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Abstract
Acrucial, both from theoretical and practical points of view, problem in preferencemodelling
is the number of questions to ask from the decision maker. We focus on incomplete pairwise
comparison matrices based on graphs whose average degree is approximately 3 (or a bit
more), i.e., each item is compared to three others in average. In the range of matrix sizes
we considered, n = 5, 6, 7, 8, 9, 10, this requires from 1.4n to 1.8n edges, resulting in
completion ratios between 33% (n = 10) and 80% (n = 5). We analyze several types of
union of two spanning trees (three of them building on additional ordinal information on
the ranking), 2-edge-connected random graphs and 3-(quasi-)regular graphs with minimal
diameter (the length of the maximal shortest path between any two vertices). The weight
vectors are calculated from the natural extensions, to the incomplete case, of the two most
popular weighting methods, the eigenvector method and the logarithmic least squares. These
weight vectors are compared to the ones calculated from the complete matrix, and their
distances (Euclidean, Chebyshev andManhattan), rank correlations (Kendall and Spearman)
and similarity (Garuti, cosine and dice indices) are computed in order to have cardinal, ordinal
and proximity views during the comparisons. Surprisingly enough, only the union of two star
graphs centered at the best and the second best items perform well among the graphs using
additional ordinal information on the ranking. The union of two edge-disjoint spanning trees
is almost always the best among the analyzed graphs.
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1 Introduction

Given n items (in multi-attribute decision making, typically criteria, alternatives, voting
powers of decision makers, subjective probabilities, levels of performance with respect to
a fixed criterion etc.), the structure of pairwise comparisons is often represented by graphs
(Gass, 1998). The minimally sufficient number of comparisons in order to have a connected
system of preferences is n − 1, and the pairs of items compared can be associated to the
edges of a spanning tree on n nodes. This system has no redundance at all, and the calculated
weight vector is highly sensitive to the change of any comparison. Observe that the average
degree in a spanning tree is (2n − 2)/n = 2 − 2/n, i.e., every item is compared to (almost)
2 other items in average. We would like to keep the number of comparisons low, namely
around the average degree 3 or a bit more, and compare the weight vectors calculated from
several such graphs to determine the best filling in pattern that provides the closest weights
to the ones computed from the complete matrix.

In our research predetermined graphs are used, thus we assume that the set of comparisons
can be chosen, and the whole questionnaire should be prepared a priori.

Some of the examined models also use additional ordinal information, thus the evaluation
of this information is a main contribution of our study as well.

Our aim is to gain as much information from the decision maker’s revealed preferences as
possible. We would like to find out if there is better ordinal information than the one usually
used by multi-attribute decision making models, and whether we can find better solutions
even without additional ordinal information. The paper deals with specified numbers of
comparisons, however, the key question remains valid for all incomplete pairwise comparison
matrices.

The remainder of this paper is organized as follows. Sect. 2 provides a brief summary
of the related literature and research gaps. The used methodology is detailed in Sect. 3,
where besides the method of pairwise comparisons, as well as the relevant graph theoretical
concepts (Sect. 3.1), the applied simulation process to compare the different models is also
included (Sect. 3.2). The analyzed models and the associated filling in patterns are presented
in Sect. 4, while Sect. 5 shows the obtained results. Finally, Sect. 6 concludes and raises some
further research questions.

2 Literature review

The main goal of multi-attribute decision making (MADM) is to determine the best or the
best few, perhaps the complete ranking of the discrete number of alternatives based on a
finite number of (usually conflicting) qualitative and/or quantitative criteria (Triantaphyllou,
2000).

It is not uncommon that the MADM models use some part of the ordinal information
of the ranking of items from the decision maker at the beginning of the process as well,
namely the best, the worst or both alternatives. The most popular such methodologies are the
SMART (simple multi-attribute rating technique) (Edwards, 1977), the Swing method (von
Winterfeldt and Edwards, 1986), the SMARTS (SMART using Swings) and the SMARTER
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(SMART Exploiting Ranks) (Edwards and Barron, 1994; Mustajoki et al., 2005), and last
but not least the best-worst method (Rezaei, 2015). The latter one generated an indeed large
literature in the last few years (Mi et al., 2019), with theoretical extensions and studies (Liang
et al., 2020; Mohammadi and Rezaei, 2020) as well as real applications (Rezaei et al., 2016).
However, the significance of the ordinal information used by these models has barely been
studied.

One of the most fundamental concepts of MADM is the method of the pairwise compar-
isons (Thurstone, 1927). It is also the cornerstone of the indeed popular and widely used
methodology of the Analytic Hierarchy Process (AHP) (Saaty, 1977), where these compar-
isons form a pairwise comparison matrix (PCM).

