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A B S T R A C T

The paper proposes motion control strategies for automated road vehicles to handle interactions among
vehicles. The control strategies are built in a hierarchical structure, which contains a high-level learning-based
control, a low-level robust control and an optimization-based supervisor. The purposes of the control strategies
are to guarantee collision-free motion of the vehicles, and moreover to improve economy and traveling time
performance levels. In the paper two configurations of the hierarchical structure are proposed, which are based
on the centralized and independent design for automated vehicle motion. The paper presents the comparison of
the two configurations through simulation examples. Moreover, the operation of the independent configuration
on a small-scaled indoor test vehicle platform is also presented.
. Introduction and motivation

Handling of automated vehicle interactions, e.g., vehicle following,
ntersection and roundabout scenarios, are challenging problems in the
ield of automated vehicle control design. One of the significant chal-
enges is the handling of different types of objectives in the interactions
mong vehicles. The most important objective is the safe motion of the
utomated vehicles, e.g., guaranteeing collision-free motion and keep-
ng speed limits. Due to the priority of safety in automated vehicles,
hese objectives impose hard constraints in the vehicle control strategy,
.e., these objectives must be guaranteed during the entire motion of
he vehicles. Moreover, several non-safety performance requirements
ust be satisfied, e.g., trip time reduction, minimization of energy

onsumption and maintaining traveling comfort requirements. In the
ptimization of longitudinal vehicle motion, the non-safety perfor-
ances form soft constraints, i.e., these objectives might be guaranteed.
oreover, the provided motion control strategy must be solved in real

ime, which poses the problem of forming low-complexity tasks on the
ulti-objective optimization.

Several papers have been published to provide some solutions to
he previous problem, in the context of automated vehicles. Trajectory
lanning methods can provide efficient tools to handle interactions
f automated vehicles (Katrakazas, Quddus, Chen, & Deka, 2015).
n optimum-based method for trajectory generation of road vehicles
as been proposed (Werling, Ziegler, Kammel, & Thrun, 2010), with
esults in the achievements of stopping, following, velocity keeping
nd merging functionalities. The Bézier curve optimization method
as been proposed in Lattarulo and Pérez Rastelli (2021) and Moreau
t al. (2019), while in Stahl, Wischnewski, Betz, and Lienkamp (2019)
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a planning method for high-speed vehicles has been provided, with
which an action set of multiple paths has been provided. Focusing
on the computation time of the trajectory, real-time solutions through
dynamic path planning method (Hu, Chen, Tang, Cao, & He, 2018),
or safe stop trajectory planning algorithm (Svensson et al., 2018)
have also been proposed. Model Predictive Control solutions have
been developed to follow the centerline of the lane, and similarly,
the collision with obstacles has been avoided (Carvalho, Gao, Gray,
Tseng, & Borrelli, 2013), or in Rosolia and Borrelli (2020) the predictive
control solution has been extended with learning features to achieve
minimum lap time vehicle motion. Using Pontryagin’s minimum prin-
ciple (Bichiou & Rakha, 2019), it is also possible to handle dynamic
and static constraints in the same optimization process for achieving
a minimum trip time motion. Reinforcement learning-based methods
for trajectory design have been used in Chen et al. (2020), Isele,
Rahimi, Cosgun, Subramanian, and Fujimura (2018), Wu, Jiang, and
Zhang (2020) and Zhou, Yu, and Qu (2020). Its advantage is that some
of these methods are model-free, which can provide solution to the
problem of constraint formulation. The enhanced performance level
is achieved through a control design method, which is based on a
training process with high number of episodes. Although it can lead to
promising results, the achieved neural-network-based agents may not
guarantee avoidance of vehicles’ collision.

In most of the papers, the control strategies have been developed on
performing safe vehicle motion in intersections or in roundabouts. Its
reason is that these scenarios have some specialties of their own. For
example, in these scenarios increased number of vehicles are interacted.
Moreover, various types of intersection and roundabouts are existing,
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i.e., with different number of lanes, with or without signalization, and
varying route directions. Furthermore, in urban regions the individ-
ual intersections and roundabouts are connected to a network, which
connections increase the complexity of developing optimal automated
vehicle motion profile. Nevertheless, in these cases the motion of
automated vehicles can have impact on the performance level of the
traffic system, i.e., on traffic average speed or on density. Paper Yang,
Almutairi, and Rakha (2021) has presented an eco-driving system,
which is able to provide an energy-optimal motion profile for vehicles
at multiple signalized intersections. The proposed system is scalable
and can be applied in large networks. A solution to the problem
of computational complexity has also been provided in Qian et al.
(2019). Another specificity on urban regions is the presence of human-
driven vehicles, and the automated vehicles must accommodate to their
motions. An optimum in the coordination of automated vehicles might
be achieved through a centralized control solution, but it requests data
sharing between vehicles, which poses security and privacy challenges.
Consequently, decentralized control structures should be designed, in
which the autonomous vehicles are controlled individually, and their
joint motion is coordinated. For example, in Xu, Xiao, Cassandras,
Zhang, and Li (2022) a safe, energy- and time-optimal decentralized
Connected and Automated Vehicle (CAV) control structure for han-
dling vehicle motion in multi-lane unsignalized intersections has been
proposed. In Chen et al. (2022) also a distributed control solution for
CAVs using a graph-based modeling and optimality analysis has been
presented.

