3.9)

where τ is the torque acting on the body, J is the inertia, and ω is the angular velocity.
The rotation is easier to express in the body frame, as the Jb inertia is constant, and the
angular velocity is ωb = [p, q, r]⊤. However, as the derivatives in (3.9) are calculated with
respect to the inertial frame, the formulae of derivation in a moving frame have to be
applied, resulting in

dJbωb
dti

= dJbωb
dtb

+
(
ωb × Jbωb

)
= dJb

dti
ωb︸ ︷︷ ︸

=0

+Jbdωb
dti

+
(
ωb × Jbωb

)
= τ, (3.10)

⇓ṗq̇
ṙ

 =
(
Jb
)−1 (

τ − ωb × Jbωb
)
. (3.11)
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Quadcopters are almost perfectly symmetric, therefore the off-diagonal terms of the inertia
matrix are usually neglected. Thus the equation for the rotational acceleration results inṗq̇

ṙ

 =


Jy−Jz

Jx
· q · r + τx

Jx
Jz−Jz
Jx
· p · r + τy

Jy
Jx−Jy

Jz
· p · q + τz

Jz

 . (3.12)

The drone as a rigid body in 3D space has 12 states: the position, velocity, rotation and
rotational velocity. The equations for the velocity are from (3.3) and (3.6), for the rotation
from (3.8), and for the rotational velocity from (3.12). Gathering these to a matrix form,
the following state space representation is formulated:



ẋ
ẏ
ż

V̇x
V̇y
V̇z
ϕ̇

θ̇

ψ̇
ṗ
q̇
ṙ



=



Vx
Vy
Vz

−(sinϕ · sinψ + cosϕ · cosψ · sin θ) Fm
−(cosϕ · sinψ · sin θ − cosψ · sinϕ) Fm

−(cosϕ · cos θ) Fm + g
p+ sinϕ · tan θ · q + cosϕ · tan θ · r

cosϕ · q − sinϕ · r
sinϕ
cos θ · q + cosϕ

cos θ · r
Jy−Jz

Jx
· q · r + τx

Jx
Jz−Jx
Jy
· p · r + τy

Jy
Jx−Jy

Jz
· p · q + τz

Jz



. (3.13)

3.3.2 Quaternion based model

The second presented approach for rigid body attitude representation is using quaternions.
A quaternion is a hyper complex number of rank 4, which can be represented in multiple
forms, see for example equation (3.14). The quaternion elements from q1 to q3 are called
the vector part of the quaternion, while q0 is the scalar part.

q = q0 + q1i + q2j + q3k =
[
q0 q1 q2 q3

]⊤
=
[
q0
q

]
(3.14)

Quaternions have a special multiplication operator, denoted by ⊗. If p and q represent
rotations, p⊗q represents the combined rotation. Just as the rotation, quaternion product
is not commutative. Two possible (equivalent) methods for calculating this product are
the following.

p⊗ q = p0q0 − p · q︸ ︷︷ ︸
scalar part

+ p0q + q0p + p × q︸ ︷︷ ︸
vector part

, (3.15)

p⊗ q = Q(p)q =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0



q0
q1
q2
q3

 =


p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 − p1q3 + p2q0 + p3q1
p0q3 + p1q2 − p2q1 + p3q0

 .
(3.16)
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Rotations are defined by unit quaternion products, i.e. the definition of a norm is necessary,
as

∥q∥ =
√
q2

0 + q2
1 + q2

2 + q2
3. (3.17)

The complex conjugate of a quaternion will also be needed, defined as

q∗ =
[
q0 −q1 −q2 −q3

]⊤
. (3.18)

Given that the angular velocity is in the body frame, the derivative of the quaternion
rotation in the dynamic equations has the form [19]

q̇ = −1
2ω

b ⊗ q. (3.19)

It is worth noting that if we apply the quaternion product to a R3 vector and a quaternion,
the scalar part of the vector is always considered zero.
The rotation in (3.6) can be characterized by two quaternion products, namely

f = q ⊗

 0
0
−F

⊗ q∗ +

 0
0
mg

 , (3.20)

where q is the rotation quaternion between the inertial and body frame.
The state space representation using (3.13) and the above expressions has the following
form:



ṙ

V̇

q̇

ω̇b


=



V

q ⊗ 1
m

 0
0
−F

⊗ q∗ +

0
0
g


−1

2ω
b ⊗ q(

Jb
)−1 (

τ − ωb × Jbωb
)


. (3.21)

3.3.3 Rotational dynamics on SO(3)

Although it is possible to describe any rotation with quaternions, ambiguities arise when
using them to represent the attitude. The third orientation representation method de-
scribed is the quadcopter model on the special orthogonal group, SO(3).
The attitude dynamics have a simple form using rotation matrices, namely

Ṙbv = Rbvω̂
b, (3.22a)

ω̇ =
(
Jb
)−1 (

τ − ωb × Jbωb
)
, (3.22b)

where Rbv ∈ SO(3) is the rotation matrix between the vehicle and body frames, and the
hat map ·̂ : R3 → SO(3) is defined by the condition that x̂y = x×y for all x, y ∈ R3. From
here on the indices corresponding to the body and vehicle frames from (3.6) and (3.11) are
omitted for clarity, the inertia and angular velocity are always defined in the body frame.
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Figure 3.2: Thrusts and angular velocities of the rotors with the body frame.

3.4 Input equations

The dynamic model has four inputs: the collective thrust, and the torques around the
three axes of the body frame. These inputs can be calculated from the individual thrusts
and angular speeds of the actuators, the equations of which are described in this section.
The thrust generated by each motor (Ti) is proportional to the square of the corresponding
angular velocity (ωi), resulting in the equation

Ti = kω2
i , (3.23)

where k is the thrust constant.
The direction of rotor thrust, angular velocity and the numbering of propellers are dis-
played in Figure 3.2. The torques around the axes x and y can be calculated as the product
of the thrusts Ti, and the distance of the motors and the center of mass of the vehicle l,
as

τx = l√
2

(T3 + T4 − T1 − T2) = l√
2
k
(
ω2

3 + ω2
4 − ω2

1 − ω2
2

)
, (3.24)

τy = l√
2

(T1 + T4 − T2 − T3) = l√
2
k
(
ω2

1 + ω2
4 − ω2

2 − ω2
3

)
. (3.25)

The torque around axis z is calculated based on the effect, that every propeller rotates
the vehicle in the opposite direction, and this rotating torque is proportional to the square
of the angular velocity. Therefore rotors 1 and 3 create positive torque, and the others
negative, resulting in the equation

τz = b
(
ω2

1 + ω2
3 − ω2

2 − ω2
4

)
, (3.26)

where b is the drag constant. We can write the input equations (3.23)–(3.26) in a matrix
form, resulting in

[
F
τ

]
=


1 1 1 1
− l√

2 − l√
2

l√
2

l√
2

l√
2 − l√

2 − l√
2

l√
2

b
k − b

k
b
k − b

k



kω2

1
kω2

2
kω2

3
kω2

4

 . (3.27)

Since there is a constant mapping between the motor angular velocity and the vector of
collective thrust and moments, we consider the

[
F, τ⊤

]⊤
vector the input of the system.
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The identification of the input parameters k and b are important for accurate simulation-to-
reality transfer, however, it is often difficult due to the complex aerodynamic effects, such
as blade flapping and downwash. These parameters are usually determined experimentally.
It is important to note, that precise modelling of the actuation mechanism often requires
more complex dynamical models than (3.23) and (3.26) [20]. In the methods presented
we use only the simplified model, although we point out in Chapter 6 that increasing the
accuracy of the model improves the performance of the control algorithms.

3.5 Conclusions

In this chapter, we presented the mathematical model of a standard quadrotor vehicle. The
translational and rotational dynamics are characterized by (3.6) and (3.11), respectively,
which were derived based on the Newton-Euler equations of motion. Using the presented
formulae, we are to conduct model-based simulation, trajectory planning and controller
design detailed later in Chapters 4 and 5.
For the 3D rotation of the vehicle, three representations were introduced, each with its own
advantages and disadvantages: Euler angles, unit quaternions, and rotation matrices. In
Chapter 4, we use the Euler angle representation to construct the 2D model of the drone.
Moreover, in Chapter 5, we apply the rotation matrix representation for model-based
control design and the quaternion representation for trajectory planning of the backflip
maneuver.
Finally, we described the input equations characterized by (3.27) to provide a mapping
between the control inputs of the dynamic model and the angular velocities of the four
rotors which can be directly controlled using an electronic speed controller (ESC). We use
the input mapping for simulations and also implementation of low-level control algorithms
on the real quadcopter, which are presented in Chapters 6 and 7, respectively.
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Chapter 4

Feedforward Control by Bayesian
Optimization

4.1 Overview

The flip maneuver can be executed as a 360 degree rotation around the y axis of the
quadcopter’s body frame, displayed in Figure 3.1. If the corresponding ideal actuation
sequence of the individual motors in terms of Ti is computed based on the nominal quad-
copter model to execute this maneuver, then the actuation sequence can be implemented
on the real quadcopter in terms of feedforward control. However, computation of such an
actuation profile is difficult, due to (i) the complexity of the involved optimization problem
to find a feasible motion trajectory under the given actuation constraints and (ii) due to
unmodelled aerodynamical effects on the quadcopter that can significantly influence the
system response.
The feedforward control proposed in [34] solves the problem above by tuning a fixed se-
quence of parameterized motion primitives via experiments. However, the approximation
of the Jacobian matrix in the optimization loop requires many trials on the real drone
and careful selection of the measurement data is needed to ensure the numerical conver-
gence. We have modified the original algorithm at several points in order to improve its
performance and adapt it to our specific design configuration. First, we tune the param-
eters of the motion primitives in simulation by using a high fidelity nonlinear model of
the drone. Second, the optimization is solved by a Bayesian optimization method, using
Gaussian Process surrogate function introduced in Chapter 2. The main advantages of
the proposed method are that Bayesian optimization is numerically better conditioned and
requires significantly less function evaluations than Jacobi approximation, as the evalua-
tion points are systematically selected. This makes the proposed method computationally
more favourable.
Unlike the maneuver demonstrated in [34], we perform the backflip in ’×’ configuration
as two rotors can produce a larger torque than one. The desired trajectory of the flip
motion is within the x − z plane of the body frame (illustrated in Figure 4.1), therefore
the equations of motion (5.1) can be simplified utilizing that the translation along the y
axis and rotation around the x, z axes are constant zero. In this section, we use Euler
angle representation: the backflip is executed as a 360 degree rotation of the pitch angle
(θ), while the roll (ϕ) and yaw (ψ) remain zero.
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Figure 4.1: The vehicle frame, the orientation and forces acting on the quadcopter in
two dimensions.

The simplified equations of motion are as follows:

mẍ = −(T1 + T2 + T3 + T4) sin θ, (4.1a)
mz̈ = −(T1 + T2 + T3 + T4) cos θ +mg, (4.1b)
Jyyθ̈ = l(T1 + T4 − T2 − T3), (4.1c)

where g is the gravitational acceleration, m is the mass of the drone, l is the distance of
each propeller from the center of mass of the vehicle, Jyy is the moment of inertia about
the body y axis, and T1, T2, T3, T4 are the thrusts of each rotor. The direction of the
thrusts and pitch are illustrated in Figure 4.1. The collective acceleration U is the sum of
all rotor thrusts divided by the mass of the drone:

U = T1 + T2 + T3 + T4
m

. (4.2)

As the small DC motors of the Crazyflie 2.1 have very small time constants the actuator
dynamics are omitted.

