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1. Introduction and the main result neously, optimization algorithms have been applied to compute

tight bounds and confirming (numerically) that the best found

1.1. Optimization and rigorous proofs local optimal solutions are approximately globally optimal (e.g.,

Kurpel et al., 2020). Polynomial optimization and semidefinite

Nonlinear optimization methodology has been impactful in programming has achieved remarkable success in this area. Per-

both the core, classical application areas of operations research and tinent examples include the breakthrough in Kuperberg’s (still

in other interfacing disciplines due to flexibility with which it can open) problem on the number of infinite cylinders touching a

be adapted to the needs of individual problems and areas: ball (Firsching, 2016, Section 3.1.3), in which a long-standing

conjecture was refuted by finding an unexpected feasible so-

+ The toolkit of optimization has been successfully applied to lution and bounds for point configurations of minimum energy
problems that have not been previously regarded as optimiza- (de Laat, 2020).

tion problems. Examples include establishing parameter identi- « Optimization methods have been merged with the tools of

fiability and state observability in dynamical systems (August & computer assisted proofs to attain rigorous results. The proof

Papachristodoulou, 2009). of rigorous bounds involves solving convex optimization prob-

+ Advanced heuristic optimization methods have been applied to lems that do not resemble the natural formulations used to ob-

improve locally optimal solutions for challenging optimization tain good feasible solutions and which facilitate the computa-

problems (e.g., Lai et al., 2022; Lopez & Beasley, 2011); simulta- tion of rational solutions that can be verified in exact arithmetic

(Bomze et al., 2015; 2018). The convexity of these auxiliary op-
timization problems means that the optimization methods yield
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maximum number of non-intersecting unit spheres touching a
fixed unit sphere in n dimensions).

Our paper is in the same spirit: we apply optimization method-
ology to a problem (mechanical behavior of convex polyhedra) that
has not been regarded as an optimization problem before, and we
seek to improve the lower bound for the minimal number V of
vertices of a mono-unstable polyhedron. Ultimately, we succeed in
finding the highest lower bound coinciding with the lowest upper
bound, thus completely resolving the problem. Our claim about the
highest lower bound being V = 11 is a sharp and rigorous result, all
our claims can be verified by rational arithmetic.

1.2. History of monostatic objects and the gap between upper and
lower bounds

Static balance points of a given object are points on its surface
where, if supported on a horizontal plane, the object could be at
rest. The numbers of various types of such balance points are often
intuitively clear: for example a (fair) cubic dice has S =6 stable
equilibrium positions on its faces and U = 8 unstable equilibrium
positions at its vertices. Despite being associated with mechanical
experiments, the concept of static equilibrium may also be defined
in purely geometric terms. Here we focus on equilibria associated
with convex polyhedra and, following Domokos et al. (2020), we
can write:

Definition 1. Let P € R? be a d-dimensional convex polytope, let
intP and bdP denote its relative interior and boundary, respec-
tively, and let o< intP. We say that qe bdP is an equilibrium
point of P with respect to o if the hyperplane h through ¢ and
perpendicular to the line segment [o, q] supports P at q. In this
case q is nondegenerate if hN P is the (unique) k-dimensional face
(k=0,1,...d — 1) of P that contains q in its relative interior. A
nondegenerate equilibrium point g is called stable or unstable, if
dim(hNP) =d -1, or 0, respectively, otherwise we call it a saddle-
type equilibrium. We denote the respective numbers of stable and
unstable equilibria by S and U.

Throughout this paper we deal only with nondegenerate equi-
librium points with respect to the center of mass g of polyhedra,
so, we have o= g, in which case equilibrium points gain intuitive
interpretation as locations on bd P where P may be balanced if it
is supported on a horizontal surface (identical to the support plane
mentioned in Definition 1) without friction in the presence of uni-
form gravity. We will describe cases associated with uniform den-
sity (which we will refer to as homogeneous) and cases where each
vertex carries a unit mass (which we will refer to as 0-skeletons).