Some relevant approaches to handle the problem of vehicle or-
dering in intersections and roundabouts are the game theory (Tian,
Li, Kolmanovsky, Yildiz, & Girard, 2020), the queuing theory (Chai,
Cai, ShangGuan, & Wang, 2017; Tachet et al., 2016), defining re-
stricted zones (Riegger, Carlander, Lidander, Murgovski, & Sjöberg,
2016) or predictive optimization-based techniques (Morales Medina,
Creemers, Lefeber, & van de Wouw, 2020; Németh & Gáspár, 2019).
Nevertheless, the motion control for automated vehicles in urban areas
can be extended to handle multiple intersections and vehicles. For
example, decentralized control for CAVs at multiple adjacent inter-
sections has been developed, see Chalaki and Malikopoulos (2022).
A survey on intersection management for heterogeneous connected
vehicles is found in Gholamhosseinian and Seitz (2022). Multi-agent
approaches to control the vehicles in area of interconnected intersec-
tions is found in Dresner and Stone (2008) and Hausknecht, Au, and
Stone (2011). The proposed method creates the possibility to reverse
lanes under varying traffic conditions. A heuristic optimization method
in multi-agent framework has been proposed in paper Zohdy and
Rakha (2012). Papers Chen et al. (2020) and Masi, Xu, and Bonnifait
(2018) have proposed virtual platooning approaches for autonomous
vehicles to guarantee safe crossing. In Kumaravel, Malikopoulos, and
Ayyagari (2022) a two-level framework has been presented for the
coordination of CAV platoons, which cross unsignalized intersections.
By the combination of human temporal behavior and tactical decision-
making, Rodrigues, McGordon, Gest, and Marco (2018) has developed
an adaptive tactical behavior planner to model human-like motion to
be used for the control of autonomous vehicles in different types of
roundabouts. Paper Debada, Makarem, and Gillet (2017) has designed
a coordination strategy based on virtual vehicles approach that is used
for mapping the states of CAVs. A risk model in the control strategy
of CAVs for guaranteeing collision avoidance in a probabilistic sense at
occluded intersection has been built, see Müller, Strohbeck, Herrmann,
and Buchholz (2022).

In addition, several researchers have developed various learning-
based methods for the control of automated vehicles to contribute
to their safe motion in traffic. In Yan, Welschehold, Büscher, and
Burgard (2022) a reinforcement-learning-based control solution has
been proposed, which has yielded policy for a centralized controller
to let CAVs at unsignalized intersections giving up their right of way.
This control solution is able to result in optimized traffic flow. Self-

learning integrated decision and control method to handle signalized
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intersections with mixed traffic flows can be found in Ren et al. (2022).
A control algorithm tested in roundabout scenarios has been devel-
oped for the motion prediction of vehicles and it contains a dynamic
Bayesian network with neural network models for prediction (Mehran
& Nasser, 2021). Paper Tollner, Cao, and Zöldy (2019) has built up
different neural network architectures for the decision of autonomous
vehicles entering a roundabout and passing through it without col-
lision, focusing on the minimization of errors. Papers Chen, Yuan,
and Tomizuka (2019a, 2019b) have used learning methods for the
control design of autonomous vehicles related to complex urban traffic
situations. In these solutions an imitation control framework has been
developed to learn driving strategy from offline collected data, and it
is used for guaranteeing collision avoidance of autonomous vehicles in
roundabouts. On the other hand, model-free deep reinforcement learn-
ing methods are built in the control framework of autonomous vehicles
driving through roundabouts. Paper Chalaki et al. (2020) has used
adversarial multi-agent reinforcement learning to control autonomous
vehicles in roundabouts resulting in the reduction of traveling time.

The overview of vehicle control methods for handling vehicle in-
teractions shows that in the recent years there has been increasing
interest in the area with various approaches. The first conclusion is
that controlling vehicles in roundabouts is a unique research field,
but it is requested to find control algorithms with which further ma-
neuvers, e.g., moving in intersections, vehicle following etc., can be
carried out. Second, learning-based methods have increasing relevance
in the motion control design for handling interactions. Nonetheless,
control strategies for providing guarantees on safety performances
must be formed in the context of vehicle-vehicle interactions, such as
intersections or roundabouts. Third, CAV technologies in the field of
roundabouts are promising. It requires an architecture for the connec-
tion of vehicles, e.g., cloud-based solutions, while the safe motion of
the vehicles during the loss of the connection must also be guaranteed.