The incomplete case of PCMs was originally proposed by (Harker, 1987) to reduce the
number of questions in the AHP, especially in group decision making. Since that besides
their application for different problems (Bozóki et al., 2016), many aspects of incomplete
PCMs has been examined in detail from the inconsistency measures (Szybowski et al., 2020)
and their thresholds (Ágoston and Csató, 2022) to different optimal completions (Fedrizzi
and Giove, 2007; Zhou et al., 2018). As answering all the questions is time-consuming, there
were several proposals to solve this problem (Triantaphyllou, 2000). Based on Revilla and
Ochoa (2017) if we ask the respondents, they clearly prefer shorter (with a maximum length
of 20 minutes) questionnaires and surveys, while longer questionnaires result in lower data
quality as well (Deutskens et al., 2004). These time spans more or less correspond to the
number of questions included in our models. We focus on a similar problem as the reduction
of comparisons, however, we assume that the whole questionnaire has to be prepared before
the decision making process and we cannot ask the decision makers to modify some answers,
thus our approach is in some sense similar to Amenta et al. (2021). There are only a few
studies dealing with the question that which pattern of comparisons should we use in a given
problem (Szádoczki et al., 2022), and to our knowledge, none of them regards additional
ordinal information as well, thus in this paper we would like to eliminate this research gap.
The comparison of different priority vectors has an important role in our study, which has
been also used in the different optimizations of aggregation of group preferences (Duleba
et al., 2021) and in several weight calculation problems (Kou and Lin, 2014).

3 Methodology

3.1 Pairwise comparisons and their graph representation

The pairwise comparison matrix technique can be applied in decision problems both to
determine the weights of the different criteria and to evaluate the alternatives according to a
criterion.

Definition (Pairwise comparison matrix (PCM)) Let us denote the number of criteria (alter-
natives) in a decision problembyn. Then×nmatrix A = [ai j ] is called a pairwise comparison
matrix, if it is positive (ai j > 0 for ∀ i and j) and reciprocal (1/ai j = a ji for ∀ i and j).

The general element of a PCM ai j shows how many times item i is better/larger/stronger/
more important than item j .

There are several techniques to calculate a weight vector from a PCM that shows the
importance of compared items. Probably the two most commonly used methods are the
logarithmic least squares (LLSM) (Crawford andWilliams, 1985) and the eigenvector (Saaty,
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1977) techniques, given by the following formulas respectively:

n∑

i=1

n∑

j=1

(
ln(ai j ) − ln

(
wi

w j

))2

→ min (1)

A · w = λmax · w (2)

Where w denotes the weight vector with the general element wi , A is an n × n PCM and
λmax is the maximal eigenvalue of A. As we are studying graphs in our research, we should
also mention that the combinatorial weight calculation method (Tsyganok, 2000), which is
based on the weight vectors gained from different spanning trees provides the same solution
as the LLSM if we use the geometric mean (Lundy et al., 2017). The comparison of this
method with other weight calculation techniques can be found in Tsyganok (2010).

Another important aspect of PCMs is their inconsistency.

Definition (Consistent PCM) A PCM is said to be consistent if and only if aik =
ai j a jk ∀i, j, k. If a PCM is not consistent, then it is called inconsistent.

Of course, there are different levels of inconsistency and several inconsistency indices
have been proposed to measure this problem (Brunelli et al., 2013), which satisfy different
properties (Brunelli, 2017). However, the most popular one is probably still the Consistency
Ratio (CR) (Saaty, 1977). In order to define the CR, we need the Consistency Index (CI),
which is given as

C I = λmax − n

n − 1
(3)

Where λmax is the largest eigenvalue of the PCM. The Consistency Ratio can be calculated
as

CR = C I

RI
(4)

Where RI is the Random Index, which is the average CI obtained from a large enough set
of randomly generated matrices of size n.

In case of incomplete data, namely when some elements of the PCM are missing, we are
talking about an incomplete PCM. The absence of these elements can be caused by several
different reasons: the loss of data, some comparisons are simply not possible (Bozóki et al.,
2016) or the decision maker does not have time, possibility or willingness to fill in all the
n(n − 1)/2 comparisons (it is sufficient to focus only on the elements above the principal
diagonal of the matrix because of the reciprocity).

In our research the most important case is the latter one, as we examine different kinds of
filling in patterns of incomplete PCMs, thus we assume that the set of pairwise comparisons
to be made can be chosen.

The weight calculation techniques can be extended to the incomplete case, but the results
depend on both the number of known comparisons and their positioning. We assume that
it is possible to find a pattern of pairwise comparisons, that minimizes experts’ efforts and
accumulated estimation errors, while ensuring estimation stability. In order to compare the
effect of different arrangements of known elements (filling in patterns), we use the graph
representation of the PCM (Gass, 1998). The representing graph is an undirected graph,
where the vertices denote the criteria/alternatives, and there is an edge between any two
vertices if and only if the comparison has been made for the two respective items (the
associated element of the PCM is known).
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There are several different attributes that are studied in connection with decision making
problems, among which regularity of comparisons (in some sense) is, indeed, an important
one (Kulakowski et al., 2019; Wang and Takahashi, 1998). If we use the graph representation
of the PCM, the most common definition of regularity that we use in this paper, can be seen
below.