4.2 Parametrized primitive of the maneuver

The goal of the maneuver is to perform a flip, therefore the states at the start t0 and
end tf should be the same, except for the pitch angle which is shifted by 2π. From these
considerations, the initial and final state conditions for the maneuver can be formulated
as follows:

x(t0) = x(tf) = 0, (4.3a)
z(t0) = z(tf) = 0, (4.3b)

ẋ(t0) = ẋ(tf) = ż(t0) = ż(tf) = 0, (4.3c)
θ(tf) = θ(t0) + 2π = 0. (4.3d)

We use a simple control strategy without explicit optimization for execution time. The
motion consists of five sections, all of which has two constant control inputs, the desired
collective acceleration Udes, and desired angular acceleration θ̈des. These five steps are
illustrated in Figure 4.2, and defined as follows.
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Figure 4.2: Parametrized flip primitive with the five sections.

1. Accelerate: Gain elevation and kinetic energy with near-maximal collective accel-
eration, while rotating slowly to the negative direction.

2. Start Rotate: Increase angular velocity with torque, i.e. maximal differential
thrusts.

3. Coast: With low and uniform thrusts hold the angular velocity, wait for the drone
to rotate.

4. Stop Rotate: Use maximal differential thrust to decrease angular velocity and stop
the rotation.

5. Recover: Prevent the drone from falling to the ground by applying near-maximal
collective thrust, and try to get back to hover mode.

Each of the five sections has three parameters, the collective acceleration Ui, duration ti,
and angular acceleration θ̈i, resulting in 15 parameters altogether. However, based on
[34], we can reduce the number of parameters by applying bang-bang type control on a
restricted control envelope. The bang-bang approach means that the control actions Ui
and θ̈i are either zero or near-maximal at all sections. Following the equations detailed in
[34], 10 parameters out of 15 can be expressed using the properties of bang-bang control.
The remaining 5 independent parameters are optimized to perform the desired backflip
motion. The vector of these parameters is characterized as follows:

η =
[
U1 t1 t3 U5 t5

]⊤
∈ R5

+. (4.4)

From the elements of η and the corresponding equations detailed in [34], the control input
vector can be calculated as

[
Fi
τi

]
=


mUi

0
Jyyθ̈i

0

 i ∈ {1, 2, 3, 4, 5}, (4.5)

where m is the mass of the quadcopter, and the index i is obtained from the current time
and the duration of the sections.
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The five parameters are tuned in order to minimize the norm of the final state error
e(η) ∈ R5

+. Formally, the optimization problem is characterized as follows:

minimize
η∈R5

+

∥e(η)∥2 (4.6)

s.t. e(η) = [ x(tf) z(tf) ẋ(tf) ż(tf) θ(tf) ]⊤,
x(t0) = z(t0) = ẋ(t0) = ż(t0) = 0,
Umin ≤ Ui ≤ Umax i ∈ {1, 5},
tmin ≤ tj ≤ tmax j ∈ {1, 3, 5},

where the bounds Umin, Umax, tmin and tmax are determined based on the parameters of
the quadcopter.

4.3 Bayesian parameter optimization

In [34], the numerical optimization of η in (4.4) is based on iterative optimization, us-
ing the approximate Jacobian matrix of the final state error w.r.t the parameter vector.
However, the numerical gradient approximation has vast computational cost, because the
whole maneuver needs to be simulated in every approximation step and it suffers from
convergence problems. Here, we apply a Bayesian optimization approach to find the global
optimum of (4.6). This approach does not require the calculation of derivatives and it is
suitable for global optimization of cost functions that are expensive to evaluate, see [18, 7].
To apply this approach, the optimization problem (4.6) is written as

maximize
x∈X

f(x), (4.7)

where η = x ∈ Rn is the n = 5 dimensional vector of optimization variables, X is the
feasible parameter set (bounded interval (hyper rectangle) of the search space for the
parameters η), and f is the objective function, i.e., f(x) = −∥e(η = x)∥2.
The core concept of Bayesian optimization is to evaluate the unknown objective function
at limited number of points, giving DN = {yi = f(xi), xi}Ni=1, fit a surrogate parametric
model based on GP regression on the data and optimize this surrogate model of the original
objective function [43]. The optimization is performed iteratively, where in each step the
next evaluation point is determined by minimizing a so called acquisition function, the
objective function is evaluated at this point and the surrogate model is updated. The
optimization stops if the minimum is reached with high confidence or the iteration reaches
a certain number of evaluations.
The acquisition function blends the approximated objective (the mean of the GP) and
the approximation uncertainty (the variance of the GP) in a scalar valued function that
can be optimized by standard gradient-based procedure. A common acquisition function
is expected improvement, defined as follows. After f is evaluated in N points giving the
observation data set DN , a GP predictive distribution f̂N ∼ GP(µN , σN ) is obtained w.r.t.
DN . Let f̄+

N be the value of the best sample so far and x+
N = arg maxx∈XN

µ(N)(x) be the
location of that sample based on XN = {xi}Ni=1, i.e., f̄+

N = µ(N)(x+
N ). Now we would like

to choose the next test point xN+1, such that the expected improvement predicted by the
GP model is the best w.r.t. x+

N :

EIN (x) := E
{
⌊f̂N (x)− f̄+

N ⌋
}
, (4.8)
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where ⌊y⌋ = max(y, 0). The right hand side of (4.8) has an analytical form and the next
test point is obtained via xN+1 = arg maxx∈X EIN (x), the point with highest expected
improvement. In the literature, there are other common acquisition functions, e.g. up-
per confidence bound or knowledge gradient [18]. We summarize the steps of Bayesian
optimization using a GP surrogate model in Algorithm 1, based on [18].

Algorithm 1 High-level steps of Bayesian optimization
f is evaluted at N > 0 initial points, providing DN
Set a GP prior on f in terms of f̂ ∼ GP(m,κ)
while N ≤ Nmax do

Determine f̂N ∼ GP(µN , σN ) via (2.6) and (2.7) w.r.t. DN
Let xN+1 = arg maxx∈X EIN (x),
Observe yN+1 = f(xN+1)
DN+1 = DN ∪ {yN+1, xN+1}
N ← N + 1

end while
return x∗ = arg maxx∈X µ(N)(x),

4.4 Conclusions

In this section, we introduced a Bayesian optimization based feedforward control approach
to perform a backflip maneuver with quadcopters. Using the nonlinear model of the drone
detailed in Chapter 3, it is possible to simulate the maneuver with different parameter sets,
evaluate the objective function of the optimization problem characterized by (4.6), and
obtain a solution. Then, the optimized parameter set can be directly used to execute the
motion primitive sequence illustrated in Figure 4.2, and perform the backflip maneuver.
For the implementation of the backflip, a stabilizing feedback controller is also required
to balance the quadcopter at the beginning and after the end of the maneuver. Set
point stabilization is a common task in quadcopter control, hence a classical LTI feedback
controller, designed for the linearized dynamics around hovering, for example PID or LQR,
is suitable for this purpose [41].
It is important to note that parameter uncertainties are the bottleneck of open-loop con-
trol strategies, it is essential to have an accurate simulation model which can be adapted
to the real system in case the dynamic behaviour of the vehicle changes. In the next
section, a nonlinear geometric control approach is proposed that is more robust to param-
eter uncertainties due to feedback, therefore does not require such complex and accurate
modelling of the quadcopter dynamics.
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Chapter 5

Trajectory Planning and
Geometric Control

5.1 Overview

The second proposed approach for quadcopter backflipping is based on closed-loop control.
For this, first a novel robust adaptive reference tracking controller is developed in order to
provide reliable tracking even in the case of modelling uncertainties and external distur-
bances. Second, a feasible reference trajectory is designed for the backflip maneuver that
describes the intended state evolution. An important advantage of this approach compared
to the feedforward control is generality, i.e. the proposed trajectory design method can
be applied to a variety of different maneuvers, while the presented feedforward approach
is designed specifically to the backflip maneuver.
The low-level motion control of quadrotors is a widely researched area. The most simple
and common approach is linear time invariant (LTI) control, e.g. PID or LQR [5]. A more
sophisticated algorithm is feedback linearization, which can be applied to quadrotors due to
the differential flatness of the system dynamics [28]. However, geometric control proposed
in [30] is designed directly on the configuration manifold of quadcopters (SE(3)), resulting
in exponential convergence of the attitude and position tracking errors, hence provides the
performance required for aggressive, agile maneuvers. In this chapter, first we introduce
geometric tracking control of quadrotors. Next, we propose a robust adaptive geometric
control law for trajectory tracking of aggressive maneuvers, and then an optimization-
based trajectory planning method.

5.2 Geometric tracking control for agile maneuvering

We introduce a control method that is able to track reference position rd(t) =
[xd(t), yd(t), zd(t)]⊤, and reference attitude Rd(t) ∈ SO(3), represented by rotation matri-
ces. To synthesize the control law, (3.6) and (3.22) are used, describing the dynamics of
the quadcopter on SE(3), gathered here for clarity:

mr̈ = (−FR+mg)e3, (5.1a)
Jω̇ = τ − ω × Jω, (5.1b)
Ṙ = Rω̂. (5.1c)
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Figure 5.1: Visual representation of a manifold M with two tangent spaces: TxM at
point x and TyM at point y. It is clear that a vector in TxM and another
in TyM can not be compared unless we transform them to the same space.

The tracking errors for the position and velocity are given by

er = r − rd, (5.2a)
ev = v − vd. (5.2b)

The attitude and angular velocity tracking errors are chosen such that they evolve on the
tangent bundle of the configuration manifold SO(3). For this, we introduce the attitude
error function proposed in [30], as follows:

Ψ(R,Rd) = 1
2tr

(
I −R⊤

d R
)
, (5.3)

where tr(·) is the trace operator, and I is the 3 × 3 identity matrix. The error function
(5.3) is locally positive definite about R⊤

d R = I within the region where the angle of the
current and reference attitudes is less than π. Using the identity −1

2tr(x̂ŷ) = x⊤y, the
derivative of the error function is given by

DRΨ(R,Rd) ·Rη̂ = 1
2
(
R⊤

d R−R⊤Rd
)∨
· η, (5.4)

where the variation of the rotation matrix is expressed as δR = Rη̂ for η ∈ R3, and
the vee operator (·)∨ : SO(3) → R3 is the inverse of the hat operator (̂·) introduced in
Section 3.3.3. From this, the attitude tracking error is defined as

eR = 1
2
(
R⊤

d R−R⊤Rd
)∨
. (5.5)

The tangent vector of the current and reference rotations Ṙ ∈ TRSO(3) and Ṙd ∈
TRdSO(3) lie in different tangent spaces (see the illustration in Figure 5.1), therefore they
cannot be directly compared to calculate the angular velocity error. This is addressed by
transforming Ṙd into a vector in TRSO(3), and comparing it with Ṙ, as follows [30]:

Ṙ− Ṙd(R⊤
d R) = Rω̂ −Rdω̂dR

⊤
d R = R(ω −R⊤Rdωd)∧. (5.6)

The angular velocity tracking error can be now defined as

eω = ω −R⊤Rdωd, (5.7)

which is the angular velocity of the rotation matrix R⊤
d R represented in the body-fixed

frame.
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Figure 5.2: Block diagram of the geometric feedback control.[31]

The control laws for the force and torque inputs are defined as

F =(−krer − kvev −mge3 +mr̈d)⊤Re3, (5.8a)