We call a convex body monostatic if it has either one stable or
one unstable static equilibrium position. Convex bodies with S =1
stable position are also referred to as mono-stable and with U =1
unstable position as mono-unstable, whereas convex bodies with
S=U =1 (i.e. one stable and one unstable balance position) are
called mono-monostatic. The geometry of such convex bodies ap-
pears to be enigmatic: the existence of a convex, homogeneous
mono-monostatic convex body was conjectured by V.. Arnold in
1995 (Domokos, 2006) and proved in 2006 (Varkonyi & Domokos,
2006).

The rich variety of related discrete problems was opened
by a brief note by Conway & Guy (1966), who asked whether
homogeneous, mono-stable polytopes existed at all and con-
jectured that homogeneous tetrahedra cannot be mono-stable.
(Throughout the paper, we use the shorthand polytope to mean
a three-dimensional bounded convex polyhedron.) Both problems
have been resolved in Conway & Guy (1969), where the authors
presented a mono-stable, convex, homogeneous polytope with
F =19 faces and V =34 vertices and proved that homogeneous
polytopes with V =F =4 vertices and faces (i.e., tetrahedra)
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cannot be mono-stable. That is, for mono-stable, homogeneous
polytopes we have V,F > 4. It immediately became intuitively
clear that the essence of the problem is the rather substantial gap
between the respective values of F and V.

Various related problems have been investigated since. In the
case of homogeneous mono-unstable polytopes (Domokos et al.,
2020), the lower bound V,F > 4 was established and an exam-
ple of V=F =18 was provided. For convex mono-unstable O-
skeletons, the lower bound F > 6,V > 8 has been established in
Bozoki et al. (2022) and an example with F =8,V =11 was pro-
vided in Domokos & Kovacs (2021). As we can see, in all investi-
gated problems about monostatic polyhedra the gap between the
lower bounds and the best known example exists, in fact, this gap
appears to be a characteristic feature of this class of problems.

Remark 2. The size of the gap may differ for the number F of faces
and for the number V of vertices. In (Domokos et al., 2020) a the-
ory is presented how these gaps can be merged and quantified by
a single scalar in a meaningful manner, however, this is beyond the
scope of our current manuscript.

1.3. The main result: closing the gap for mono-unstable 0-skeletons

Our goal in the paper is to close this gap in the case of mono-
unstable 0-skeletons by proving the following result:

Theorem 3. The smallest vertex number for which there exists a
mono-unstable 0-skeleton in 3 dimensions is V = 11.

Since in Domokos & Kovacs (2021) the authors presented ex-
amples with V = 11 vertices, the essence of our paper is to prove
the following:

Theorem 4. No mono-unstable 0-skeletons exist with V < 11 vertices.

This is an improvement of the lower bound shown in Bozoki
et al. (2022):

Theorem 5 (Theorem 1 in Bozoki et al. (2022)). For V <8, no
mono-unstable 0-skeletons exist.

Since every 3-dimensional convex polytope with at least 11
vertices has at least 8 faces, and the construction in Domokos &
Kovacs (2021) is a mono-unstable 0-skeleton with 8 faces, this also
proves that the minimum number of faces that a mono-unstable
0-skeleton may have is 8.

Theorem 4 is not just a quantitative generalization of
Theorem 5, and for two reasons: first we note that (unlike
Theorem 5), due to the existence of V = 11 examples it can not be
improved. Second, the tools proving Theorem 4 differ substantially
from the tools used in the proof of Theorem 5: while the latter
was proved using a randomized computer search for certificates of
infeasibility of certain polynomial systems, those tools have proved
to be inefficient at going beyond the case V = 7. In the current pa-
per, to resolve the cases V = 8,9, 10, we combine the techniques
introduced in Bozoki et al. (2022) with semidefinite optimization
to efficiently generate the hundreds of thousands of infeasibility
certificates required to prove Theorem 4, demonstrating the supe-
rior power of these tools.

Beyond closing the gap for mono-unstable 0-skeletons in 3 di-
mensions, our computations also yielded an analogous result in di-
mensions two and higher:

Corollary 6. Every mono-unstable 0-skeleton in any dimension has
at least 11 vertices.

We discuss this generalization in Section 2.2.