This paper provides a novel approach to handle the problems of
guaranteed performance requirements for systems with learning-based
agents. The motion optimization of automated vehicles through the
separation of safety and non-safety performance requirements is carried
out. The formulation of a quadratic optimization task is proposed,
of which purpose is to guarantee safety performance requirements,
i.e., avoidance of vehicle collision and keeping vehicle velocity limita-
tion. For providing an efficient and fast online solution, the quadratic
constraints of the optimization are approximated by linear constraints.
The provided quadratic optimization task in each time step during the
operation of the control is solved. Then, the improvement of the non-
safety performances, e.g., reduction of the control energy, through a
reinforcement-learning-based training process is achieved. The training
process as an offline part of the control design is formed. Neverthe-
less, under the motion of the automated vehicle, the designed neural
network works together with the quadratic optimization task.

In this paper a motion control strategy in a hierarchical structure
for automated vehicles is proposed, with which vehicle-vehicle inter-
actions can be handled. The contribution is a novel control strategy,
which contains a robust controller and a supervisor on the vehicle
level and a learning-based agent on the high level. The output of
the hierarchical control is a longitudinal acceleration command of
the automated vehicle, with which its safe motion, together with the
reductions of traveling time a traction energy can be achieved. More-
over, in this paper centralized and independent configurations for the
coordination of multiple automated vehicles have been formed, and
the configurations through comparative simulation examples have been
evaluated. It is concluded that using the independent configuration
the related automated vehicle control problem with high efficiency
can be solved and simultaneously, the computational complexity of
the centralized configuration can be avoided. Some preliminary results
on the centralized configuration can be found in Németh and Gáspár
(2021a), and on the independent configuration in Németh and Gáspár

(2021b). Nevertheless, a further new contribution of this paper is the
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Fig. 1. Illustration of vehicle interaction scheme with Euler coordinates.
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implementation of the hierarchical control method on a small-scale
indoor test vehicle platform, and thus, the effectiveness of the method
through Hardware-in-the-Loop (HiL) simulations is demonstrated.

The paper is organized as follows. The concept of hierarchical
control with the proposed configurations is found in Section 2. The
formulation of the vehicle interaction model is provided in Section 3.
Using of reinforcement-learning-based design process for enhancing
non-safety performance level, i.e., reduction of traveling time and
control input is proposed in Section 4. The design process in two
configurations, such as independent and centralized has been proposed.
The comparison of their efficiency is illustrated via comparative sim-
ulation examples in Section 5. The implementation of independent
configuration through HiL simulations is demonstrated in Section 6.
Finally, the conclusions, the limitations and some future challenges of
the method in Section 7 are discussed.

2. Concept of hierarchical motion control for automated vehicles

In this section the fundamentals of the proposed motion control
are presented. First, the difficulty of vehicle interactions through an
example is illustrated. Second, the concept of the design is presented for
one automated vehicle, i.e., the interaction model and the control archi-
tecture. Third, the configurations for handling the control of multiple
automated vehicles are presented.

2.1. Illustration of the vehicle interaction problem

The motivation of finding control design methods for handling
interactions is illustrated as follows. Fig. 1 shows an example, in which
an automated vehicle (Vehicle 1) and a non-automated disturbance
vehicle (Vehicle 2) are in interaction. The motions of both vehicles
on these short sections are considered to be straight. In the example
it is also assumed that the motion of the disturbance vehicle is not
influenced by the automated vehicle, but the motion of the automated
vehicle must adapt to the motion of the disturbance vehicle. The goal
of vehicle control is to find control inputs on horizon of 𝑁 time
intervals, i.e., longitudinal acceleration command 𝑢(𝑘)… 𝑢(𝑘 + 𝑁 − 1),

ith which the speed of Vehicle 1 𝑣1(𝑘+1)… 𝑣1(𝑘+𝑁) during its journey
s maximized, while a predefined safe distance 𝑠𝑠𝑎𝑓𝑒 from Vehicle 2

is kept. The condition for keeping 𝑠𝑠𝑎𝑓𝑒 is formed by the geometric
inequality
(

𝑥1(𝑘+𝑡)−𝑥2(𝑘+𝑡)
)2

+
(

𝑦1(𝑘+𝑡)−𝑦2(𝑘+𝑡)
)2

≥ 𝑠2𝑠𝑎𝑓𝑒, ∀𝑡 ∈ [1;𝑁], (1)

where 𝑥1(𝑘 + 𝑡), 𝑦1(𝑘 + 𝑡) are the predicted positions of Vehicle 1.
The predictions of both vehicle motions on linear kinematic equations
are based. For the prediction of 𝑥1(𝑘 + 𝑡), 𝑦1(𝑘 + 𝑡), 𝑡 ∈ [1;𝑁], the
actual position 𝑥1(𝑘), 𝑦1(𝑘), speed 𝑣1(𝑘) and the control input sequence

𝑢(𝑘)… 𝑢(𝑘 + 𝑁 − 1) are used. The motion of Vehicle 2, i.e., positions v
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𝑥2(𝑘+ 𝑡), 𝑦2(𝑘+ 𝑡), through its measured position 𝑥2(𝑘), 𝑦2(𝑘), speed 𝑣2(𝑘)
and acceleration 𝑎2(𝑘) values is predicted, together with the limitation
of the predicted maximum speed 𝑣2(𝑘 + 𝑡) through 𝑣𝑚𝑎𝑥.