Definition (k-regularity)A graph is called k-regular if every vertex has k neighbours, which
means that the degree of every vertex is k.

In decision problems regularity ensures a certain level of symmetry, it means that every
item is compared to the same number of elements. This kind of property is also required in
the design of some sport tournaments (Csató, 2017).

As k-regularity is not possible, when both the number of vertices (n) and the level of
regularity (k) are odd, Szádoczki et al. (2022) defined the graphs that are the closest to
k-regularity in this case, as follows.

Definition (k-quasi-regularity) A graph is called k-quasi-regular if exactly one vertex has
degree k + 1, and all the other vertices have degree k.

In case of indirect relations, when there is no direct comparison between two elements,
the small errors of the intermediate comparisons can add up (Szádoczki et al., 2020). The
diameter of the representing graph can measure this problem indeed naturally.

Definition (Diameter of a graph) The d diameter of a graph G is the length of the longest
shortest path between any two vertices:

d = max
u,v∈V (G)

�(u, v), (5)

where V (G) denotes the set of vertices of G and �(., .) is the graph distance between two
vertices, namely the length of the shortest path between them (in our case the length of every
edge is one).

The diameter also seems to be a crucial property in case of the weight calculation method
based on spanning trees (Kadenko and Tsyganok, 2020).

It is important to note that the solution of the weight calculation problem is unique in case
of incomplete PCMs if and only if the representing graph is connected, thus there are at least
indirect comparisons between the pairs of items (Bozóki et al., 2010).

Definition (Connected graph) In an undirected graph, two vertices u and v are called con-
nected if the graph contains a path from u to v. A graph is said to be connected if every pair
of vertices in the graph is connected.

It is worth to examine some of the so-called stronger kind of connectedness measurements
as well regarding the representing graph of a PCM. From these indicators the following
property has special importance in our study.

Definition (k-edge-connectivity) A graph G is called k-edge-connected if it remains con-
nected whenever fewer than k edges are removed from G. Formally: let G = (V , E) be an
undirected graph, where V is the vertex set, while E is the edge set ofG. If G ′ = (V , E \ H)

is connected for∀H ⊆ E , where |H | < k, thenG is k-edge-connected. The edge connectivity
of G is the maximum value k such that G is k-edge-connected.

123



788 Annals of Operations Research (2023) 326:783–807

3.2 The simulation process

We apply extended numerical experiments to compare different filling in models of pairwise
comparisons. In our simulations, the weight vectors are calculated using the natural extension
of the two most popular weighting techniques, the eigenvector method and LLSM, to the
incomplete PCM case. The former one is based on the CR-minimal completion (CREV), and
its principal right eigenvector (Bozóki et al., 2010, Sects. 3 and 5). The LLSM’s optimization
problem includes the known elements of the matrix, the optimal solution can be calculated by
solving a system of linear equations (Bozóki et al., 2010, Sects. 4), furthermore, it can also be
written as the geometric mean of weight vectors calculated from all spanning trees (Bozóki
and Tsyganok, 2019). As we mentioned, in both of the CREV and the LLSM models the
optimal solution is unique if and only if the graph of comparisons is connected. We compare
the weight vectors obtained based on different filling in models to the ones calculated from
the complete PCMs. As for the measurements of comparison, we use three types of metrics:

– distances, as the most commonly used cardinal measures, which are represented by the
Euclidean distance (deuc), the Chebyshev distance (dcheb), and the Manhattan distance
(dman),

– rank correlation coefficients, as the basic ordinal indicators, namely the Kendall rank
correlation (Kendall’s τ ), and the Spearman rank correlation coefficient (Spearman’s ρ),

– and last but not least, the so called compatibility (or similarity) indices, which are argued
in the literature to be the most important measures to compare priority vectors (Garuti,
2017). In our analysis we include Garuti’s compatibility index (G index) (Garuti, 2020),
the cosine similarity index (C index) (Kou et al., 2021), and the dice similarity index (D
index) (Ye, 2012).

The above-mentioned indicators are given by the following formulas, respectively:

deuc(u, v) =
√√√√

n∑

i=1

(ui − vi )2 (6)

dcheb(u, v) = max
i∈1,...,n |ui − vi | (7)

dman(u, v) =
n∑

i=1

|ui − vi | (8)

τ(u, v) = nc(u, v) − nd(u, v)

n(n − 1)/2
(9)

ρ(u, v) = 1 − 6
∑n

i=1 R(ui ) − R(vi )

n(n2 − 1)
(10)

G(u, v) = 1

2

n∑

i=1

(
min(ui , vi )

max(ui , vi )
(ui + vi )

)
(11)

C(u, v) =
∑n

i=1 uivi√∑n
i=1(ui )

2
√∑n

i=1(vi )
2

(12)

D(u, v) = 2
∑n

i=1 uivi∑n
i=1(ui )