Our proof of Theorem 4 is an easily verifiable computer-assisted
proof generated using convex optimization. First, the statement of
the theorem is translated to the unsolvability of several systems of
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polynomial inequalities following the work of Bozdki et al. (2022);
see Theorem 7 below. Then the unsolvability of these systems
is proved using a sufficient condition derived from linear algebra
(Lemma 8). The unsolvability certificates take the form of positive
integer vectors that are generated using semidefinite optimization.
The verification of these certificates can be carried out indepen-
dently of the method they were generated with, simply by verify-
ing that the generated integer vectors are indeed (strictly) feasible
solutions of certain linear matrix inequalities.

Proving the infeasibility of systems of polynomial equations and
inequalities and the equivalent problem of rigorously certifying
lower bounds of polynomials on semialgebraic sets (that is, solu-
tion sets of polynomial inequalities) are becoming a fundamen-
tal tool in automated system verification and theorem proving
(de Klerk, 2016; de Klerk et al., 2006; Magron et al., 2017; Uhlmann
& Wang, 2021), with applications in various areas of engineering,
operations research, and statistics, including power systems engi-
neering (optimal power flow) (Ghaddar et al, 2016; Josz et al.,
2015), signal processing (Dumitrescu, 2017), and design of experi-
ments (Papp, 2012). It has also been a particularly popular and suc-
cessful technique in computer-assisted geometric theorem proving.
Although computer-assisted proofs in geometry go back at least to
the celebrated work of Hales (2005), more recent work combining
polynomial optimization and convex optimization techniques have
resulted in easily verifiable computer-assisted proofs of, for exam-
ple, lower or upper bounds on optimal packings and other point
configurations; see, e.g., Bachoc & Vallentin (2008); Ballinger et al.
(2009); Dostert et al. (2021); Firsching (2016) to name only a few.

Most of these works rely on semidefinite optimization to com-
pute certifiable global lower bounds of polynomials (or trigono-
metric polynomials) over semialgebraic sets in a manner simi-
lar to our approach, and can also be interpreted as applications
of Lasserre’s moment relaxation of polynomial optimization prob-
lems (Campos et al., 2019; de Klerk, 2010; Lasserre, 2001; Laurent,
2009). One major difference in our approach is that instead of for-
mulating the problem as a single large-scale polynomial optimiza-
tion problem, we work with a large number of small instances of
polynomial optimization problems involving only quadratic poly-
nomials whose infeasibility can be proved at the lowest level of
the Lasserre hierarchy.

The question of existence of solutions of systems of quadratic
inequalities is also directly related to the celebrated S-lemma,
which in its original form characterizes consistent systems of two
not necessarily convex quadratics. See Polik & Terlaky (2007) for
precise statements and an approachable and extensive review on
this subject. Direct generalizations (without additional assump-
tions) are known to be impossible (as shown in the article cited
above), although there is some literature on similar statements
for larger systems of quadratics, e.g., Jeyakumar et al. (2021), usu-
ally under assumptions that make the original proofs generalize to
larger systems. To the best of our understanding, these results are
not applicable to the systems that arise in our study.

In what follows, we shall present the details of our proof with-
out further references to the theory of moment relaxations, alge-
braic geometry, or polynomial optimization, and derive it instead
from basic linear algebraic principles.

2. Proof of the main result

In this section, we prove Theorem 4 (and by extension,
Corollary 6) by certifying the infeasibility of a number of systems
of polynomial equations and inequalities—an idea introduced in
Bozoki et al. (2022). We rely on the same necessary condition of
the existence of mono-unstable O-skeletons as in that paper, but
improve on the search for infeasibility certificates using semidef-
inite optimization. Throughout, we shall assume (without loss of
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generality) that the center of mass g is at the origin of our co-
ordinate system. The essential results we need from Bozoki et al.
(2022) are summarized below in Theorem 7.