The goal of control for Vehicle 1 is to maximize its speed, and
similarly, the avoidance of collision with Vehicle 2. The maximization
requirement in the illustration example as an objective of the control
for computing 𝑢(𝑘)… 𝑢(𝑘+𝑁) can be formulated, while the requirement
of keeping safe distance forms constraints. The optimization problem is
formulated as follows:

max
𝑢(𝑘)…𝑢(𝑘+𝑁−1)

𝑁
∑

𝑖=1
𝑣1(𝑘 + 𝑖), (2a)

subject to

𝑋1(𝑘 + 𝑡) = f1(𝑥1(𝑘), 𝑦1(𝑘), 𝑣1(𝑘), 𝑢(𝑘)… 𝑢(𝑘 + 𝑡 − 1)),

∀𝑡 ∈ [1;𝑁], (2b)

𝑋2(𝑘 + 𝑡) = f2(𝑥2(𝑘), 𝑦2(𝑘), 𝑣2(𝑘)),∀𝑡 ∈ [1;𝑁], (2c)

𝑢(𝑘 + 𝑖) ∈ 𝐔,∀𝑖 ∈ [0;𝑁 − 1], (2d)

𝑥1(𝑘 + 𝑡) − 𝑥2(𝑘 + 𝑡)
)2

+
(

𝑦1(𝑘 + 𝑡) − 𝑦2(𝑘 + 𝑡)
)2

≥ 𝑠2𝑠𝑎𝑓𝑒,

∀𝑡 ∈ [1;𝑁], (2e)

0 ≤ 𝑣1(𝑘 + 𝑡) ≤ 𝑣𝑚𝑎𝑥, ∀𝑡 ∈ [1;𝑁], (2f)

here (2a) is the objective function with the goal of speed maximiza-
ion, and (2d) formulates the limitation on the control input, inequality
onstrains keeping of safe distance (2e). Inequality (2f) formulates the
onstraint on the speed of Vehicle 1, where 𝑣𝑚𝑎𝑥 is determined by the
ath of the vehicle. 𝑋1(𝑘+𝑡) =

[

𝑥1(𝑘 + 𝑡) 𝑦1(𝑘 + 𝑡) 𝑣1(𝑘 + 𝑡)
]𝑇 , 𝑋2(𝑘+

) =
[

𝑥2(𝑘 + 𝑡) 𝑦2(𝑘 + 𝑡) 𝑣2(𝑘 + 𝑡)
]𝑇 incorporates in the position and

peed predictions of the vehicles and the kinematic relationships are
overed by f1, f2 in (2c). Remark that if Vehicle 2 is also an automated
ehicle, the objective function of the maximization problem can also
nvolve 𝑣2(𝑘 + 𝑖) terms, i.e., ∑𝑁

𝑖=1

(

𝑣1(𝑘 + 𝑖) + 𝑣2(𝑘 + 𝑖)
)

. Moreover,

1(𝑘 + 𝑖) and 𝑢2(𝑘 + 𝑖) control inputs of the vehicles are the variables
f the optimization problem.

Formally, (2) is similar to a predictive control formulation. Thus, it
ight be possible to solve the problem (2) with the tools of the Model
redictive Control (MPC). In a vehicle control context, an enhanced
olution is repetitive learning MPC (Rosolia & Borrelli, 2018), with
hich the optimization can be carried out directly, and terminal cost,

erminal set through various test scenarios can be learned. In case of a
ehicle interaction problem, it may lead to a high-performance control,
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Fig. 2. Illustration of the proposed vehicle interaction model.
ut the online computation cost during the operation of the vehicle
an be high. Moreover, if the vehicle interaction scenario is complex
multiple intersections, roundabouts etc.), the model formulation in
1, f2 can be difficult. Therefore, in this paper an effective alternative
olution to the optimization problem (2) is proposed.

.2. Concept of the proposed motion profile design

The proposed motion profile design method is based on the idea that
t is possible to form the interaction model of the vehicles without using
1(𝑘+𝑡), 𝑦1(𝑘+𝑡), 𝑥2(𝑘+𝑡), 𝑦2(𝑘+𝑡), 𝑡 ∈ [1;𝑁] directly in the optimization

problem. In the following, the reformulation of the task is shown.
First, it is assumed that it is possible to select critical points, where

the routes of interacting vehicles cross each other, see Fig. 2(a). In the
method the distances of the vehicles from this critical point is used,
i.e., 𝑠1(𝑘+ 𝑡), 𝑠2(𝑘+ 𝑡), instead of the vehicle coordinates 𝑥1(𝑘+ 𝑡), 𝑦1(𝑘+
𝑡), 𝑥2(𝑘 + 𝑡), 𝑦2(𝑘 + 𝑡). Its advantage is that a general formulation of the
interaction model can be provided. Thus, the constraint on keeping
𝑠𝑠𝑎𝑓𝑒 is independent of the direction of the vehicle motions, because
this information in the preliminary selection of conflict point is hidden.