2 + ∑n
i=1(vi )

2
(13)

where u denotes the weight vector gained from a certain filling in pattern and v is the weight
vector calculated from the complete matrix. u and v are normalized by

∑n
i=1 ui = 1 and
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∑n
i=1 vi = 1, respectively, and vi and ui denote the i th element of the appropriate vectors.

nc(u, v) denotes the number of concordant pairs and nd(u, v) the number of discordant pairs
of the examined vectors,while R(.) shows the rank of the given elementwithin the appropriate
vector. The range of theKendall’s τ and Spearman’s ρ is [−1, 1], and considering the notation
above, the higher value indicates a better performance of the given filling in pattern. In case
of the compatibility indices (G, C , and D) the range corresponds to [0, 1], and similarly, the
higher value is the better. On the other hand, here the distances can be interpreted as errors,
thus their smaller level is preferred. This way we use the most commonly applied categories
of closeness measures in case of priority vectors, and also include several of them to see if
the results depend on the given category or may even on the specific metric.

Our simulations are in a sense similar to the ones in Szádoczki et al. (2022), but (besides
using other filling patterns and other metrics) we apply elementwise perturbations instead of
their matrixwise solution, and the handling of scales is improved in our case.

The process of the simulation for a given n consisted of the following steps:

1. We generated n random weights (the general weight is denoted by wi ), where wi ∈ [1, 9]
is a uniformly distributed random real number for ∀i ∈ 1, 2, . . . , n. We calculated random
n × n complete and consistent PCMs, where the elements of the matrices were given as
follows:

ai j = wi/w j (14)

2. Then we used three different special perturbations of the elements of the consistent matri-
ces to get inconsistent PCMs with three well-distinguishable inconsistency levels. We
denote these levels by weak, modest and strong given with the following formulas:

âweak
i j =

{
ai j + Δi j : ai j + Δi j ≥ 1

1
1−Δi j−(ai j−1) : ai j + Δi j < 1

Δi j ∈ [−1, 1] (15)

âmodest
i j =

{
ai j + Δi j : ai j + Δi j ≥ 1

1
1−Δi j−(ai j−1) : ai j + Δi j < 1

Δi j ∈
[
−3

2
,
3

2

]
(16)

âstrongi j =
{
ai j + Δi j : ai j + Δi j ≥ 1

1
1−Δi j−(ai j−1) : ai j + Δi j < 1

Δi j ∈ [−2, 2] (17)

Where âweak
i j , âmodest

i j and âstrongi j are the elements of the perturbed matrices, ai j is the
element of the consistentmatrix, ai j ≥ 1 (thuswe only perturb the elements above one and
keep the reciprocity of the matrices), and Δi j is uniformly distributed in the given ranges.
This perturbation is able to provide ordinal differences as well (when âi j < 1). However,
we account for the contrast that can be examined above and below 1, thus our perturbed
data is uniformly distributed around the original element on the scale presented by Fig. 1.
Our perturbation method aims to ensure 3 different and meaningful inconsistency levels
and it is, indeed, correlated with the Consistency Ratio (CR), as it is shown in Fig. 2.
We tested several combinations of parameters, and found that they resulted in the most
relevant levels of CR.

3. We deleted the respective elements of the matrices in order to get the filling in pattern that
we were examining, and applied the LLSM and the CREV techniques to get the weights.
In case of the models that use ordinal information, we always chose the needed element
according to the examined weight calculation method, based on the complete, perturbed
PCM (thus we assume that the decision maker can provide accurate ordinal data). The
certainmodels’ distances, rank correlations and compatibility indiceswere computedwith
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Fig. 1 The ratio scale 1/9, . . . , 9 and the perturbation of elements

respect to the weights that were calculated from the complete inconsistent matrices. The
compared filling in patterns were the ones presented in great detail in Sect. 4, which are
represented by the following graphs:

(i) Best-worst graph
(ii) TOP2 graph
(iii) Best-random graph
(iv) Random-random graph
(v) 3-(quasi-)regular graph with minimal diameter
(vi) Union of two random edge-disjoint spanning trees
(vii) Random 2-edge-connected graph

4. We repeated steps 1-3 for 10000 times for every level of inconsistency (thus altogether we
examined 30000 PCMs for a given n). Finally, we saved the mean of the applied metrics
for the different weight calculation methods and filling in patterns.

In case of (vi) and (vii) we randomly generated 10000 graphs satisfying the required
properties and used them in the simulations. As for (v), when there were more graphs, which
met the requirements, we randomly chose one of them at every iteration.

It is worth to include a small theoretical analysis of the simulations to see how they work
in general.

Remark The distribution of the elements of PCMs in the simulation is independent of n. This
property holds for both consistent and perturbed PCM cases.

The reason behind this is as follows. If we analyze our simulation process, we can see that
at first the elements of a given matrix are generated independently from n, and then they are
placed into the n × n PCM. The histograms of the matrix elements above 1 in the different
perturbation cases, based on large samples containing 1 million elements each are presented
in Fig. 3.