Theorem 7. Let r; € RY, (i=1,...,V) be the vertices of a convex
polytope with

v
Z Ii= 0.
i=1

Then rq is the only unstable vertex of the 0-skeleton of this polytope
if and only if for every i {2,..., V} there exists a j; e {1,...,i—1}
satisfying

(ri—rj)'r <0

(1a)

i=2,...,V. (1b)

The geometric intuition behind this theorem is as follows. With
the polytope’s center of mass g at the origin 0 by Eq. (1a), the
interpretation of the inequality (1b) is that the line segment con-
necting vertices r; and r;, forms a right or obtuse angle with the
line segment that connects vertex r; and the center of mass. There-
fore, if we attempt to balance the polytope on vertex r; by placing
it on a horizontal support plane with the center of mass vertically
above vertex i, then the [r;, r; ] line segment will be either below
the support plane (if strict inequality holds in (1b)) or incident to
it (in the case of equality). In either case, the horizontal support
plane does not intersect the polytope in r; alone, and therefore the
polytope is not at a (nondegenerate) unstable equilibrium. That ry
is an unstable vertex in this case follows from the aforementioned
fact that every 0-skeleton has at least one unstable vertex.

Thus, to establish that no mono-unstable 0-skeletons with V
vertices exist, it is sufficient to prove that for all (V —1)! choices
of jie{l,...,i—1} (i=2,...,V), the system of inequalities and
equations (1) has no non-zero solutions.

2.1. Tractable infeasibility certificates

Whether a system of polynomial inequalities is solvable over
the reals is algorithmically decidable in the real number model us-
ing (for example) quantifier elimination methods (Renegar, 1992;
Tarski, 1951). However, with their (at least) exponential running
time in the number of variables, these exact procedures are pro-
hibitively expensive to apply to our problem. Additionally, they do
not produce easily checkable infeasibility certificates. This means
that if they conclude that the polynomial system in question does
not have a solution, it is difficult to independently and efficiently
verify that this conclusion was correct, leaving doubts about the
validity of the computer-assisted proof. In a similar fashion, we
cannot rely on numerical QCQP solvers or other global optimiza-
tion software to “verify” that the systems (1) have no solutions.
Even ignoring possible errors arising from the use numerical meth-
ods instead of exact arithmetic and the exponential running time
(in the number of variables), these solvers also do not produce the
infeasibility certificates we need for our rigorous proof.

Our approach to verify the unsolvability of all (V —1)! systems
(1) is to look for efficiently computable and efficiently verifiable
infeasbility certificates based on sufficient (but not necessary) con-
ditions of infeasibility. The system (1) can be simplified by express-
ing, say, each coordinate ry (k=1,...,d) of the last vertex ry as
a linear combination of the other variables using (1a) and substi-
tuting them back to (1b), to obtain an equivalent system of V — 1
homogeneous quadratic inequalities in n := d(V — 1) variables with
integer coefficients. For such systems of inequalities, we can use
the following sufficient condition of infeasibility:

Lemma 8. Consider the system of homogeneous quadratic inequali-
ties

TQr<0 i=1,....,m,

(2)
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wherein each Q; ¢ R™" is a real symmetric matrix. If there exist non-
negative rational numbers cy, ..., cm such that the matrix 31" | ¢;Q; is
positive definite, then (2) does not have any non-zero solutions.

Proof. Leaving out the requirement that c¢ be rational, the state-
ment is an immediate consequence of the definition of positive
definiteness. Regarding rationality, if there exists a (not necessarily
rational) nonnegative real vector ¢ such that 31", ¢;Q; is positive
definite, then its positive components can be perturbed to (arbi-
trarily close) positive rational numbers, resulting in a nonnegative
rational vector satisfying the same. O

To expound on the application of Lemma 8 to Theorem 7, we
first explicitly write the system (1b) in the form (2), ignoring the
Eqg. (1a). Stacking the coordinate vectors rq,...,r, of the vertices
into a single column vector r € RV4, each matrix Q; can be de-
scribed as a V x V block matrix made up of blocks of size d x d.
Collecting the coefficients of the homogeneous quadratic

d
T 2
(ri—rj)n= E T = TikTjiks
=1

and keeping in mind that (by definition) each Q; is a symmet-
ric matrix, we see that that for each i =2,...V, the (i,i)th block
is the identity matrix I;,4, while the (i, j;)th and (j;,i)th blocks
are —11,, 4. All other blocks are zero. In summary, the inequalities
(1b) can be written as r'Q;r <0 (i=2,...,V) with

Q= (Ef —Ef,/2-E[/2) @14,

(3)
where E}§ is the V x V unit matrix whose (i, j)th entry is 1 and all
other entries 0, and ® denotes the Kronecker product.