Second, it is also assumed that the conflict point can be determined,
and the distances between each vehicle and the conflict point can be
measured, which leads to 𝑠1 and 𝑠2 distances in the presented example.
Using of 𝑠1, 𝑠2 the problem on keeping 𝑠𝑠𝑎𝑓𝑒 is formed as follows, i.e., at
the same time only one of the vehicles can be closer to the conflict
point than as 𝑠𝑠𝑎𝑓𝑒. This condition describes an avoidable region in the
plane of 𝑠1−𝑠2, of which center is the conflict point. Geometrically, the
condition on keeping 𝑠𝑠𝑎𝑓𝑒 entails that the trajectory of 𝑠1(𝑘+𝑡), 𝑠2(𝑘+𝑡),
∀𝑡 ∈ [1;𝑁] must be out of a circle with 𝑠𝑠𝑎𝑓𝑒 radius, such as
(

𝑠1(𝑘 + 𝑡)
)2

+
(

𝑠2(𝑘 + 𝑡)
)2

≥ 𝑠2𝑠𝑎𝑓𝑒, ∀𝑡 ∈ [1;𝑁]. (3)

The condition is illustrated in Fig. 2(b). Although this concept is close
to the approach of restricted zones (Riegger et al., 2016), it has the
advantage of using only the terms of 𝑠1, 𝑠2 instead of the Euclidean
coordinates 𝑥1, 𝑦1, 𝑥2, 𝑦2, which leads to constraint formulation with
reduced complexity. In the concept of restricted zones, the areas of the
zones can be defined geometrically, but in this concept the area in the
plane of 𝑠1, 𝑠2 is depicted.

The selection of the conflict point for some relevant interactions,
i.e., motion in intersection and roundabout, is illustrated in Fig. 3. In
Fig. 3(a) the intersection scenario is shown, where the conflict point
is defined by the crossing of the vehicle routes. Motion in roundabouts
can be taken as joined vehicle motion in an intersection scenario and in
a vehicle following scenario, i.e., safe motion requires the modification
of the conflict point during the motion of the vehicle, see Fig. 3(b).
Entering a roundabout can be handled as an intersection problem, and
thus, the conflict point is defined by the crossing of the routes. In the
next phase, the preceding Vehicle 2 by Vehicle 1 is followed and thus,
the critical point is determined by the position of Vehicle 2, i.e., 𝑠2 ≡ 0
and 𝑠 (𝑘) is the distance between the vehicles.
1

4

Note that the limitation of the proposed constraint (3) is the as-
sumption of point mass vehicle models. This simplification has two
advantages, which motivate the application of this model. First, in the
case of a point mass vehicle model the sizes of the vehicles have no
impact on the constraint. As a result, the constraint is valid for all
cases, independently of the angle between the vehicle routes. Thus,
the optimization method (2) can be used for intersections, roundabouts
and also for vehicle following. Second, the optimization method is also
independent of the closest points of the vehicles from the conflict point.
For example, in Fig. 2, if Vehicle 2 has priority over Vehicle 1, then the
front left corner of Vehicle 1 and front right corner of Vehicle 2 are the
closest points. Later, the front midline of Vehicle 1 and the right size
of Vehicle 2 are the closest points. Finally, the front right corner of
Vehicle 1 and the back right corner of Vehicle 2 are the closest to each
other. Nevertheless, the real vehicle sizes must be considered to avoid
collision, which can be carried out through the increasing of 𝑠𝑠𝑎𝑓𝑒.

In the provided control solution, the elements of (2) to different
control levels are separated. The maximization of the objective func-
tion through reinforcement learning on a high number of roundabout
scenarios has been achieved. It has been carried out offline and during
control operation only the resulted neural network has been used.
The output of the RL-based controller 𝑢𝐿(𝑘) is considered to be a
candidate control input of the system. Vehicle dynamics in the design
of a robust control has been incorporated, which results in another
candidate control input 𝑢𝐾 (𝑘). In this way, the complex optimization
problem (2) is converted to a simplified optimization, which has been
built in a supervisor. The goal of the supervisor is to create 𝑢(𝑘) using
𝑢𝐿(𝑘), 𝑢𝐾 (𝑘), which 𝑢(𝑘) guarantees keeping safe distance.

In Fig. 4 the scheme of the vehicle control architecture is illustrated.
The output of the automated vehicle control is 𝑢(𝑘), which in this paper
is selected as longitudinal acceleration command 𝑎1(𝑘). Depending on
the complexity of the vehicle model, it is also possible to select 𝑢(𝑘)
as traction force, see e.g., Németh, Gáspár, and Szabó (2021). The
supervisor calculates the value of 𝑢(𝑘) using the expression 𝑢(𝑘) =
𝑢𝐾 (𝑘) + 𝛥(𝑘). In this form 𝑢𝐾 (𝑘) represents the robust controller input,
which has been implemented on the vehicle level. 𝛥(𝑘) with its bounded
domain ∆ is handled as an addition to 𝑢𝐾 (𝑘). Moreover, the output of
the RL-based controller is 𝑢𝐿(𝑘), which is an input of the supervisor.
During the control operation 𝛥(𝑘) is computed to minimize (𝑢(𝑘) −
𝑢𝐿(𝑘))2 difference, and simultaneously, to avoid the collision of the
vehicle with another vehicles.