It can be seen that the higher the level of perturbation (inconsistency), the higher the
chance to have large (extreme) matrix elements.

It also makes sense to consider the average of the maximal elements of the analyzed
PCMs and the average number of ordinal perturbations (when the ordinal preference between
two items is changed due to perturbation). These details are presented in Tables 1 and 2,
respectively, for our specific simulations.
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Fig. 2 The relation between CR and our element-wise perturbation. Each point shows the average CR of 1000
randomly generated perturbed PCMs
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Fig. 3 The histograms of the ≥ 1 elements of PCMs in case of different perturbations based on a sample of 1
million elements
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Table 1 The summary of the
mean of largest elements in the
PCMs based on the simulations

Size (n) 5 6 7 8 9 10

Perfectly consistent 3.96 4.35 4.67 4.94 5.18 5.38

Weak perturbation 4.21 4.60 4.93 5.19 5.46 5.67

Modest perturbation 4.45 4.85 5.20 5.47 5.71 5.95

Strong perturbation 4.74 5.14 5.49 5.80 6.05 6.25

Table 2 The average number of
ordinal perturbations in the
simulations

Size (n) 5 6 7 8 9 10

Weak perturbation 1.94 2.90 4.02 5.32 6.90 8.68

Modest perturbation 2.50 3.64 5.03 6.72 8.62 10.75

Strong perturbation 2.79 4.21 5.77 7.70 9.96 12.46

Possible comparisons 10 15 21 28 36 45

As one can see, the higher the number of alternatives (criteria), the higher the average
maximal element in the matrices. However, this is the case only because in a larger matrix
we have a larger sample of elements, thus the maximum has a higher probability to be an
extreme element. Naturally, the stronger perturbation also results in larger maximal element
(as it is also suggested by the histograms). As for the ordinal perturbations, we can see that
the average number of them for all n in case of the weak perturbation level is slightly below
20% (≈19%) of the possible comparisons, while it is slightly above 25% (≈27%) for the
strong level.

4 Filling in patterns

As we mentioned earlier, we would like to keep the number of comparisons low in the
analyzed models, the average degree of the representing graphs should be approximately 3.
All in all we chose to examine seven different filling in patterns, from which the first three
use additional ordinal information of the ranking as well. These models (and their associated
graphs) are as follows.

(i) Best-worst graph
(ii) TOP2 graph
(iii) Best-random graph
(iv) Random-random graph
(v) 3-(quasi-)regular graph with minimal diameter
(vi) Union of two random edge-disjoint spanning trees
(vii) Random 2-edge-connected graph

The detailed description of these models can be found below.

(i) Best-worst graph The name of the model comes from the popular best-worst method
(Rezaei, 2015), where only the best and the worst items are compared to all the others. We
use exactly this filling in pattern, where only two rows and columns are completed (the ones
associated with the best and the worst items), and the related graph is the union of two star
graphs, which results in 2n−3 comparisons. We examine this case, because it is widely used
and fits perfectly within the outline of our paper. It is important to note that this model utilizes
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21 3

54 6

Fig. 4 The union of two star graphs on n = 6 vertices, which is the associated graph of the (i) Best-worst, (ii)
TOP2, (iii) Best-random, and (iv) Random-random models. Here the highlighted vertices are 2 and 5

some additional ordinal information, however,we also examine the samegraph representation
with other ordinal data, namely when not the best and the worst elements are the highlighted
ones.

(ii) TOP2 graph Intuitively in general, the more comparisons are made in connection with
one particular item, the more accurate our estimation of its weight becomes. In most of the
cases the first few places of the ranking are much more important for the decision maker,
than the last few. The TOP2 model (Juhász, 2021) suggests to compare all the items only
to the best and the second best elements. One could argue that in the best-worst case, it is
easier for the decision maker to choose the best and the worst elements compared to the best
and the second best ones. However, if we assume that it is always possible for the decision
maker to find the best and the worst elements, then we can remove those as the first step
and find the new best and worst items, thus we can determine the best and the second best
as well. The advantages of the models that use ordinal information are emphasized in the
multicriteria nature of the problems (Rezaei, 2015). The associated graph of this pattern is
the aforementioned union of two star graphs, of course with different highlighted vertices
than before.

(iii) Best-random graph It also makes sense to investigate, whether it is really necessary to
ask the decision maker to provide additional ordinal information, beside just naming the best
item. Thus, we consider the Best-random model, in which the elements are compared only
to the best one and a randomly chosen other item. The associated graph is still the union of
two star graphs, however in this case we use less ordinal information.

(iv) Random-random graph As a benchmark for the previous models, we also examine the
case, when no additional ordinal information is included, and the two highlighted vertices
are both chosen randomly. This is the last case, when the associated graph is the union of
two star graphs, for which an example on 6 nodes is shown in Fig. 4.