To complete the formulation, we backsubstitute ry = — >V 'r;
from (1a) into our system. Since j; <i <V for each i, this only af-
fects Qu,...,Qy_1 by eliminating the Vth block row and column
(which are all zeros). We can also determine the new Qy in closed
form: since

V-1 V-1
T T _ T, T,
iy =iy = (X i) + (XA ).
i,j=1 i=1

we have

1 V-1
& = (15 (B +EL) ) ol
i=1

where Jy_; is the (V —1) x (V — 1) all-ones matrix and E denotes
unit matrices as defined above.

We can find coefficients c¢; satisfying the condition in
Lemma 8 using semidefinite optimization. In the following, we use
the common shorthand A 3= B for the relation that the matrix A — B
is positive semidefinite.

J’_

Corollary 9. Let Qq,...,Qn € R™" real symmetric matrices, and
consider the following semidefinite optimization problem:

maximize z
ZeR,ceR™
m
subject to D ocQi=z
i=1
llcll2 <1
>z i=1,...,m. (4)

The optimal value of (4) is positive if and only if there exist positive
rational numbers cy, ..., cm such that the matrix Y[, ¢;Q; is positive
definite. Any rational feasible solution (z, c) of (4) with z > 0 is a cer-
tificate for the non-existence of non-zero solutions of the system (2).

Semidefinite optimization models such as (4) are typically
solved using numerical methods, which compute solutions that
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may be only approximately feasible or approximately optimal. This
is of no concern for our proof, as we only need to find a com-
ponentwise positive feasible solution to (4). (The purpose of the
norm constraint on c is to ensure that the problem is bounded, and
can safely be violated.) As long as the maximum value of z is suf-
ficiently positive (compared to the precision of the floating point
computation), the approximately feasible and approximately op-
timal solution returned by a numerical semidefinite optimization
method already serves as a rigorous proof of the non-existence of
solutions of (2) by Lemma 8.

Thus, to prove that every 3-dimensional mono-unstable 0-
skeleton has at least 11 vertices, we run the following algorithm:
for every choice of (jy,...,j10) € {1} x{1,2} x ... x{1,...,9}, we
transform the corresponding system (1) to an equivalent system of
homogeneous quadratic inequalities of the form (2) by expressing
each rygy (k=1,2,3) as a linear combination of the other vari-
ables using (1a) and substituting them back to (1b), and then we
solve the corresponding semidefinite optimization problem (4) us-
ing a numerical method to prove that the system (2) has no non-
zero solutions.

The independently verifiable computer-generated proof is the
list of positive rational vectors ¢ (one for each permutation) re-
turned by the semidefinite optimization algorithm. (The z com-
ponent of the optimal solution is irrelevant as long as it is posi-
tive, and is not part of the infeasibility certificate.) The correctness
of these vectors can be verified efficiently in rational arithmetic:
it suffices to verify that the matrix Y, ¢;Q; is positive definite,
which can be carried out in polynomial time in rational arithmetic,
say, using the LDLT form of Cholesky decomposition or by verifying
the positivity of the determinant of each leading principal subma-
trix.

Example 10. Let V=10 and jj=i-1 for i=2,3,...,10. Then
10

i—2 Cili =
Cio —%Cz +Cio Cio Cio Cio
—%Cz +Cio C2+Co —%63 +Cio Cio Cio
C10 —%C3 + Cio C3 +Cyo —%C4+C10 C10
Cio Cio —%C4 +Cio C4+Cro —%Cs =+ Cio
Cio Cio Cio —%Cs =+ Cio Cs +Cio
Ci0 Ci0 Ci0 C10 —%CG + Ci0
C10 C10 C10 C1o0 C10
Cio Cio Cio C10 C10
%Cm %Cw %Cw %Cm %Cm
C10 C10 C10 %CIO
C10 C10 C10 %Cw
C10 C10 C10 %Cm
C10 C10 C10 %CIO
*%Ce + Cio C10 C10 %Cm @k
Ce + C10 —%C7 +Cio Ci0 %Cm
—%57 +Cio C7 +Cio —%C8+C10 %Cw
Ci0 *%C8+C10 Cg +Cio *%C9+ %Cm
310 3ci0 —1co+3cn0 Cg +2¢10
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The vector of coefficients (c3,C3,...,C10) =
(1,4,7,8,8,7,5,4,2), see also in the last row of the supple-
mented csv file, makes the 9 x 9 matrix above positive definite.