It is necessary to distinguish the roles of the RL-based and the robust
controllers. A comprehensive introduction to the design can be found
in Németh and Gáspár (2021). First, the role of the supervisor is to
provide 𝑢(𝑘) control signal, with which the collision avoidance for all
scenarios is guaranteed. In this design process two candidate control
signals, such as 𝑢𝐾 (𝑘) from the robust controller and 𝑢𝐿(𝑘) from the
RL-based controller are used. The formulation of the supervisor in Sec-
tion 3 can be found. Second, the robust controller is designed to provide
𝑢𝐾 (𝑘), for which 𝛥(𝑘) under all scenarios can be found. It requires the
incorporation of the domain ∆ in the design of the robust controller,
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Fig. 4. Illustration of the control architecture.

hich is interpreted as an input uncertainty domain in the context
f the robust control, for details see Németh and Gáspár (2021b).
hird, the role of the RL-based controller is to provide 𝑢𝐿(𝑘) candidate

control input, with which non-safety performance requirements can be
considered. Since the RL-based controller through a training process
with a high number of varying episodes is required, 𝑢𝐿(𝑘) may be
unable to guarantee collision avoidance for all scenarios in itself. The
formulation of the RL-based controller in Section 4 can be found.

2.3. Multiple vehicle control configuration schemes

In the case of multiple vehicle scenarios, in which automated ve-
hicles operate simultaneously, the proposed control scheme through
various configurations can be extended. The possible configurations
are influenced by the centralized or individual handling of automated
vehicles. Two main configuration schemes for the coordination of
automated vehicles in their interactions are illustrated in Fig. 5. In case
of centralized method, the control inputs for 𝑛 vehicles are computed
with one optimization algorithm, while in case of independent method
𝑛 optimization algorithms, i.e., one for each vehicle, are used.

Fig. 5(a) illustrates a centralized control scheme, which consists of
one centralized multiple-input multiple-output learning-based agent on
the high level for all vehicles and one centralized safe coordination
level. The control inputs, i.e., longitudinal accelerations for the vehicles
𝑎 , are transferred from the centralized safe coordination level. The
𝑖 𝑎

5

advantage of this configuration is that motions of the vehicles in cen-
tralized layers are incorporated and thus, optimal control inputs on the
global transportation system can be achieved. Nevertheless, a drawback
of this configuration is that it requires centralized computation on the
high level and on the coordination level, which can be difficult from an
application point of view, e.g., all information must be simultaneously
available, or data-privacy problems may also occur. This structure is
recommended to be used especially for vehicle fleets, in which all of
the vehicles are in the fleet of the same operator.

Another configuration is shown in Fig. 5(b), in which each vehicle
connects to its own high level control, and each vehicle has its own
safe coordination level. As a result, it requires the sharing of limited
information exchange between the vehicles, i.e., their positions and
longitudinal speed, which facilitates the practical implementation of
the control strategy. The advantage of this structure is that the number
of vehicles is not limited by the computation capacity, because the com-
putation tasks of each vehicle is independent. Due to the independent
computation the coordination of the vehicles, e.g., minimum energy
consumption on the global level, is not guaranteed.

In this paper the control design methods for both configuration
schemes are presented. The effectiveness of the configurations through
comparative scenarios from control engineering viewpoint is discussed.
In spite of the results, both schemes can have their own application
fields, and thus, the decision on the configuration requests careful
considerations.

3. Model formulation for handling vehicle interactions

The formulation of the model for achieving collision avoidance in
the vehicle interactions requires the involving of longitudinal vehicle
models and the forming of constraints on the motion. In this paper the
motions of the vehicles by linear kinematic relationships are described:

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + 𝑇 𝑎𝑖(𝑘), (4a)

𝑠𝑖(𝑘 + 1) = 𝑠𝑖(𝑘) + 𝑇 𝑣𝑖(𝑘) +
𝑇 2

2
𝑎𝑖(𝑘), (4b)

here 𝑇 is time step of the discrete motion model. Index 𝑖 is related to
ach vehicle and the total vehicle number is 𝑛. The longitudinal velocity

and the displacement of vehicle 𝑖 are 𝑣𝑖(𝑘) and 𝑠𝑖(𝑘). The control input
f the vehicle is the longitudinal acceleration, such as 𝑎𝑖(𝑘) = 𝑢𝑖(𝑘).
n case of this model, 𝑠𝑖 from the center of intersection is measured,
hich means that 𝑠𝑖 = 0 represents the position of vehicle 𝑖 in the

enter. Consequently, 𝑠𝑖 < 0 means that vehicle 𝑖 approaches to the
ntersection, and 𝑠𝑖 > 0 represents that vehicle 𝑖 moves toward.