τ =− kReR − kωeω + ω × Jω − J
(
ω̂R⊤Rdωd −R⊤Rdω̇d

)
, (5.8b)

with controller gains kr, kv, kR, kω ∈ R. In [30], it is proven that using the control law
(5.8), the zero equilibrium of the tracking errors of the compete dynamics is exponentially
stable, given that the desired trajectory satisfies

∥ −mge3 +mr̈d∥ < B (5.9)

for a given positive constant B, and the initial conditions satisfy

Ψ(R(0), Rd(0)) ≤ ψ1 < 1,

∥eω(0)∥2 < 2
λmin(J)kR (1−Ψ (R(0), Rd(0)))

(5.10)

for a fixed constant ψ1, where λmin(J) denotes the smallest eigenvalue of the inertia matrix.
The stability is proven by constructing positive definite Lyapunov functions for the attitude
and position dynamics separately, and ensuring that the time derivative of the Lyapunov
candidates are negative within the stable region of the control gains.
The geometric control has been originally developed and is mainly used for tracking a
prescribed 3D path. The associated reference trajectory is usually defined by utilizing the
differential flatness property of quadcopter dynamics [16]. The dynamic model presented
in Chapter 3 is underactuated as it has six degrees of freedom and only four control
inputs. However, the model is differentially flat, i.e., all state variables and control inputs
can be expressed from a finite number of time derivatives of four flat outputs, namely the
position x, y, z and yaw angle ψ. In a classical tracking problem, reference trajectories are
constructed for the flat outputs, as it is illustrated in Figure 5.2. From this, the attitude
reference Rd = [r1, r2, r3] can be obtained as follows [49]:

r1 = r2 × r3, (5.11a)

r2 = r3 × [cosψd, sinψd, 0]
∥r3 × [cosψd, sinψd, 0]∥ , (5.11b)

r3 = −krer − kvev +mge3 +mr̈d
∥−krer − kvev +mge3 +mr̈d∥

. (5.11c)

Using the orientation reference in (5.11), the third coloumn vector r3 always points in the
direction of the desired collective thrust, r2 is always perpendicular to both r3 and the
desired heading direction given by [cosψd, sinψd, 0], and r1 is the desired heading direction,
as it is perpendicular to both r2 and r3. Furthermore, the three coloumn vectors are of
unit length at all time instants, ensuring the orthogonality of Rd altogether. However,
during the flip maneuver we intend to specify Rd from the pitch reference, therefore we
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do not use (5.11), but design the trajectory such that the reference attitude is consistent
with the reference position, as they are coupled in the dynamical model.

5.3 Robust adaptive geometric control by Gaussian Pro-
cesses

The geometric control introduced in Section 5.2 is based on an ideal model of the quad-
copter dynamics, therefore can lose performance or even stability in case of model uncer-
tainties and external disturbances. To address this problem, the nominal control law is
augmented with additional robust control terms in [31] to guarantee uniformly ultimately
bounded tracking errors in the presence of bounded disturbances. However, the control
design requires a priori knowledge of the magnitude of external disturbances which can be
challenging in unknown situations and environments or lead to poor performance.
In Chapter 2, we have introduced Gaussian Processes as universal function approximators
from measurement data. In this section, we propose a novel robust adaptive geometric
controller, based on the identification of modelling uncertainties in terms of Gaussian
Processes.
To synthesize the control law, we use (5.1) describing the dynamics of the quadcopter and
augment it by additive state-dependent disturbance, resulting in

mr̈ = mge3 − FRe3 + ∆r(x ), (5.12a)
Jω̇ = τ − ω × Jω + ∆R(x ), (5.12b)

where x = [r, ṙ, R, ω]⊤ is the quadcopter state, and ∆r(x ),∆R(x ) ∈ R3 are the unknown
disturbances.
We augment the control law proposed in [31] with adaptive state-dependent terms ηr, ηR,
as follows:

F =(−krer − kvev −mge3 +mr̈d − ηr + µr)⊤Re3, (5.13a)
τ =− kReR − kΩeΩ + ω × Jω−

J
(
Ω̂R⊤RdΩd −R⊤RdΩ̇d

)
− ηR + µR,

(5.13b)

with controller gains kr, kv, kR, kω ∈ R, and error terms er, ev, eR, eω ∈ R3 defined in
Section 5.2, gathered here for clarity:

er = r − rd, (5.14a)
ev = ṙ − ṙd, (5.14b)

eR = 1
2
(
R⊤

d R−R⊤Rd
)∨
, (5.14c)

eω = ω −R⊤Rdωd. (5.14d)

We identify the external disturbances from noisy observations using Gaussian Processes,
more specifically in the form

∆̂r = GPr(x ) ∼ N (ηr(x ),Σr(x )), (5.15a)
∆̂R = GPR(x ) ∼ N (ηR(x ),ΣR(x )). (5.15b)
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We assume that the GPs are trained and the true disturbances ∆r(x ),∆R(x ) are inside
the 95% confidence interval of the GPs.
Subsequently, we formulate the robust terms of the control law similarly to [31], as

µr = − δτ+2
r eB ∥eB∥τ

δτ+1
r ∥eB∥τ+1 + ϵτ+1

r
, (5.16a)

eB = ev + c1
m
er, (5.16b)

µR = − δ2
ReA

δR ∥eA∥+ ϵR
, (5.16c)

eA = eΩ + c2J
−1eR, (5.16d)

where c1, c2, ϵr, ϵR, τ are positive constants, τ > 2, and ∥·∥ is the Euclidean vector norm.
However, instead of estimating the uncertainty bounds δr, δR as in [31], we utilize the
uncertainty of the corresponding trained Gaussian Process. We calculate the standard
deviation of a GP at an evaluation point as the radius of the bounding sphere of the
ellipsoid defined by the square root of the covariance matrix, formulated as

σr(x ) = ∥Lr(x )∥2 =
√
∥Σr(x )∥2, LrL

⊤
r = Σr, (5.17a)

σR(x ) = ∥LR(x )∥2 =
√
∥ΣR(x )∥2, LRL

⊤
R = ΣR, (5.17b)

where ∥·∥2 is the L2-norm (also called spectral norm), computed as the largest singular
value of the matrix. We define the uncertainty bounds using the 95% confidence interval
of the normal distribution, namely

δ̂r(x ) = 2σr(x ), δ̂R(x ) = 2σR(x ). (5.18)

From the confidence interval, we calculate an ultimate bound for the difference between
the disturbances and the adaptive terms over the operating domain, as follows:

δr = max
x

δ̂r(x ), δR = max
x

δ̂R(x ). (5.19)

Theorem 1 (Uniform ultimate boundedness of tracking errors). Consider the
control force F and torque τ defined at (5.13). Suppose that the initial condition satisfies

Ψ(R(0), Rd(0)) < ψ1 < 1, (5.20)
∥er(0)∥ < ermax . (5.21)

For the fixed constant ψ1, there exist controller parameters such that all tracking errors
are uniformly ultimately bounded. �

Proof : Throughout the proof, we adapt the steps of Proposition 3 in [31] to the GP based
uncertainty bounds. First, we derive the dynamics of the rotational and translational
tracking error and construct Lyapunov functions for them.
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Based on (5.12), (5.13), (5.14), the error dynamics can be expressed in the following form:

mėv = mge3 −mr̈d −
F

e⊤
3 R

⊤
d Re3

Rde3 −X + ∆r

= −krer − kvev −X + ∆r − ηr + µr, (5.22a)

X = F

e⊤
3 R

⊤
d Re3

((e⊤
3 R

⊤
d Re3)Re3 −Rde3), (5.22b)

Jėω = τ + ∆R − ω × Jω + J
(
ω̂R⊤Rdωd −R⊤Rdω̇d

)
= −kReR − kωeω + ∆R − ηR + µR. (5.22c)

Similar to [31], consider the following Lyapunov function candidates:

V1 = 1
2kr∥er∥2 + 1

2m∥ev∥2 + c1e
⊤
r ev, (5.23a)

V2 = 1
2e

⊤
ω Jeω + kRΨ(R,Rd) + c2e

⊤
Reω. (5.23b)

First, let us focus on V2. For the attitude error function Ψ a lower and upper bound can
be given in terms of the attitude error er as follows:

1
2 ∥eR∥2 ≤ Ψ (R,Rd) ≤ 1

2− ψ1,max
∥eR∥2 . (5.24)

The detailed derivation of these bounds can be found in [17]. Note that, (5.24) implies
that Ψ is positive definite and decrescent for all t ∈ R+. By using (5.24), the following
upper bound can be derived for the time derivative of V2:

V̇2 ≤ −z⊤
2 W2z2 + e⊤

A(∆R − ηR + µR), (5.25)

z2 =
[
∥eR∥
∥eω∥

]
∈ (R2)R+ , W2 =

[
c2kR
λM

− c2kω
2λm

− c2kω
2λm

kω − c2

]
,

where λm, λM denote the smallest and largest eigenvalue of the inertia matrix J . If the
controller parameters are chosen such that W2 is positive definite, then z⊤

2 W2z2 is non-
negative. Now we examine the second term on the r.h.s of (5.25) and construct an upper
bound for this term as well. First, note that ∥∆R − ηR∥ ≤ δR holds by construction of
δR, under the assumption that ∆r,∆R are inside the 95% confidence interval of the GP
distribution. By using this inequality and the definition of the robust control law (5.16),
the following upper bound can be obtained:

e⊤
A(∆R − ηR + µR) ≤ δR∥eA∥ −

δ2
R∥eA∥2

δR∥eA∥+ ϵR

= δR∥eA∥
δR∥eA∥+ ϵR

ϵR ≤ ϵR.
(5.26)

Therefore

V̇2 ≤ −z⊤
2 W2z2 + ϵR, (5.27)

where ϵR is chosen to be a sufficiently small positive constant. According to the proof
of Proposition 3 in [31], inequality (5.27) implies that the tracking errors eR and eω are
uniformly ultimately bounded.
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Consider now Lyapunov function candidate V1. Its time derivative can be given as follows:

V̇1 =− (kv − c1) ∥ev∥2 −
c1kr
m
∥er∥2 −

c1kv
m

e⊤
r ev

+ (X + ∆r − ηr + µr)⊤
(
c1
m
er + ev

)
.

(5.28)

Similarly to the case of V2, the first three terms can be made negative by suitably choosing
the parameters of the controller. The last term can be divided into two parts: the first one
is e⊤

B(∆r − ηr + µr) and e⊤
BX is the second. By using (5.19) and (5.16), an upper bound

can be derived for the first term:

e⊤
B(∆r − ηr + µr) ≤ δr∥eB∥ −

δτ+2
r ∥eB∥τ+2

δτ+1
r ∥eB∥τ+1 + ϵτ+1

r

= δr∥eB∥
δτ+1

r ∥eB∥τ+1 + ϵτ+1
r

ϵτ+1
r ≤ ϵr.