(v) 3-(quasi-)regular graph with minimal diameter This filling in pattern was suggested by
Szádoczki et al. (2022). No additional ordinal information is needed, and the cardinality of the
model fits into the examined cases. The (quasi-)regularity results in some kind of symmetry,
while the minimal diameter ensures that the comparisons are close enough to the direct ones
(the shortest path between any two vertices is not so long). The number of comparisons for
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Fig. 5 Two examples for 3-(quasi-)regular graphs with minimal diameters (d = 2). The left one is the only
3-quasi-regular graph with minimal diameter on n = 5 vertices, while the right one is one of the two 3-regular
graphs with minimal diameter on n = 6 vertices
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23
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4

23

Fig. 6 Two edge-disjoint spanning trees on n = 5 vertices, which, when unified, form the 3-quasi-regular
graph with minimal diameter on 5 vertices that can be seen in Fig. 5

these graphs is 3n/2 in case of even number of vertices (regularity) and 3n/2 + 1/2 in case
of odd number of vertices (quasi-regularity). Two examples on n = 5 and n = 6 vertices can
be seen in Fig. 5.

(vi) Union of two random edge-disjoint spanning trees Graph based decision making has a
special interest in spanning trees as they are the minimal units from which we can calculate
weight vectors. The star graph is a special spanning tree as well, thus the union of two random
spanning trees of a graph can be seen as a generalization of the union of two star graphs. For
the sake of simplicity the model examines only random edge-disjoint spanning trees. This
way the gained union contains 2n−2 edges (comparisons). An example of two edge-disjoint
spanning trees on n = 5 vertices can be seen in Fig. 6.

(vii) Random 2-edge-connected graph 2-edge-connected graphs remain connected if we
remove any one of their edges. As the union of two star graphs satisfies this property, this can
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21 3

54 6

Fig. 7 A 2-edge-connected graph on n = 6 vertices with 2n − 3 edges that does not satisfy the properties of
any other examined model

Table 3 The number of non-isomorphic graphs for the different cases

Size (n) (i)-(ii)-(iii)-(iv) (v) (vi) (vi i)

5 1 1 2 4

6 1 2 7 21

7 1 4 95 164

8 1 2 1064 1788

9 1 2 17100 26158

10 1 1 327732 478657

We use the former notation of the models: (i) Best-worst graph, (ii) TOP2 graph, (iii) Best-random graph,
(iv) Random-random graph, (v) 3-(quasi-)regular graph with minimal diameter, (vi) Union of two random
edge-disjoint spanning trees, (vii) Random 2-edge-connected graph

be considered (according to the number of graphs) an even more common generalization of
the union of two star graphs based on this connectedness measurement. As there are many
2-edge-connected graphs with different cardinalities, themodel contains only the graphs with
2n − 3 or 2n − 2 edges. An example that does not fit into any of the previously listed filling
in patterns, a 2-edge-connected graph with 2n − 3 edges, is presented in Fig. 7.

The numbers of possible non-isomorphic graphs for the different filling in patterns are
presented in Table 3.

As one can see the number of graphs for the union of two edge-disjoint spanning trees
(vi) and the 2-edge-connected case with 2n − 3 or 2n − 2 edges (vii) are, in a way, outliers
from this point of view. In order to count the number of those graphs, we used Wolfram
Mathematica (Wolfram Research, 2021), nauty and Traces (McKay and Piperno, 2014), and
IGraph/M (Horvát, 2020). The union of two star graphs (i-ii-iii-iv) is on the other end of the
spectrum, where there is only one non-isomorphic graph for every n.

The discussed filling in patterns and the associated numbers of comparisons are summa-
rized in Table 4.

The cardinality of the different graphs, namely the required number of comparisons is,
indeed, similar. The inclusion of models, which utilize additional ordinal data (i-ii-iii), makes
it possible to evaluate this information aswell,which is an important contribution of our paper.
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Table 4 The summary of the cardinality of the graphs’ edges (the number of comparisons)

Size (n) Complete (i)–(ii)–(iii)–(iv) (v) (vi) (vii)

Number of edges

n(n − 1)/2 2n-3 3n/2 2n-2 2n − 3 or
(+1/2 for odd n) 2n − 2

5 10 7 8 8 7-8

6 15 9 9 10 9-10

7 21 11 11 12 11-12

8 28 13 12 14 13-14

9 36 15 14 16 15-16

10 45 17 15 18 17-18

We use the former notation of the models: (i) Best-worst graph, (ii) TOP2 graph, (iii) Best-random graph,
(iv) Random-random graph, (v) 3-(quasi-)regular graph with minimal diameter, (vi) Union of two random
edge-disjoint spanning trees, (vii) Random 2-edge-connected graph. The third row shows the formula for the
number of comparisons for the different patterns

5 Simulation results

The results of the simulations are presented in four types of figures (all of them are sorted by
n):

1. Figures 8, 9, 10, 11, 12 and 13 show the Euclidean distances (y axis) and Kendall’s taus
(x axis),

2. Figures 14, 15, 16, 17, 18 and 19 show the cosine similarity indices (y axis) and Garuti’s
compatibility indices (x axis),

3. Figs. A1, A2, A3, A4, A5 and A6 show the Chebyshev distances (y axis) and Spearman’s
rhos (x axis),

4. finally, Figs. A7, A8, A9, A10, A11 and A12 show the Manhattan distances (y axis) and
dice similarity indices (x axis) for the different models in case of the given perturbation
level and the given weight calculation technique.