The control input contains two terms (see Section 1):
𝑖(𝑘) = 𝑎𝐾,𝑖(𝑘) + 𝛥𝑖(𝑘), (5)
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Fig. 5. Configuration schemes in the hierarchy structure.
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where 𝑎𝐾,𝑖 = 𝑢𝐾,𝑖 is the output of the robust controller of vehicle 𝑖, and
the supervisor computes the additional term 𝛥𝑖(𝑘). The computation of
𝛥𝑖(𝑘) is based on the following principles.

• The objective of the computation is to provide 𝑢𝑖(𝑘) = 𝑎𝑖(𝑘), which
is as close as possible to 𝑢𝐿,𝑖(𝑘) = 𝑎𝐿,𝑖(𝑘), i.e., their difference must
be reduced. It reason is to approximate the level of non-safety
performances, which is achieved through the RL-based controller.

• Since in the intersection the routes of some vehicles may be
crossed, 𝑎𝑖(𝑘) must be selected for vehicle 𝑖 to keep safe distance
𝑠𝑠𝑎𝑓𝑒 from the further vehicles. It forms a constraint for the
selection process of 𝛥𝑖.

• The resulted 𝑎𝑖(𝑘) must guarantee keeping velocity limits, i.e., the
maximum velocity is constrained by velocity limit 𝑣𝑚𝑎𝑥 or the
route curvature, which forms another constraint.

3.1. Constraint formulation

In Section 2 the concept of constraint formulation on keeping safe
distance 𝑠𝑠𝑎𝑓𝑒 has already been introduced. It has been shown that
quadratic constraint formulation for each interacting vehicle pair is
able to guarantee collision avoidance. Although quadratic constraint
provides an accurate description, it can be disadvantageous in real-
time optimization problems due to increasing computational effort. It
is motivated to find an approximation of the quadratic constraints,
i.e., using linear constraints.

The idea behind the approximation in Fig. 6 is shown. The avoidable
regions, i.e., half-planes are defined by tangent lines, which connect
the actual state

[

𝑠𝑖(𝑘) 𝑠𝑗 (𝑘)
]𝑇 and the circle. The tangent points on

the circle in 𝑘 is noted by
[

𝑠𝑇 1,𝑖(𝑘) 𝑠𝑇 1,𝑗 (𝑘)
]

,
[

𝑠𝑇 2,𝑖(𝑘) 𝑠𝑇 2,𝑗 (𝑘)
]

. The
condition on the next point of the trajectory

[

𝑠𝑖(𝑘 + 1) 𝑠𝑗 (𝑘 + 1)
]𝑇 is to

be out of the half-plane, which forms two linear inequality constraints:

[

𝑠𝑇 1,𝑖(𝑘)
𝑠𝑇 1,𝑗 (𝑘)

]𝑇 [

𝑠𝑖(𝑘)
𝑠𝑗 (𝑘)

]

≤
[

𝑠𝑇 1,𝑖(𝑘)
𝑠𝑇 1,𝑗 (𝑘)

]𝑇 [

𝑠𝑖(𝑘 + 1)
𝑠𝑗 (𝑘 + 1)

]

, (6a)

or
[

𝑠𝑇 2,𝑖(𝑘)
𝑠𝑇 2,𝑗 (𝑘)

]𝑇 [

𝑠𝑖(𝑘)
𝑠𝑗 (𝑘)

]

≥
[

𝑠𝑇 2,𝑖(𝑘)
𝑠𝑇 2,𝑗 (𝑘)

]𝑇 [

𝑠𝑖(𝑘 + 1)
𝑠𝑗 (𝑘 + 1)

]

. (6b)

Note that this formulation leads to an outer approximation of the
avoidable region. Although linear approximation leads to a simplified
formulation, the outer approximation can result in increased conser-
vativeness, i.e., there can be states in the avoidable region, which
 v

6

Fig. 6. Illustration on the approximation of the constraint.

are out of the circle. Moreover, Fig. 6 shows that the non-avoidable,
i.e., reachable region is non-convex. The non-convex property of the
reachable region results in the formulation of disjunctive inequalities
(8).