(5.29)

To obtain an upper bound for e⊤
BX, first we construct an upper bound for X by using

(5.22b) :

∥X∥ ≤ ∥A∥∥(e⊤
3 R

⊤
d Re3)Re3 −Rde3∥ (5.30)

≤ (kr∥er∥+ kv∥ev∥+B + δr)
∥∥∥(e⊤

3 R
⊤
d Re3)Re3 −Rde3

∥∥∥,
where

A = −krer − kvev −mge3 +mr̈d − ηr + µr. (5.31)

Moreover, we assume that the reference trajectory rd has been designed such that the
following condition holds:

∥ −mge3 +mr̈d − ηr∥ < B, B ∈ R+. (5.32)

By using the following relation (see [31] for details),∥∥∥(e⊤
3 R

⊤
d Re3

)
Re3 −Rde3

∥∥∥ ≤ ∥eR∥ =
√

Ψ(2−Ψ)

≤
{√

ψ1,max (2− ψ1,max) ≜ α

}
< 1,

(5.33)

the upper bound for X can be expressed as follows:

∥X∥ ≤ (kr∥er∥+ kv∥ev∥+B + δr)α. (5.34)

By substituting (5.29) and (5.34) into (5.28), we obtain

V̇1 ≤− (kv(1− α)− c1) ∥ev∥2 −
c1kr
m

(1− α) ∥er∥2

+ ∥eR∥
{

(B + δr)
(
c1
m
∥er∥+ ∥ev∥

)
+ kr ∥er∥ ∥ev∥

}
+ c1kv

m
(1 + α) ∥er∥ ∥ev∥+ ϵr. (5.35)

According to the proof of Proposition 3 in [31], inequality (5.35) implies that the tracking
errors er, ev are uniformly ultimately bounded as well. This completes the proof. □
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As a summary, we augment the control law introduced in [31] with adaptive terms, and
calculate the uncertainties systematically, leading to improved control performance with
robust stability guarantees.

5.4 Trajectory planning for the backflip maneuver

In order to use the geometric tracking controller to perform the flip maneuver, a suitable
reference trajectory is needed. Aligned with the controller concept, first an attitude ref-
erence trajectory Rd is constructed and then it is completed with a position reference rd.
However, since backflipping is a more complex task than a usual path following, the flat
outputs are not suitable for describing the reference trajectory. Therefore we will construct
the attitude reference Rd directly. Similarly to the feedforward approach, the objective for
trajectory planning is that the quadcopter should arrive as close to the starting point as
possible, while keeping the control inputs within the allowed range during the maneuver.
The attitude reference is specified in unit quaternions, because it is not possible to design a
continuous trajectory for the flip in Euler angles, and rotation matrices are less illustrative.
The conversion between Euler angles and unit quaternions is characterized by [19]

q =


q0
q1
q2
q3

 =


cos(ψ/2)

0
0

sin(ψ/2)




cos(θ/2)
0

sin(θ/2)
0




cos(ϕ/2)
sin(ϕ/2)

0
0

 =

=


cos(ϕ/2) cos(θ/2) cos(ψ/2) + sin(ϕ/2) sin(θ/2) sin(ψ/2)
sin(ϕ/2) cos(θ/2) cos(ψ/2)− cos(ϕ/2) sin(θ/2) sin(ψ/2)
cos(ϕ/2) sin(θ/2) cos(ψ/2) + sin(ϕ/2) cos(θ/2) sin(ψ/2)
cos(ϕ/2) cos(θ/2) sin(ψ/2)− sin(ϕ/2) sin(θ/2) cos(ψ/2)

.
(5.36)

The reference quaternion is qd = [q0d, q1d, q2d, q3d]⊤, where q0d is the scalar part of the
quaternion, and q2d corresponds to the pitch angle, as q1d = q3d = 0, because both the
roll and yaw angles are zero during the flip. Utilizing that qd is a unit quaternion, we can
express the third element of it as follows:

q2d =
√

1− q2
0d. (5.37)

Hence, it is sufficient to design a trajectory only for q0d = cos(θ/2).
A 360 degree rotation around the y axis means that the scalar part of the attitude
quaternion goes from 1 to -1. In the trajectory design it is important to stay within
the q0d ∈ [−1, 1] range, because only unit quaternions describe rotation. We have chosen
a smooth sigmoid function

q0d = 2
1 + e−vm(t− tm

2 ) − 1 (5.38)

to describe the scalar part of the reference attitude, where the parameters are the speed of
the maneuver vm and the execution time tm. The attitude quaternion reference trajectory
is displayed in Figure 5.3. Assuming that ϕ ≡ ψ ≡ 0 during the flip, the conversion
to Euler angles yields θ = 2arccos(q0d), where θ ∈ [−π, π]. Hence the pitch angle goes
smoothly from zero to π, jumps to −π, and goes smoothly to zero. Besides of rotation,
the maneuver also requires translational motion, because without proper lifting at the
beginning of the backflip, the quadcopter would fall to the ground due to gravity. The
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Figure 5.3: Attitude quaternion reference trajectory for the backflip maneuver with
vm = 20 1/s, tm = 0.9 s.

position reference is designed considering that the rotational and translational equations
of the dynamical model are coupled. The translational motion of the flip maneuver is
within the x− z plane, therefore yd(t) = 0. The other two equations of the translational
dynamics in (5.1) are

mẍ = −FR13, (5.39a)
mz̈ = −FR33 +mg, (5.39b)

where Rij denotes the (i, j)-th entry of the rotation matrix R. However, assuming that the
attitude tracking converges fast enough to the reference, we can substitute the reference
rotation matrix in (5.39), resulting in the translational state space representation

ζ̇ = Aζ +Bu, (5.40)

ζ =


x
ẋ
z̃
˙̃z

 , A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0

Rd,13/m
0

Rd,33/m

 ,
where ζ is the state vector, Rd,ij are the corresponding elements of the reference rotation
matrix Rd (converted from the reference quaternion qd), and A,B are the state space
matrices. As the equations are decoupled, the effect of gravity can be added to the z
position after a simulation, thus in the equation z̃ denotes the modified state. Notice that
(5.40) is a linear state space representation with the thrust force F = u as the only control
input. By discretizing the system, a quadratic optimization problem can be formulated
over a finite horizon, similarly to model predictive control [9]. We calculate the discrete
time state space model using complete, zero-order hold discretization, resulting in the
form

ζk+1 = Akζk +Bkuk,

Ak =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

 , Bk =


Rd,13T

2
s /(2m)

Rd,13Ts/m

Rd,33T
2
s /(2m)

Rd,33Ts/m

 ,
(5.41)

where Ak, Bk are the discrete state space matrices. The input of the model is the collective
thrust of the propellers, uk = Fk. For a fixed duration of the maneuver with N discrete
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time steps, the following quadratic optimization problem is formulated:

minimize
u

N∑
k=1

[
(ζk − ζd,k)⊤Qk (ζk − ζd,k) + u⊤

kWkuk
]

subject to ζk+1 = Akζk +Bkuk, (5.42)
{ζk}Nk=1 ∈ X ,
{uk}Nk=0 ∈ U ,

where Qk ∈ R4×4 and Wk ∈ R are weight matrices, and X ,U are the sets of constraints for
the states and the control input, respectively. The only objective of the trajectory design
is to minimize the final position error of the quadcopter and keep the position within a
specified range, therefore the weight matrices are Wk = 0, Qk = 0 for k = 1 . . . N , except
for the weight of the final state that is

QN =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 . (5.43)

As all the other weights are zero, it is only required to define a final state position reference
that is defined as

ζd,N =


xd,N
ẋd,N
z̃d,N
˙̃zd,N

 =


0
0

1
2g(TsN)2

0

 , (5.44)

where ζd,N contains the effect of gravity during the time span of the maneuver.
We specify linear constraints for the states: x ∈ [x−, x+], z ∈ [z−, z+] to model the
available space for the maneuver avoiding collisions with other objects or walls. We also
define linear constraints for the control input, namely

∥τk∥
l
≤ uk = Fk ≤ Fmax −

∥τk∥
l
, (5.45)

where τk is the vector of the three torques around the three body axes, out of which
τx = τz = 0 normally during the flip, l is the distance of the quadcopter center of mass
and the propellers projected to the x− z plane, and Fmax is the maximal collective thrust
of the rotors. The torque control input τk is calculated from the reference attitude Rd
based on (5.8b) assuming that the orientation and angular velocity errors are zero.
The numerical solution of the optimization problem (5.42) can be obtained easily by using
an off-the-shelf QP solver, e.g. by quadprog in Matlab. Finally, we fit cubic splines on the
discrete points of the optimized reference trajectory, which the quadcopter follows with
geometric tracking control.
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5.5 Conclusions

In this chapter, first we introduced geometric control, which is an efficient nonlinear control
method for the trajectory tracking of quadrotors. The main advantage of this method
compared to classical controllers (PID, LQR) is that the error terms are formulated directly
on the configuration space of the quadrotor, therefore almost global convergence to the
reference trajectory can be proven mathematically by assuming perfect knowledge of the
dynamic model.
Second, we proposed a nonlinear adaptive robust trajectory tracking control method based
on the introduced geometric approach. For this, we augmented the dynamic model of the
quadrotor by Gaussian Processes to account for uncertainties and unmodelled dynam-
ics. The model augmentation and the control law are characterized by (5.12) and (5.13),
respectively. We provided Theorem 1, which described the rigorous mathematical foun-
dations for the boundedness of trajectory tracking errors in the presence of uncertainties
represented by GPs that are conditioned on measurement data. Although in this work we
only demonstrate the example of the backflip maneuver, the proposed controller can be
applied to follow a large set of aggressive quadrotor trajectories.
Finally, we proposed a trajectory planning method by constrained model-based optimiza-
tion designed directly for the backflip maneuver of quadrotors. The proposed optimization
method characterized by (5.42) contains only quadratic programming, therefore it is effi-
cient to solve numerically. The trajectory planning and tracking control design together
provide a second approach to perform the backflip maneuver with miniature quadrotors,
after the first presented in Chapter 4. The advantage of the method presented in this
chapter compared to the optimization-based feedforward control is that closed-loop con-
trol is generally more robust to modelling uncertainties, moreover, the proposed robust
adaptive controller is able to incorporate measurement data to provide reliable operation
even in case of unexpected external disturbances.
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Chapter 6

Simulation Study

6.1 Simulation environment

The simulations are based on the dynamic model of a Bitcraze Crazyflie 2.1 miniature
quadcopter which we use for demonstrating the experimental results in Chapter 7, as well.
The nonlinear equations of motion are defined in Chapter 3, and the physical parameters
of the drone are shown in Table 6.1, obtained from [20].
After some literature survey about drone simulators such as [44] and [47], we decided to
choose an OpenAI Gym environment based on PyBullet [41]. This framework is written
in Python language, contains the physical model and parameters of the Bitcraze Crazyflie
2.1, has built-in multi-agent control, and tuned PID controller for the drone. There are also
some simple examples for trajectory tracking, and reinforcement learning with a swarm of
drones.
All of the simulation code used in this work is available at GitHub1, the Python code is in
the simulations/crazyflie-demo-simulation repository, and the Matlab code is in the
trajectory-design repository. A video illustrating the simulation results is available at
https://youtu.be/AhqfXZ-CPqM. In this section and the oncoming sections, we plot the
measurement results with the z axis pointing upwards (in contrast to the NED convention
discussed in Chapter 3), because the backflip maneuver is more illustrative this way.

1https://github.com/antalpeter1999/TDK2021

Table 6.1: Physical parameters of the Crazyflie 2.1 quadcopter.