It is important to note that for the distances the smaller value, and in case of the rank
correlation coefficients and compatibility indices the higher level indicates the better perfor-
mance. Thus for the first, third and fourth types of figures (Figs. 8, 9, 10, 11, 12, 13, A1, A2,
A3, A4, A5, A6, A7, A8, A9, A10, A11 and A12) models closer to the bottom right corner
are the preferred ones. In case of the second type of figures (Figs. 14, 15, 16, 17, 18 and 19)
the upper right corner provides the best results. The third and fourth types of figures can be
found in the online Appendix A, mainly because we found that the metrics coming from the
same category (distances, rank correlations, compatibility indices) tend to provide similar
results. Now, let us analyze the results of the first type of figures in more detail.

Naturally, the outcomes suggest that the higher level of perturbation, namely the higher
inconsistency leads to higher distances and lower rank correlation coefficients.

Despite of the used additional ordinal information the (i) Best-worst and (iii) Best-random
filling patterns were performing according to both the distance and rank correlation measure-
ments more or less the same as the (iv) Random-random case, which is based on an identical
graph without any further information. This would suggest that the additional ordinal infor-
mation does not provide significant improvement.
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Fig. 8 The results of the simulation for n = 5. The following notations are used: deuc–Euclidean distance,
Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of pertur-
bation. Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 9 The results of the simulation for n = 6. The following notations are used: deuc–Euclidean distance,
Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of pertur-
bation. Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 10 The results of the simulation for n = 7. The following notations are used: deuc–Euclidean dis-
tance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of
perturbation. Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 11 The results of the simulation for n = 8. The following notations are used: deuc–Euclidean dis-
tance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of
perturbation. Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 12 The results of the simulation for n = 9. The following notations are used: deuc–Euclidean dis-
tance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of
perturbation. Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 13 The results of the simulation for n = 10. The following notations are used: deuc–Euclidean dis-
tance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of
perturbation. Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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(v) 3-(quasi-)regular graphs with minimal diameter (vi) Union of two random edge-disjoint spanning trees
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Fig. 14 The results of the simulation for n = 5. The following notations are used: G index–Garuti’s compati-
bility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of perturbation.
Every subfigure shows the mean computed from 10000 pairwise comparison matrices

The outcomes for the (ii) TOP2 model are much better regarding both of our distance and
rank correlation indicators, and it convincingly outperformed the union of two star graphswith
other centers (i-iii-iv). However, surprisingly enough, the (vi) Union of two random edge-
disjoint spanning trees provided the best weight vectors, basically, in every case according to
all distances and rank correlations, without any additional ordinal information. Thus, accord-
ing to our simulations, this filling in pattern results in weight vectors and rankings, closest
to the ones, computed from the complete PCMs for all the used weight calculation methods
and inconsistency levels. It is important to note that this filling in pattern usually contains
one more edge than most other patterns, however, the results are still quite convincing.

As for the (v) 3-quasi-regular graphs with minimal diameter, it performs well in case of
smaller problems, but starts to decline as n grows. However, it still outperforms most of
the models that use additional information. It is also true that for larger number of vertices
this case uses the smallest number of edges (comparisons), which can also contribute to the
aforementioned trend.

The (vii) Random 2-edge-connected graph always performs worse than (vi), but better,
than (i), (iii) and (iv) and it also has a slight edge advantage, thus it seems to be the medium
method.

Now let us focus on the second type of figures (Figs. 14, 15, 16, 17, 18 and 19).
The results provided by the compatibility indices are similar to the previous ones, the main

difference is that the models using additional ordinal information tend to perform better com-
pared to the distances and rank correlations, especially for larger problems (n parameters).
The most remarkable change is that the (ii) TOP2 model performs even better, and in many
cases it provides the best values among the examined patterns. Also, the decreasing perfor-
mance of the (v) 3-quasi-regular graphs seem to be even stronger for these metrics. However,
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Fig. 15 The results of the simulation for n = 6. The following notations are used: G index–Garuti’s compati-
bility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of perturbation.
Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 16 The results of the simulation for n = 7. The following notations are used: G index–Garuti’s compati-
bility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of perturbation.
Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 17 The results of the simulation for n = 8. The following notations are used: G index–Garuti’s compati-
bility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of perturbation.
Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 18 The results of the simulation for n = 9. The following notations are used: G index–Garuti’s compati-
bility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of perturbation.
Every subfigure shows the mean computed from 10000 pairwise comparison matrices
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Fig. 19 The results of the simulation for n = 10. The following notations are used: G index–Garuti’s compati-
bility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’ and ‘Strong’ refers to the level of perturbation.
Every subfigure shows the mean computed from 10000 pairwise comparison matrices

the (vi) Union of two random edge-disjoint spanning trees model still outperforms all of the
other models using additional information as well, except for the (ii) TOP2 model in some
cases.