2.2. A dimension-free view

Another look at the explicit form of the Q; matrices from (3) re-
veals a surprising fact. Since for every real symmetric matrix, the
eigenvalues of A ® I; are the same as the eigenvalues of A, only the
multiplicities of the eigenvalues differ, the matrix

>
i1

m
> G((Ef —Ef /2 —Ef/2) ®1y)
i=1

m
> G(Ef —Ef/2-E/2) | el
i=1

is positive definite if and only if > ¢;(E} — E}?i/Z - EX:‘/Z) is pos-
itive definite. That is to say, our approach of using Lemma 8 to
prove the infeasibility of the sytem (1) can only work if the system
(1) has no solution for any dimension d. Although we are mainly
concerned with 3-dimensional polytopes, this means that we have
also shown that no mono-unstable polytopes with fewer than 11
vertices exist in any embedding dimension (stated in the Introduc-
tion as Corollary 6).

It is important to note (also from the S-lemma’s point of view,
referred in the end of Section 1) that the converse is not true:
our proof technique will fail (a simple infeasibility certificate ¢ in
Corollary 9 will not be found) if a mono-unstable polytope with V
vertices exists in any dimension d, but this failure does not im-
mediately reveal the dimensions d for which a polytope or any
other solution to the system (1) exists. In particular, it is not dif-
ficult to show that for d =1 the system (1) does not have a solu-
tion for any V and any choice of j,, ..., jy. Yet, our technique can
only prove this for V < 11, since for dimensions d > 2 a solution
exists.

On the same note, following the idea of Dawson (1985), a sim-
ple perturbation argument makes it clear that if for some choice of
d, V, and j; there exists a strictly feasible solution to (1) that cor-
responds to the vertices of a convex polyhedron, then the same is
true for the same choice of V and j; in all higher dimensions. Since
a mono-monostatic convex polygon with 11 vertices was recently
constructed by Domokos & Kovacs (2021, Figure 1), this proves the
existence of a mono-unstable 0-skeleton with 11 vertices in all di-
mensions d € {2,...,11}.

Applying our proof technique in the one-dimensional case is
also equivalent to what is sometimes referred to as the Gram ma-
trix method in convex algebraic geometry. Notice that the inequal-
ities (1b) only depend on the vertex coordinates r; through their
inner products r,.Trj; furthermore, the center-of-mass Eq. (1a) can
also be equivalently written in terms of these inner products as

V. o VvV Vv
don L= >y o
i1

0= ‘
i=1 j=1
Therefore, if we consider the Gram matrix

associated with the vectors rq, ..., ry, then the non-existence of a
mono-unstable polytope in d dimensions is implied, by virtue of
Theorem 7, by the non-existence of a V xV symmetric, positive
semidefinite, rank-d matrix R with the following two properties:

1L Y/ Ry =0.
2. Foreachie{2,..., V} there exists a j e {1,..., i— 1} for which
Rii <Rj;.
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The rank condition in the above statement is computationally
challenging, but to prove the non-existence of solutions, it is suf-
ficient to prove that no positive semidefinite matrix (of any rank)
satisfying the above two conditions exists. This leads to another
semidefinite programming formulation, which is equivalent to (4).

2.3. Implementation

The algorithm was implemented using the semidefinite pro-
gramming solver CSDP (Borchers, 1999), interfaced using Mathe-
matica, on a standard desktop computer. The enumeration and so-
lution of the 9! optimization problems took approximately half an
hour.