Mass m 0.028 g
Propeller-to-propeller length l 92 mm

Diagonal inertia elements
Jxx 1.4 · 10−5 kgm2

Jyy 1.4 · 10−5 kgm2

Jzz 2.17 · 10−5 kgm2

Thrust coefficient k 2.88 · 10−8 Ns2

Drag coefficient b 7.24 · 10−10 Nms2

32

https://youtu.be/AhqfXZ-CPqM
https://github.com/antalpeter1999/TDK2021


6.2 Optimized feedforward control

Based on the control approach presented in Chapter 4, we implemented the open-loop
flip controller which evaluates the five sections of the parametrized motion primitive. For
the optimization of the parameters defined in (4.4), we utilize the Bayesian Optimization
Python module [40].
The simulation starts with hovering for about 0.1 s, followed by executing the open-loop
maneuver, and then switching back to PID control to stabilize the drone and bring back
to the initial setpoint. The objective function of the optimizer uses the same simulation,
and returns the norm of the final state error, as it is characterized in (4.6). The optimal
parameters were calculated with Bayesian optimization as the solution of (4.6), using 250
random initial function evaluations and 1000 iterations. The numerical values of these are

p∗ =
[
U∗

1 t∗1 t∗3 U∗
5 t∗5

]⊤
=
[
17.5 0.12 0.16 17.95 0.075

]⊤
, (6.1)

where the unit of the collective accelerations U∗
i is m/s2, and the time is in seconds. It is

simple to convert the collective acceleration to collective thrust,

F = mU, (6.2)

where m is the mass of the quadcopter. Simulation results are displayed in Figure 6.1,
using the optimal parameter vector and a set of near-optimal parameters, as well. On the
left plot, the position of the quadcopter during the flip is shown, with snapshots from the
simulation. The end of the optimal maneuver is around the coordinate (x, z) = (−0.4, 0) m
with near-zero pitch angle, thus the final state error is only significant in the x position.
From that point, a PID controller [41] stabilizes the drone and controls to the origin. On
the right, the trajectory of the pitch angle in Euler representation, the angular velocity,
and the collective thrust as a control input are shown, where the five sections defined in

Figure 6.1: Open-loop backflip simulation results: the position is displayed on the left,
and the pitch angle θ, pitch angular velocity θ̇, and collective thrust F on
the right. Orange lines represent the simulation with optimal parameters in
(6.1), and grey lines represent the result of small changes in the parameter
set.
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Chapter 4 can be recognised clearly. The figure illustrates that even small deviations from
the optimal parameter set (<10%) result in significantly decreasing performance.

6.3 Trajectory planning and geometric control

The second control approach to perform a flip maneuver is trajectory planning and refer-
ence tracking with geometric control. Based on the results of the flip with open-loop con-
trol, the parameters of the reference pitch trajectory are chosen to α = 20 1/s, β = 0.45 s,
as illustrated in Figure 5.3. In the quadratic optimization problem (5.42) we use the
following parameters:

X :


x−
x+
z−
z+

 =


−0.6

0
−0.05
0.45

 m, (6.3a)

U : F ∈ [0, 0.64] N, (6.3b)
Ts = 1/480 s. (6.3c)

The maximal collective thrust Fmax = 0.64 N is from [20], and the position bounds are
chosen such that the trajectory is feasible, and the quadcopter does not get too far from the
initial point, for example we can express the available flying space here to avoid collision
with walls or other objects. The duration of the flip is chosen to T = 0.9 s, thus the
number of simulation steps is N = T/Ts = 432. The quadratic optimization problem is
solved by the quadprog function of Matlab within milliseconds of computation time. The
result is the optimal control input and reference position sequence given in the discrete
time instants. Finally, we fit cubic splines on the discrete points of the optimized reference
trajectory which can be evaluated on-board the quadcopter.
The quadcopter follows the designed reference trajectory with geometric tracking control,
based on the control law (5.8). The control gains were determined based on grid search
and considering that the Mellinger controller [36] with a similar control law is part of the
official Crazyflie 2.1 firmware2. The numerical values are as follows:

kr = 4.5, (6.4a)
kv = 0.3, (6.4b)
kR = 0.2, (6.4c)
kω = 0.003. (6.4d)

The simulation results of the trajectory planning and reference tracking with geometric
control are displayed in Figure 6.2. Similarly to the open-loop approach, the maneuver
starts and ends at hovering, but in this case the stabilizing controller is also the geometric
control with position and yaw setpoint. At the beginning of the maneuver, the controller
is switched from yaw to pitch reference to follow the specified reference trajectory. The
left plot illustrates the reference and simulated pose of the quadcopter during the backflip
maneuver, and the right plot contains the trajectory of the pitch angle, angular velocity
and collective thrust control input. The trajectory of both the angular velocity and the
thrust input are smooth, opposed to the discontinuous angular acceleration and thrust of
the open-loop control. In the discontinuities of the control input the unmodelled transient

2https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/
functional-areas/sensor-to-control/controllers/
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Figure 6.2: Backflipping simulation results with geometric control: position and attitude
on the left, the pitch angle θ, pitch angular velocity θ̇, and collective thrust
F on the right.

Figure 6.3: Backflipping simulation results with geometric control. The position ref-
erence constraint is different for each simulation, illustrated by the dashed
lines.

behaviour of the actuator dynamics can be significant, therefore the geometric control
approach is more robust to such uncertainties compared to the open-loop method.
It can be seen that the orientation reference tracking is more precise than the position.
Fast and accurate attitude tracking is required to stabilize the quadcopter, however, the
reference trajectory is designed with the assumption that the attitude equals to the refer-
ence at all times, therefore there are more significant errors in the position.
Next, we evaluate the performance of the proposed robust adaptive geometric controller
for backflipping. We assume that the most significant modelling errors compared to the
real drone arise in the rotational dynamics, due to the inaccuracy of the inertia matrix
and center of gravity, and other aerodynamic effects. In simulation, we apply an external
disturbance characterized by

∆R =
[
0.002 0.002 0

]⊤
sin
(
ϕ

2 + θ

2

)
Nm, (6.5)

and shift the center of gravity by 10 mm in x direction. We use the controller gains
given by (6.4), and choose the following constant values based on the stability conditions
detailed in [31]: τ = 3, c1 = 1, c2 = 0.1, ϵr = 0.0004, ϵR = 0.0004.
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In the example of the backflip maneuver, we use only two scalar adaptive terms: the roll
and pitch term of ηR, namely ηR,x and ηR,y, because most of the uncertainties arise in the
roll and pitch motions. The adaptive terms are represented by two independent Gaussian
Processes, as follows:

∆̂R,x = GPR,x(x ) ∼ N (ηR,x(x ),ΣR,x(x )), (6.6a)
∆̂R,y = GPR,y(x ) ∼ N (ηR,y(x ),ΣR,y(x )), (6.6b)

with the following four-dimensional input:

x =


q1
q2
ωx
ωy

 , (6.7)

where q1, q2, ωx, ωy are the x and y elements of the attitude quaternions and the angular
velocity vector, respectively.
The adaptive GP terms introduced in Chapter 5 depend on the full state vector, however,
in case of the backflip scenario, only these four inputs are relevant, and by reducing the
input dimension, the model complexity is decreased radically without losing its expressive-
ness. For the Gaussian Processes, we use zero mean and squared exponential covariance
function, given by (2.4). The scaling (σf) and smoothness (Λ) hyperparameters are trained
using maximum likelihood estimation on 125 training points. Due to the relatively small
input dimension and number of training points, the training and evaluation of the GPs
are fast and efficient.
The backflipping simulations by robust adaptive geometric control are illustrated in Fig-
ure 6.4, and the trajectory followed by the quadrotor is displayed in Figure 6.2. We com-
pare the results using nominal geometric control (without adaptive and robust terms),
geometric control with GP mean (without robust terms), and robust adaptive geometric
control given by (5.8), (5.16). The most important variable is the attitude tracking error
Ψ, described by (5.3). Our results show that the attitude error of the nominal geometric
controller during backflipping is reduced by 40% using the mean of the GPs, and 80%
using the proposed robust adaptive geometric control. The difference in the position error
norm (∥er∥) is less significant due to the effect of control input saturation, however, the
adaptive and robust controllers achieve a better result here, as well. The figure also shows
that the adaptive terms ηR,x, ηR,y have significant influence on the motion control, as their
peak magnitude is almost half of the control inputs τR,x, τR,y of the quadrotor. More-
over, in case of the GP robust adaptive control (plotted in yellow color), the robust terms
µR,x, µR,y have almost the same peak magnitude as the control inputs. When interpreting
the results of Figure 6.4, it is important to note that the control inputs τR,x, τR,y include
saturation due to the actuator limits of the quadrotor.

6.4 Conclusions

The simulation results clearly show that backflipping is successfully implemented using
both the optimization-based feedforward control proposed in Chapter 4, and the trajec-
tory planning with geometric feedback control proposed in Chapter 5. The Bayesian
optimization of the former method is computationally expensive compared to the model-
based quadratic optimization of the latter approach. Moreover, the results in Figure 6.1
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Figure 6.4: Comparison of nominal geometric control, adaptive geometric control with
GP mean, and robust adaptive geometric control with GP mean and variance
in the presence of external disturbance characterized by (6.5). The roll and
pitch component of the control input (τx, τy), the adaptive and robust terms
(ηR,x, ηR,y, µR,x, µR,y), the attitude error (Ψ) and the position error norm
(∥er∥) are displayed.
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show that the feedforward method is very sensitive to parameter changes. According to
Figure 6.3, the trajectory planning with geometric control is less sensitive to the change
of parameters (in this case the position constraints), indicating that the method is able to
provide good performance in a range of different environments.
The performance of the proposed robust adaptive controller is evaluated by applying an
external disturbance to the rotational dynamics while executing the backflip maneuver,
i.e., following the trajectory displayed in Figure 6.2. The results show that even though
the performance of the controller is limited by the saturation of the actuators, the robust
adaptive controller outperforms both the nominal geometric controller and the adaptive
controller. In the presence of such high external disturbance, the feedforward control
quickly becomes unstable and it is unable to execute the backflip maneuver.
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Chapter 7

Implementation and Experimental
Study

7.1 Experimental setup

In this chapter, real-world implementation of the two approaches to perform the backflip
maneuver with the Crazyflie 2.1 drone, the experimental setup, and measurement results
are presented. The experimental setup consists of the quadcopter with on-board sen-
sors and microcontroller units (MCUs), the OptiTrack motion capture system, OptiTrack
server, and ground control PC. The block diagram of the setup is displayed in Figure 7.1
with the direction and content of the information flow between the components.

7.1.1 The Bitcraze Crazyflie 2.1 drone

This section presents an overview of the hardware and software of the Crazyflie 2.1 nano
quadrotor, developed by the Swedish company Bitcraze AB. The vehicle is designed to be
a development platform for research and education, therefore it is both fully open source
and open hardware. Firstly the hardware specifications are summarized, and afterwards
the structure of the firmware and control implementation possibilities are discussed.
The quadcopter is an out-of-the-box device, the user only needs to assemble the parts.
The central unit contains IMU sensors with accelerometer, gyroscope, magnetometer and
barometer, and two microcontrollers: a STM32F405 for running the main application
(e.g. state estimator, controller), and a nRF51822 for radio communication and power
management. The four 4.2 V coreless BDC motors are connected to the central unit with
plastic motor mounts. The propellers are fixed to the motor shafts using interference fit,
and a 250 mAh LiPo battery is connected to the central unit to provide electric power.
The drone weighs 28 grams, and the propeller-to-propeller distance is 92 millimeters.
Using the stock battery the flight time is 7 minutes without any external payloads. The
maximum recommended payload is 15 grams including the extension decks which can be
mounted to the drone. We only use one extension deck, on which the OptiTrack markers
are mounted (see Figure 7.2), but there are several possibilities to extend the functionality
and visual effects, for example the flow deck for optical flow measurement or the LED-ring
deck1.