All in all we can conclude that the (vi) Union of two random edge-disjoint spanning trees
model provided the best results without additional ordinal information. It is also shown that
the best-second best ordinal information is indeed more valuable, than the best-worst or only
the best case.

6 Conclusions and future research

We compared the weight vectors calculated from incomplete pairwise comparisons, such
that the underlying graphs have approximately the same number of edges for each matrix
size n = 5, 6, 7, 8, 9, 10. Based on the simulations we found that the presumed advantage
of additional ordinal information on the ranking is realized only for the union of two star
graphs, centered at the best and the second best items ((ii), TOP2). However, the union of
two random edge-disjoint spanning trees (vi) outperforms all the other graphs according to
both distance and rank correlation measures for every examined parameters, and only fell to
second place in a few number of cases according to similarity indices, when the TOP2 model
was the first one. This basically means that if there is an opportunity in a decision making
problem to gain additional ordinal information, then the best and second best alternatives are
preferred to the best and the worst ones. Also, the union of edge-disjoint spanning trees can
result in as good as, or even better weight vectors than the ones calculated with additional
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information. In our view, these results of the paper are major contributions for AHP (and
MADM) practitioners.

It is to be further investigated how the differences in themeasureswe applied, theEuclidean
distance, Chebyshev distance, Manhattan distance, Kendall’s tau, Spearman’s rho, Garuti’s
compatibility index, cosine similarity index and dice similarity index (in Figures 8-13, 14-19,
A1-A6 and A7-A12) can be interpreted in practical decision making.

Can better graphs be found among the ones having the same number of edges?
A future research can investigate the different cardinalities of comparisons once thematrix

size is fixed: how much can the result be improved by filling in more elements? Empirical
(experimental) PCMs have been tested from this point of view without an emphasis on the
graphs’ structure (Bozóki et al., 2013).

We considered some of themost intuitively-understandable closeness measures. Although
there are infinitely many ways of measuring weight vectors’ similarity, it is not at all trivial
which ones coincide with the subjective measures of most decision makers.

More dense graphs are subject to investigation, in particular, for larger dimensionalities
(n). Does the same type/family of graphs (e.g. union of random edge-disjoint spanning trees)
perform the best for incomplete PCMs of low, middle and high density? Can the graphs be
constructed layer by layer?

Our analysis covers predetermined graphs only. We assumed that the whole questionnaire
should be prepared a priori. However, one would expect that adaptive patterns could perform
better compared to static ones. Once the decision maker provides some matrix elements, the
remainder of the graph itself can be optimized in a dynamic way in order to maximize the
expected information content of further responses.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-022-04819-9.

Acknowledgements The authors thank the valuable comments and suggestions of the anonymous Reviewers.
The comments of László Csató are greatly ackonwledged. The research of S. Bozóki and Zs. Szádoczki was
supported by the Hungarian National Research, Development and Innovation Office (NKFIH) under Grant
NKFIA ED_18-2-2018-0006.

Author Contributions All the authors equally contributed in every part of the manuscript.

Funding Open access funding provided by Corvinus University of Budapest.

Availability of data andmaterial The simulation results are added as a supplementary file.

Code availability Upon request from the authors.

Declarations

Conflict of interest Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://doi.org/10.1007/s10479-022-04819-9
https://doi.org/10.1007/s10479-022-04819-9
http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research (2023) 326:783–807 805

References

Ágoston, K. . Cs. ., & Csató, L. (2022). Inconsistency thresholds for incomplete pairwise comparisonmatrices.
Omega, 108, 102576. https://doi.org/10.1016/j.omega.2021.102576.

Amenta, P., Lucadamo, A., & Marcarelli, G. (2021). On the choice of weights for aggregating judgments in
non-negotiable ahp group decisionmaking.European Journal ofOperational Research, 288(1), 294–301.
https://doi.org/10.1016/j.ejor.2020.05.048.

Bozóki, S., & Tsyganok, V. (2019). The (logarithmic) least squares optimality of the arithmetic (geometric)
mean of weight vectors calculated from all spanning trees for incomplete additive (multiplicative) pair-
wise comparison matrices. International Journal of General Systems,48(3–4), 362–381 https://www.
tandfonline.com/doi/abs/10.1080/03081079.2019.1585432.

Bozóki, S., Csató, L., & Temesi, J. (2016). An application of incomplete pairwise comparison matrices for
ranking top tennis players. European Journal of Operational Research, 248(1), 211–218. https://doi.org/
10.1016/j.ejor.2015.06.069.
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