The numerical solutions (specifically, the near-optimal, near-
feasible vectors c obtained from CSDP) are rational numbers that
were confirmed using rational arithmetic to be feasible solutions
of (4). Since the numerical solutions are rational numbers repre-
sented in double precision floating-point arithmetic, this is an easy
and efficient step, which does not involve any rational numbers
with large bit sizes. Thus, in principle, these floating-point vectors
themselves could be used as the rational certificates in Corollary 9.
Purely for the ease of dissemination and verification, these vec-
tors were then further scaled up to positive integer vectors (recall
that a positive multiple of an infeasibility certificate is also an in-
feasibility certificate), and then “rounded” to integer vectors with
smaller components, once again confirming in rational arithmetic
that the resulting vectors are still correct infeasibility certificates
for their respective systems.

The list of the computed integer ¢ vectors certifying the un-
solvability of the systems (1) can be found in the public repos-
itory https://github.com/dpapp-github/mono-unstable. This, along
with the proof of Theorem 7, serves as the independently verifi-
able computer-assisted proof of Theorem 4.

3. Discussion
3.1. Improving the results about the mechanics of polyhedra

Our result fixes the minimally necessary number of vertices
as V =11 for a mono-unstable 0O-skeleton and, via the theorem
of Steinitz (Steinitz, 1922), also the minimal number of faces. By
the construction in Domokos & Kovacs (2021) we know that these
bounds are sharp, i.e. that the V =11, F = 8 values are not only
necessary but also sufficient to create a mono-unstable 0-skeleton.

In the original problem we did not specify the number S of sta-
ble equilibria, i.e. the question was to find the minimal number of
vertices (and faces) for U =1, for any value of S. Since the con-
structions in Domokos & Kovacs (2021) have S =2 or S = 3 stable
equilibria, consequently, for any S > 3, the question remains open.

While we expect that for very modest increase of S (e.g. for
S =4) the same combinatorial values (F,V) = (8,11) may remain
valid as necessary and sufficient, this will definitely change as S is
further increased. In fact, the theorem of Steinitz also states that
for V =11 vertices the maximal number of faces is F = 18. So, if
we prescribe S = 19 stable equilibria (beyond the single unstable
one), we will certainly have to have V > 11 vertices.

While this problem is slightly different in nature from the one
resolved in the current manuscript, our method could still be used
to explore it: although our approach was primarily designed for
improving lower bounds, it also aids the search for monostatic
polyhedra. For example, in the problem studied in this paper, the
method certified not only the infeasibility of all 9! systems for
V =10, but also the infeasibility of the majority of the systems for
V = 11. This makes it easier to conduct a targeted search for mono-
unstable 0-skeletons with V > 11 vertices. In case of V = 11, for
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many of the systems not certified by the method, it was straight-
forward to find a solution that also corresponded to the vertices
of a convex polytope (for d =3) or polygon (for d =2). We ex-
pect that, to some extent, this could also be done for higher values
of V.

3.2. Improving the algorithm

From the point of view of semidefinite optimization, our al-
gorithm could be certainly made more efficient. For example, the
number of cases to individually certify could be substantially low-
ered by eliminating those which are equivalent under a change of
variables. The exploitation of such symmetries may dramatically
lower the number of certificates to compute and may be an in-
dispensable ingredient in resolving other problems in this area,
where the number of cases is too large to allow their complete
enumeration. Since inequality (1b) implies |r;| < |rjl_| (Bozdki et al.,
2022, Lemma 2), moreover, |rj| < |rj]_| for different nonzero vectors,
it also induces a transitive binary relation on the vertices. This de-
creases the number of relevant cases from (V —1)! to the num-
ber of rooted trees on V vertices. However, this advantage is cou-
pled with the drawback that the correctness and completeness of
the computer-generated certificates becomes much harder to ver-
ify. Since our aim is that our results remain verifiable as simply
as possible, we keep all the cases in the supplementary files. Al-
though we hope that in this manner, the interested reader will
find the verification of the certificates to be a very simple mat-
ter using any computer algebra system, we have also supplied an
independently written computer code (purposely written in a dif-
ferent programming language than the code that generates the cer-
tificates).
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