1https://www.bitcraze.io/documentation/system/platform/cf2-expansiondecks/
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Figure 7.1: Block diagram of the experimental setup: indoor quadcopter navigation with
internal and external measurement system.

Figure 7.2: The Crazyradio PA, Crazyflie 2.1 with motion capture markers, and an Op-
tiTrack Prime 13 camera.

The ground control PC communicates with the drone via the Crazyradio PA 2.4 GHz
USB dongle. The radio communication makes it possible to update the firmware with-
out a cable, and communicate with the quadrotor mid-flight, i.e. send external position
data, update parameters, or log measurement data. The main parts of the hardware are
displayed in Figure 7.2.
The open-source software continuously developed by Bitcraze2 includes the firmware, a
Python client application and Python library with examples. In addition, we use the
Crazyswarm platform [42] to easily handle the high-level control of multiple drones simul-
taneously, the OptiTrack measurement data, logging, and communication.
Out of all software components, we mostly use the firmware written in C language to
implement our on-board controller, and the Python API for high-level commands and
computation. The nRF51822 microcontroller manages the communication and power dis-
tribution, in which areas the default implementation is sufficient for us. However, the
firmware of the STM32F405 contains the stabilizer unit responsible for handling high-
level commands, state estimation and control input calculation. Two state estimators are
implemented in the stock firmware of the Crazyflie: a complementary filter and extended
Kalman filter. We use the latter, as it is more accurate for the fusion of internal and
external sensor data.
There are three built-in controllers in the default firmware, a cascaded PID controller, the
Mellinger controller [36], and the Incremental Nonlinear Dynamic Inversion (INDI) con-
troller [45]. In this project, we use the PID controller for setpoint stabilization before and

2https://www.bitcraze.io/documentation/repository/

40

https://www.bitcraze.io/documentation/repository/


Figure 7.3: Experimental setup for the presented measurement results: 2 OptiTrack
Prime 13 infrared cameras and a Crazyflie 2.1 quadcopter with reflective
markers.

after the open-loop flip maneuver. Our own implementation of the geometric controller is
responsible for backflipping with pitch reference, setpoint stabilization, and more complex,
aggressive trajectory tracking.

7.1.2 OptiTrack motion capture system

At SZTAKI AIMotion Lab, we use OptiTrack for the real-time pose measurement of the
drones which is a high precision motion capture system with submillimeter resolution. The
system includes six Prime 13 infrared cameras sending the position information of specific
markers at 120 Hz. Using the Motive software of OptiTrack, we are able to define rigid
bodies with unique identifiers (both drones and obstacles), and broadcast their position
and orientation information directly through local network.
Although OptiTrack is a very precise and efficient measurement device, sometimes it is
not easy to arrange the markers on the drone such that at least four cameras see them at
all times, especially during the flip maneuver. In these situations, the state estimator of
the drone automatically switches to use only the information of the inertial measurement
unit, which is sufficient for hovering and attitude stabilization.

7.2 Backflip maneuver implementation

In the Crazyswarm framework (running on the workstation PC) there are built-in examples
for the high-level control of the quadcopter: for example it is enough to call the takeOff(),
goTo(), and land() methods from a script to take off, hover for a specified duration, go to
a given point in space, and land – these commands are sent to the on-board microcontroller
through a ROS C++ layer and the Crazyradio PA. In the .launch file of ROS, the user can
specify the initial position of the drone, the controller type, state estimator type, logging
variables, and other properties. The firmware parameters can be modified mid-flight, for
example to adjust controller gains, or switch between controller types.
Our own implementation is a modified version of Crazyswarm, available at the GitHub
repository TDK2021/real_quadcopter/crazyswarm3. Our main contributions are in the
controller of the firmware (open-loop and geometric control), and in the Python API for
high-level commands, and simultaneous control of multiple drones.

3https://github.com/antalpeter1999/TDK2021
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7.2.1 Motor speed correction

In the early implementation phase of the open-loop control, we have noticed that there was
a significant difference between the characteristics of each motor on a Crazyflie quadcopter.
As it is shown in Figure 7.4a, there is more than 3000 rpm and 18% difference between
the angular speed of motor M1 and M2 when the quadcopter is hovering, although the
angular speeds should be equal based on the dynamic model. This effect results in the
offset of the torque control inputs in all directions, as it is illustrated in Figure 7.4b when
t < 3 s.
Hence, we have implemented a correction algorithm to overcome the negative effect on
the performance of the backflip. The motorCorrect method is called when the drone is
hovering. For 3 seconds it averages the angular speed of each motor and afterwards the
control inputs are corrected in order to avoid the offset, as it is shown in Figure 7.4b
when t > 3 s. The correction method has successfully improved the performance of the
open-loop backflipping without complex identification of the actuator dynamics.

(a) Angular speed of the four rotors: in hover
mode the mean values should be equal.

(b) Torque control input: the correction is ac-
tivated at t = 3 s, after which the mean of
each control input is around zero.

Figure 7.4: Motor speed correction in hovering.

7.2.2 Control algorithm implementations

The high-level script to perform a backflip maneuver is quite simple, because all control
algorithms are implemented on-board. However, we need to build and flash the firmware
of the quadcopter MCU after every change in the source code, therefore parameter setting
and execution of high-level tasks is easier using Python scripts. The steps of the high-level
script to perform the backflip are presented in Algorithm 2.

Algorithm 2 High-level script running on the ground control PC
1: Send parameters to the Crazyflie: controller type (open-loop or geometric), trajectory

information, controller gains
2: Send commands to take off and hover at the initial point of the flip
3: Call motorCorrect method to correct the motor angular speeds
4: Call performOpenLoopFlip or performGeomFlip to start backflipping with open-loop

or geometric control, and wait until the maneuver is over
5: Send command to land
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The evaluation of the open-loop control law, i.e. the calculation of control inputs from
the current time has small computational cost, therefore it is practical to be implemented
on-board. The implementation is detailed in Algorithm 3, the maneuver is triggered
from the ground station with a high-level command, it is executed automatically, and the
quadcopter ends in hovering mode afterwards.

Algorithm 3 performOpenLoopFlip on-board implementation
1: Lift with PID control to gain momentum
2: while the flip is not over do
3: Decide which section we are in (out of the 5 in Figure 4.2)
4: Apply the control input of the current section based on (4.5)
5: end while
6: Stabilize the quadcopter with PID control
7: Get back to initial position

The second control approach, i.e. reference trajectory tracking with geometric control is
also implemented on-board. The coefficients of the designed trajectory represented by
7th degree polynomials, and the corresponding time span are saved to a csv file after the
simulations. In the Python API, it is loaded and sent to the Crazyflie with the tuned
controller gains, before taking off. The on-board implementation of the control approach
is detailed in Algorithm 4. Similarly to the open-loop approach, the command to start the
maneuver comes from the ground station, and then the backflip is performed automatically.

Algorithm 4 performGeomFlip on-board implementation
1: Lift with geometric control to gain momentum
2: while the flip is not over do
3: Get the current state from the state estimator module
4: Get the setpoint by evaluating the reference trajectory
5: Calculate the control inputs from the control law (5.8)
6: Apply the control inputs to the motors
7: end while
8: Stabilize the quadcopter with geometric control
9: Get back to initial position

When the user wants to start the backflip maneuver, similarly to the open-loop method,
only needs to set the value of isFlipControl to true. The on-board algorithm then starts
executing the previously saved trajectory, switches to pitch reference from yaw reference,
and switches back after the maneuver is over.
A big advantage of the on-board control is that the maneuver can be performed by multiple
quadcopters simultaneously without any problems coming from communication delays and
lost packages between the ground control PC and the drone microcontroller.
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7.3 Experimental results

Experiments to perform the backflip maneuver started with the open-loop method. Firstly,
we used the optimal parameter set from (6.1), but due to the differences of the simulation
model and the real quadcopter dynamics, the drone almost performed a double flip with
these parameters, and the stabilization was not successful at the end of the maneuver.
After realizing the differences between the measurements and the simulations, we manually
tuned the parameters so that the flip is executed with minimal final state error. The refined
experimental parameter set is

pexp =
[
U exp

1 texp
1 texp

3 U exp
5 texp

5

]⊤
=
[
14.29 0.2 0 14.29 0.075

]⊤
.

The measurement results are displayed in Figure 7.5, showing the trajectory of the position
and orientation during the maneuver. It is important to note that an additional lift phase
is added to the implementation to gain enough vertical velocity and height, because the
quadcopter falls a significant distance in the recovery phase. During the additional lift
phase the PID controller4 is used to achieve exact vertical lifting and horizontal orientation.
Figure 7.5 shows that the flip is executed with almost zero final error in the pitch, and
also quite small position error. Compared to the simulation displayed in Figure 6.1, the
maximal displacement from the origin in x direction is around a half, and in z direction
around double. The difference is due to the manual refinement of the motion sequence
parameters, and the uncertainties of the simulation model. It is important to note that the
performance of the open-loop controller is very sensitive to uncertainties in the dynamics
and initial conditions. For example, if the flip maneuver begins when the orientation of
the quadcopter is not exactly horizontal, the stability can be lost at the recovery phase.
Hence the open-loop flip is only successful in about 6-7 trials out of 10.

Figure 7.5: Backflipping measurement results with open-loop control. The position and
pitch angle of the quadcopter are displayed.

The experimental results of the backflipping with nominal geometric control are displayed
in Figure 7.6. The most important part of reference tracking is the pitch angle θ, because

4https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/
functional-areas/sensor-to-control/controllers/#cascaded-pid-controller
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Figure 7.6: Backflipping measurement results with geometric control. The trajectories
show that the maneuver is performed successfully, and the drone gets back
to the initial position at the end.

a fast, stable and accurate attitude tracking is required to perform the flip maneuver, and
recover successfully. As it is shown on the upright plot of the measurement results, the
pitch is very close to the reference.
However, the error of the position tracking is significantly higher during the maneuver,
both in x and z directions. There are many possible reasons of the high positioning error,
the following are the most likely. Firstly, we assume at the trajectory design that the
orientation is equal to the reference at all time steps, which is not far from reality, but
there is always a non-zero attitude tracking error. It was another assumption of trajectory
design that the derivative of the control input can be arbitrarily large. However, when the
quadcopter is upside down, a near-minimal collective thrust is required, and shortly after
a near-maximal thrust to recover and follow the reference, as it is illustrated in Figure 7.6.
Small DC motors are usually modelled as first order systems with a small time constant,
but here the transient can be significant, the motor needs time to build up the thrust of
the propellers. The third possible explanation is also connected to model uncertainty. The
modelling of aerodynamic effects such as blade flapping, induced drag or downwash [35]
are very complex, therefore we exclude these terms from the dynamic model, however,
they can have a negative effect on the performance of the nominal feedback controller
when performing the backflip maneuver.
Next, we demonstrate the experiments using the proposed adaptive geometric controller.
First, we collect data points by backflipping with the nominal geometric controller, and fit
a Gaussian Process on the measurement data. The motion control algorithm runs on-board
the quadcopter at 500 Hz and the computational capacity of the microcontroller is limited,
therefore the real-time evaluation of the GP would not be feasible. To address this problem,
we generate a lookup-table by evaluating the trained GP on a grid of the input variables
on the desktop PC, and upload it to the on-board computer of the quadcopter. The
evaluation of the lookup-table requires only memory operations and linear interpolation,
therefore it is computationally cheap. Another possible solution would be the use of sparse
GP methods, however, lookup-tables are easier to implement and provide good results.
The performance of the proposed adaptive geometric controller is evaluated with external
disturbance added to the quadcopter dynamics. We have found that a bolt attached to the
drone has significant influence on the attitude dynamics, however, the vehicle is still able
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Figure 7.7: Backflipping measurement results with nominal and adaptive geometric con-
trol, with a bolt attached to the quadcopter. The attitude tracking error
(Ψ) of the proposed adaptive controller is significantly smaller compared to
the nominal controller. The roll and pitch components of the control input
(τx, τy), and the adaptive terms (ηR,x, ηR,y) are also displayed.

Figure 7.8: Crazyflie 2.1 quadcopter with reflective markers and a bolt (marked with an
arrow) used as additional disturbance.
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to perform the backflip maneuver. The modified configuration is illustrated in Figure 7.8,
and the measurement results in Figure 7.7. Similarly to the simulation results, the attitude
tracking error is significantly reduced by using the proposed control algorithm. It is also
important that at the end of the backflip, the attitude error of the adaptive controller is
almost zero, making it easier to recover and get back to hovering. The control input signal
τy is saturated during a significant part of the maneuver, making it difficult to compensate
for the disturbance, however, the adaptive algorithm provides better reference tracking in
these regions, as well. Compared to the simulation results visualized in Figure 6.4, it
can be seen that the adaptive terms ηR,x, ηR,y have less influence on the control inputs,
indicating that the disturbance caused by the bolt attached to the quadrotor is smaller
than the artificial disturbance characterized by (6.5), applied in simulation.

7.4 Conclusions

The presented measurement results are satisfactory for both control methods, the quad-
copter performed a backflip maneuver successfully. However, the open-loop approach
is very sensitive to parameter uncertainties, therefore it needs specific tuning for each
Crazyflie. Moreover, it is also sensitive to initial conditions, because the open-loop control
input is the same even if there is a nonzero angle or displacement at the starting point.
Hence the quality of the maneuver often varies even with the manually refined parameters.
Due to the inconsistency of the performance, we could not apply the open-loop control for
simultaneous flip with multiple drones.
However, geometric tracking control overcomes the problematics caused by parameter
uncertainties using feedback, providing a highly robust and consistent performance for
the backflip maneuver. Moreover, the proposed robust adaptive controller enables the
quadcopter to perform the backflip even in the presence of external disturbance arising
from a bolt attached to the vehicle, that changes two important parameters of the dynamic
model: the moment of inertia and the center of mass. Utilizing the robustness of the
control approach, the maneuver has been implemented for simultaneous backflipping with
three drones. A video of the acrobatic maneuver is available at https://youtu.be/
AhqfXZ-CPqM.
The scalability of the proposed control algorithms for other types of quadcopters (e.g.
medium or large-sized) is out of the scope of this work, however, the possibilities are
briefly discussed in the followings. The open-loop method is applied in [34] to a medium-
sized drone successfully, therefore we are convinced that our modified version could also
be applied to other types. Geometric control is even more general than the open-loop
approach, it is applied not only for different types of quadcopters [49], but also for other
autonomous systems, such as robotic manipulators [8]. Hence the proposed control algo-
rithms could be used in industrial applications, as well.
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(a) Optimization-based open-loop control,
the trajectory is displayed in Figure 7.5.

(b) Geometric reference tracking control,
the trajectory is displayed in Figure 7.6.

Figure 7.9: Composite images of the measurement results with both proposed control
methods implemented on a Bitcraze Crazyflie 2.1 quadcopter. A video of
the measurements is available at https://youtu.be/AhqfXZ-CPqM.
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Chapter 8

Towards Control Improvement by
Reinforcement Learning

8.1 Overview of reinforcement learning for control

In this chapter, we introduce a reinforcement learning based method to improve the per-
formance and adaptability of the demonstrated control methods for backflipping with
quadcopters. Reinforcement learning (RL) is a field of machine learning, used for goal-
directed learning and decision making. Unlike supervised learning, labeled outputs are
not available, the agent learns its behaviour from interacting with its environment, and
analysing the reward of state-action pairs. The goal of the learning process is to find
the optimal behaviour which maximizes the cumulative reward. In case of control design,
the optimal behaviour is an optimal control policy. The typical reinforcement learning
scenario is displayed in Figure 8.1.
Early reinforcement learning control methods learned optimal behaviour by maximizing
the value function, that assigns high values to the states from which the target is reached
quickly and the resulting cumulative cost is low. These value-based RL methods, such
as Q-learning and state-action-reward-state-action (SARSA), can be applied efficiently in
discrete state and action spaces, e.g. playing Atari games [37]. However, their represen-
tation capability is limited, and the overall learning algorithm is inefficient in stochastic
dynamic environments with continuous states and actions.
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Figure 8.1: Typical framing of a reinforcement learning scenario
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To improve the performance of the value-based RL algorithms, actor critic methods ap-
peared, where the "critic" estimates the value function, and the "actor" represents a control
policy. During the learning process, the actor updates the policy based on the value of
each state determined by the critic. Most of the widely spread RL control algorithms are
based on the actor critic method, e.g. advantage actor-critic (A2C), trust region policy
optimization (TRPO), proximal policy optimization (PPO), and deep deterministic policy
gradient (DDPG). These algorithms have been successfully applied for complex control
problems, e.g. quadrotor control [27].
Reinforcement learning algorithms are also categorized based on their representation of
the environment. The previously discussed methods are model-free, i.e., the optimal be-
haviour is learnt without modelling the dynamics of the corresponding system. Research
has shown, that although current model-free algorithms have very good asymptotic per-
formance, they are computationally expensive to train, which often limits their application
to simulated domains [38, 32]. On the other hand, model-based RL methods first construct
a predictive model of the environment, and then use that model to optimize the control
policy, thus aiming at reducing sample complexity and learning from less data points [11].
Both the dynamic model and policy can be represented by various function approxima-
tors, for instance probabilistic, nonparameteric structures (e.g. Gaussian Processes), or
deterministic, parametric models (e.g. conventional neural networks).
In the next section, we introduce an RL framework developed specifically for robot learn-
ing. Then, we apply the main principles of the introduced methodology to augment the
presented control schemes for backflipping.

8.2 Probabilistic inference for learning control (PILCO)

8.2.1 Problem formulation

In [12], a model-based, data-efficient reinforcement learning method is proposed for learn-
ing robot control, namely Probabilistic Inference for Learning Control (PILCO). In case
of PILCO, model internalization based RL is used, i.e., a probabilistic dynamic model (in
the form of Gaussian Processes) is considered to capture the dynamics of the underlying
system. The goal of the learning scenario is to find an optimal control policy via the min-
imization of a specific long-term cost, which is predicted based on the internal GP model.
PILCO is successfully used for various control tasks, e.g. balancing a cart-pole mechanism
built from an inkjet printer [2], or controlling a low-cost robotic manipulator [13]. In this
section, we only introduce the main principles of PILCO, often simplifying expressions
to make their understanding easier. The complete documentation of the method can be
found in [12].
First, we assume that the unknown dynamic model of the robotic system can be written
in a discrete, deterministic form, as follows:

xk = f(xk−1, uk−1), x0 ∈ Rnx , u0 ∈ Rnu , (8.1)

where x ∈ Rnx denotes the state, u ∈ Rnu is the control input, k is the discrete time
index, and f is a Lipschitz continuous, bounded map describing the state transition. The
initial state and input are denoted by x0 and u0, respectively. In order to simulate the
state transition and quantify uncertainty regarding the estimations, f is approximated by
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a Gaussian Process model, characterized by:

fGP(x̂k, uk) = GP(x̂k, uk) ≈ N (µ(x̂k, uk),Σ(x̂k, uk)), (8.2a)
x̂k = fGP(x̂k−1, uk−1), (8.2b)

where x̂ is a random variable approximating the state vector, and µ,Σ are the mean and
covariance of the GP, detailed in Chapter 2. Given that the input of the GP is a random
variable, the output is generally not Gaussian, however, it is usually approximated by a
normal distribution to enable computationally feasible uncertainty propagation (commonly
used approximation methods are discussed later in Section 8.2.2).
We intend to control the robotic system (8.1) using a deterministic control policy:

uk = π(xk). (8.3)

The structure of π determines the flexibility and also the complexity of the control policy,
therefore it is important to choose both the function class and the number of parameters
carefully. The PILCO framework introduces two policy structures: radial basis function
(RBF) networks, and linear feedback control, however, more compex structures could be
also used, e.g. multi-layer perceptron (MLP). In case of quadrotor control, a linear policy
could be used for hovering or low-speed waypoint following, however, performing acrobatic
maneuvers requires a complex nonlinear structure, represented e.g. by RBF networks or
MLPs.
The objective of the RL task is to find a policy π∗ that minimizes the expected long-term
cost, defined as

V π(x0) = E
[
N∑
k=0

c(xk)
]

=
N∑
k=0

E[c(xk)], (8.4)

whereN is the length of the corresponding trajectory (also called episode in RL formalism),
x0 is the initial state, E[·] denotes the expected value, and c(·) is a user defined, task specific
cost function. The cost function encodes the goal of the control problem, e.g. the state
error in path tracking or the distance from the setpoint in setpoint position control. In
case of the backflipping scenario, the cost function could incorporate e.g. the aim of each
motion primitive defined in Section 4.2, or the orientation and position tracking error
compared to the reference trajectories detailed in Section 5.4.

8.2.2 Policy learning algorithm

The overview of policy learning is illustrated in Figure 8.2 and by Algorithm 5. First, the
structure of the policy and the GP model are defined, and their parameters are initialized
randomly or using prior knowledge about the task. After initialization, two main loops
are executed. The outer loop is responsible for model learning: executes the control policy
on the real robot (if it is available) to collect measurement data, and train the GP model
characterized by (8.2).
Then, the inner loop performs iterative policy learning by using the simulation model of the
robot dynamics which is formulated based on the GP dynamic model (8.2). The objective
of policy learning is to find the policy π∗ that minimizes the expected long-term cost V π

in terms of the simulated response with the policy. To evaluate the long-term cost, i.e.,
the simulated response using the GP model, predictive state distributions are computed.
Assuming a deterministic initial state x0, the result of the first step is x1 = fGP(x0, u0),
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Figure 8.2: Two main steps of policy learning in PILCO [12]. Left: model learning by
executing the policy on the real robot. Right: policy learning by predicting
the long-term cost V π based on the learned dynamic model.

Algorithm 5 High-level steps of policy learning
1: Initialize control policy by a random set of parameters
2: loop: Model learning (interaction)
3: Execute policy on the real system (or simulation)
4: Save observations
5: Update probabilistic dynamic GP model
6: loop: Policy learning (simulation)
7: Prediction based on learned dynamics and policy
8: Compute expected long-term cost
9: Improve policy

10: end loop
11: end loop
12: return Optimal policy

that is a normally distributed random variable, as it is detailed in Chapter 2. However, at
the next step, the GP needs to be evaluated at uncertain inputs, and the result is generally
not Gaussian and cannot be computed analytically, therefore an approximation method
needs to be used to propagate the uncertainty of the predictive distribution. Here, we
briefly introduce three uncertainty propagation methods based on [22]:

• Mean Equivalent Approximation (MEA) is a computationally cheap approach, that
is based on the approximation of a random variable only with its mean, therefore it
neglects the accumulation of uncertainty in the GP, often leading to poor approxi-
mations.

• Taylor Approximation (TA) uses a first-order Taylor approximation of the posterior
distribution given by (2.6) to propagate the uncertainty of the GP. The method is
computationally more expensive then MEA, but it is able to express uncertainty
propagation, resulting in better approximations.

• Exact Moment Matching (EMM) utilizes that the first and second moments of the
posterior distribution (2.6) can be analytically computed. The algorithm matches
these moments to that of a normal distribution, which can be interpreted as an
optimal fit of a Gaussian to the true distribution. EMM has similar computation
cost to TA, and also similar approximation error in case of one-step predictions
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[22]. EMM is used in PILCO to propagate the uncertainty of the dynamics when
evaluating the long-term cost.

Given that the policy can be evaluated on the probabilistic GP dynamic model using one
of the uncertainty propagation methods, an optimization problem is formulated to find
the optimal policy that minimizes the expected long-term cost. In [12], gradient-based
policy search is employed to find the optimal parameters of the policy. To increase the
efficiency of the policy search algorithm, the gradients of the value function with respect
to the policy parameters are analytically computed for the linear and RBF policies.
The policy learning algorithm runs until the uncertainty of the probabilistic dynamic
model is sufficiently low, and the policy converges. Finally, it returns the optimal control
policy that can be directly applied to perform the specified control task.

8.3 Learning the backflip maneuver with PILCO

In this section, we discuss the possibilities to apply PILCO for learning the backflip ma-
neuver with quadcopters. We propose various approaches to develop both model learning
and policy learning specifically for backflipping, as it is illustrated in Figure 8.3.

8.3.1 Model learning

PILCO initializes the reinforcement learning process with a random dynamic model, and
uses only measurement data to train the GP. However, real-world experiments are often
costly and time consuming, moreover, it is difficult to collect data from the whole operating
domain of the robot. To address this problem, we introduce two solutions in this section.
First, the nominal nonlinear model of a standard quadcopter vehicle is known, as we
presented in Chapter 3. By evaluating the nominal model on a grid of the operating
domain, data points can be generated to train an initial GP model and start policy learning
when the error of the GP prediction compared to the output of the nominal model is low.
Then, more accurate simulations can be conducted, resulting in faster convergence of the
policy learning. By collecting measurement data, the GP model can be further improved

Figure 8.3: PILCO augmentation possibilities to learn backflipping with quadcopters.
Blue and green lines correspond to model learning, red and orange lines
correspond to policy learning, dashed lines denote initialization, and solid
lines denote iterative evaluation or optimization.
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to outperform the nominal quadcopter model in terms of representation capability of the
dynamics of the real robot. However, it is an important design choice to adjust the weight
of the data points generated by the nominal model compared to the measurement data.
The GP model initialization and learning is depicted by blue color in Figure 8.3.
A second approach would be to augment the nominal model of the quadcopter with a
Gaussian Process that represents the unknown residual dynamics, i.e., the difference be-
tween the nominal model and the real system. In Figure 8.3, the corresponding blocks
and arrows are depicted by green color. The augmented model is formulated as follows:

x̂k = f(x̂k−1, uk−1) + ∆fGP(x̂k−1, uk−1), (8.5a)
∆fGP(x̂k, uk) = GP(x̂k, uk) ≈ N (∆µ(x̂k, uk),∆Σ(x̂k, uk)), (8.5b)

where f contains the discrete time ideal nonlinear physical model of the vehicle based
on (5.1), and ∆fGP captures the unknown dynamics based on measurement data on the
real quadcopter. However, simulating the GP augmented dynamic model (8.5) not only
requires GP evaluation at uncertain inputs, but also mapping the state (which is a Gaus-
sian random variable) through a nonlinear function f . The former can be handled by the
approximate uncertainty propagation methods described in Section 8.2.2, but the latter
needs further consideration. Similarly to [22], it is possible to approximate the state,
control input and residual dynamics as jointly Gaussian distributed at every time step: x̂k

uk
∆fGP,k

 ∼ N (µk,Σk) = N


 µx

k

µuk
∆µk

 ,
 Σx

k Σxu
k Σx ∆

k

⋆ Σu
k Σu∆

k

⋆ ⋆ ∆Σk


 , (8.6)

where ∆fGP,k = ∆fGP(x̂k, uk), ∆µk = ∆µ(x̂k, uk), ∆Σk = ∆Σ(x̂k, uk), and ⋆ denotes
terms given by symmetry. Then, to compute the uncertainty propagation, the nominal
dynamic model can be linearized around the mean of the state and input, as follows:

f(x̂ , u) ≈ f(µx , µu) +∇f(µx , µu)
([

x̂
u

]
−
[
µx

µu

])
, (8.7)

where ∇ denotes the gradient operator. Using the linearized dynamics, the state transition
characterized by (8.5) can be rewritten to the following form:

µx
k = f(µx

k−1, µ
u
k−1) + ∆µ(x̂k−1, uk−1), (8.8a)

Σx
k = [ ∇f(µx

k−1, µ
u
k−1) I ] Σk−1 [ ∇f(µx

k−1, µ
u
k−1) I ]⊤. (8.8b)

Finally, the GP augmented dynamic model can be simulated using (8.8) to evaluate the
long-term cost V π and optimize the policy. Note, that (i) instead of the Taylor approxi-
mation at (8.7), moment matching could also be used, but it is more complicated [12], and
(ii) here we have omitted the update law for the full covariance matrix Σk for the sake of
simplicity, however, it can be found in [22].

8.3.2 Policy learning

Similarly to model learning, the policy learning algorithm of PILCO can be also adapted to
learn the backflip maneuver. On the one hand, the policy π can be initialized using one of
the demonstrated methods, regardless of its specific structure (e.g. linear, RBF, or neural
network), as it is illustrated in Figure 8.3 using red color. In case of the feedforward
solution introduced in Chapter 4, the optimal control input sequence can be directly
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applied to tune the initial parameters of the policy. However, a single input sequence
provides small amount of information, and modifying the parameters of the feedforward
approach lead to poor performance, as shown in Figure 6.1. From this point of view,
the geometric feedback control approach is more suitable for training an initial policy,
because several different trajectories can be generated, all of them resulting in successful
backflipping, as it is illustrated in Figure 6.3.
On the other hand, similar to the nominal dynamic model of the quadcopter, the nominal
geometric feedback controller can also be augmented with a GP term, as follows:

u = πgeom(x ) + ∆πGP(x ), (8.9)

where u = [F, τ⊤]⊤ is the control input of the quadrotor, πgeom(x ) denote the geometric
control law characterized by (5.8), and ∆πGP(x ) is the GP augmentation. The result is
illustrated in Figure 8.3, which can be interpreted as an adaptive version of the geometric
controller. In order to evaluate the control law (8.9), the random variable x needs to be
mapped through the nonlinear function πgeom, and the Gaussian Process ∆πGP. This case
is similar to the evaluation of (8.5), and the same procedure can be applied here, as well.
An advantage of the first method (training the initial parameters of the policy) is that
the policy remains flexible, therefore it can be adapted to quickly learn other acrobatic
maneuvers, e.g. a double flip [34] or a barrel roll [26]. In contrast, the second method
has the advantage that it is based on a mathematically well grounded, Lyapunov-stable
controller, therefore the measurements on the real robot can be conducted more safely in
the early phase of policy learning.
As a summary, we intend to use the flexibility and computational efficiency of policy learn-
ing by model internalization based reinforcement learning to improve the performance of
the proposed algorithms for backflipping with quadcopters. In this work, only the theo-
retical introduction and main ideas of reinforcement learning control have been discussed,
however, the subject will be further investigated by implementing the proposed methods
and compare the results to the already implemented and tested controllers.
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Chapter 9

Summary and Conclusions

The aim of this work is to develop and implement efficient control algorithms for the agile
maneuvering of autonomous quadcopters. We have chosen the backflip maneuver as an ex-
ample, because it is fast, highly challenging even for a human drone pilot, and emphasizes
the nonlinear behaviour of the vehicle. A thorough literature survey has been conducted
about the mathematical modelling of quadcopter dynamics, state-of-the-art control ap-
proaches for aggressive maneuvers, specifically for backflipping, in order to identify the
most relevant results in this particular field of research. Based on the literature, we
set our research goal to compare existing trajectory planning and control methods, and
develop novel algorithms to overcome their observed limitations. Accordingly, we have
proposed two control methods and their comparison for performing a backflip maneuver
with miniature quadcopters: (i) an adaptive feedforward control by Bayesian optimization
of a parametric motion primitive sequence, and (ii) trajectory planning by model-based
optimization and trajectory tracking by a novel robust adaptive geometric controller.
After the theoretical foundation of the mathematical model and control approaches, we
have conducted simulation studies, using the dynamic model of the Bitcraze Crazyflie 2.1
quadcopter. We have found Bayesian optimization to be efficient and suitable for learning
an open-loop strategy for backflipping, the optimized parameter set worked with good
performance on the simulation model of the quadcopter. However, we have also observed
that the introduced method is very sensitive to parameter changes, as it quickly becomes
unstable if we disturb the ideal set of parameters. Simulation studies have shown that the
trajectory design for the second control method is computationally efficient, flexible, and
has good performance even in case of perturbed parameters and conditions. With proper
tuning of geometric control gains, we have achieved accurate trajectory tracking both for
the position and orientation of the quadcopter, performing the backflip maneuver with
small errors. The novel robust adaptive geometric controller guarantees robust stability of
the closed loop system even in the presence of external disturbances, which is a significant
improvement of the nominal control scheme both from a theoretical and practical point of
view. Moreover, it not only provides robustness, but also excellent control performance as
it has outperformed the nominal geometric controller in terms of minimizing the reference
tracking error.
The experimental setup at SZTAKI AIMotion Lab has made it possible to implement both
control methods on a real Crazyflie quadcopter. As it is displayed in Figure 7.9, the imple-
mentation was successful, the quadcopter performed the backflip with the feedforward and
geometric control, as well. Feedforward control is very sensitive to parameter uncertainty,
therefore we have needed to further tune the parameter set for each Crazyflie 2.1 quad-
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copter. On the other hand, geometric control has provided a significantly more robust
method for backflipping, as feedback could reject small parameter uncertainties. The per-
formance of the adaptive geometric tracking control has been demonstrated by performing
the backflip maneuver with a bolt attached to the drone, as an external disturbance. Our
results show that the proposed adaptive scheme is able to increase the control performance
not only in simulation, but in real-world application, as well.
The future goal of this project is to design even more general control methods for fast,
complex maneuvers of miniature quadcopters using machine learning techniques. The
advantage of learning algorithms is that they require less expert knowledge, i.e. a simple
task formulation is suitable to iteratively learn the desired motion. Reinforcement learning
(RL), one of the most popular research topics in machine learning control, is widely applied
for learning and optimization of quadcopter maneuvers by trial and error, often combined
with deep neural network policies. In this work, we have introduced a model internalization
based RL framework and its possible use to efficiently learn control policies for backflipping
with quadcopters. In our oncoming research work, we intend to use these learning methods
to perform complex maneuvers with less expert knowledge and extend the capabilities of
the miniature quadcopters even more.
Another interesting direction for further development would be to combine the advantages
of the two proposed backflipping methods, and design a feedback controller to track the
parametrized motion primitive introduced in the feedforward method. This way, we could
achieve more robust and reliable operation and also exploit the flexibility and performance
of Bayesian optimization.
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