In the next step, the longitudinal displacement at 𝑘+ 1 is expressed
ased on the motion Eq. (4) and using the expression on control input
erms (5) leads to:

𝑠𝑖(𝑘 + 1) = 𝑠𝑖(𝑘) + 𝑇 𝑣𝑖(𝑘) +
𝑇 2

2
𝑎𝐾,𝑖(𝑘) +

𝑇 2

2
𝛥𝑖(𝑘), (7a)

𝑗 (𝑘 + 1) = 𝑠𝑗 (𝑘) + 𝑇 𝑣𝑗 (𝑘) +
𝑇 2

2
𝑎𝐾,𝑗 (𝑘) +

𝑇 2

2
𝛥𝑗 (𝑘), (7b)

hich transform the linear inequalities (6) to

𝑠𝑇 1,𝑖(𝑘)
𝑠𝑇 1,𝑗 (𝑘)

]𝑇
⎡

⎢

⎢

⎣

−𝑇 𝑣𝑖(𝑘) −
𝑇 2

2 𝑎𝐾,𝑖(𝑘)

−𝑇 𝑣𝑗 (𝑘) −
𝑇 2

2 𝑎𝐾,𝑗 (𝑘)

⎤

⎥

⎥

⎦

≤𝑇 2

2

[

𝑠𝑇 1,𝑖(𝑘)
𝑠𝑇 1,𝑗 (𝑘)

]𝑇 [

𝛥𝑖(𝑘)
𝛥𝑗 (𝑘)

]

, (8a)

or

𝑠𝑇 2,𝑖(𝑘)
𝑠𝑇 2,𝑗 (𝑘)

]𝑇
⎡

⎢

⎢

⎣

−𝑇 𝑣𝑖(𝑘) −
𝑇 2

2 𝑎𝐾,𝑖(𝑘)

−𝑇 𝑣𝑗 (𝑘) −
𝑇 2

2 𝑎𝐾,𝑗 (𝑘)

⎤

⎥

⎥

⎦

≥𝑇 2

2

[

𝑠𝑇 2,𝑖(𝑘)
𝑠𝑇 2,𝑗 (𝑘)

]𝑇 [

𝛥𝑖(𝑘)
𝛥𝑗 (𝑘)

]

. (8b)

A further constraint on the computation of 𝛥𝑖(𝑘) is related to vehicle
elocities. Constraint on 𝑣 (𝑘 + 1) is formed through motion Eq. (4),
𝑖
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together with (5). The constraint on velocity limitation is formed as

0 ≤ 𝑣𝑖(𝑘) + 𝑇 𝑎𝐾,𝑖(𝑘) + 𝑇𝛥𝑖(𝑘), ∀𝑖 ∈ 𝑛, (9a)

𝑣𝑚𝑎𝑥 ≥ 𝑣𝑖(𝑘) + 𝑇 𝑎𝐾,𝑖(𝑘) + 𝑇𝛥𝑖(𝑘), ∀𝑖 ∈ 𝑛, (9b)

which leads to
[

−1
1

]

𝛥𝑖(𝑘) ≤

[ 𝑣𝑖(𝑘)
𝑇 + 𝑎𝐾,𝑖(𝑘)

𝑣𝑚𝑎𝑥−𝑣𝑖(𝑘)
𝑇 − 𝑎𝐾,𝑖(𝑘)

]

, ∀𝑖 ∈ 𝑛. (10)

The last constraint in the computation of 𝛥(𝑘) is resulted by the
limitation on the achievable longitudinal acceleration, such as the
bounds 𝑎𝑚𝑖𝑛,𝑖, 𝑎𝑚𝑎𝑥,𝑖, which are related to the physical limits on braking
and driving. Since 𝑎𝑖(𝑘) depends on 𝑎𝐾,𝑖(𝑘) and 𝛥𝑖(𝑘), the constraints
are

𝑎𝑚𝑖𝑛,𝑖 − 𝑎𝐾,𝑖(𝑘) ≤ 𝛥𝑖(𝑘), ∀𝑖 ∈ 𝑛, (11a)

𝑎𝑚𝑎𝑥,𝑖 − 𝑎𝐾,𝑖(𝑘) ≥ 𝛥𝑖(𝑘), ∀𝑖 ∈ 𝑛, (11b)

which leads to the constraint
[

−1
1

]

𝛥𝑖(𝑘) ≤
[

𝑎𝐾,𝑖(𝑘) − 𝑎𝑚𝑖𝑛,𝑖
𝑎𝑚𝑎𝑥,𝑖 − 𝑎𝐾,𝑖(𝑘)

]

, ∀𝑖 ∈ 𝑛. (12)

Centralized configuration

In case of centralized configuration, one optimization problem for
the computation of all 𝛥𝑖(𝑘), 𝑖 ∈ 𝑛 is formed as follows:

min
𝛥1(𝑘)…𝛥𝑛(𝑘)

𝑛
∑

𝑖=1

(

𝑎𝑖(𝑘) − 𝑎𝐿,𝑖(𝑘)
)2 (13a)

subject to

𝑠𝑖(𝑘 + 1)2 + 𝑠𝑗 (𝑘 + 1)2 ≥ 𝑠2𝑠𝑎𝑓𝑒, ∀𝑖, 𝑗 ∈ 𝑛, (13b)

0 ≤ 𝑣𝑖(𝑘 + 1) ≤ 𝑣𝑚𝑎𝑥, ∀𝑖 ∈ 𝑛, (13c)

𝑎𝑚𝑖𝑛,𝑖 − 𝑎𝐾,𝑖(𝑘) ≤ 𝛥𝑖(𝑘), ∀𝑖 ∈ 𝑛, (13d)

𝑎𝑚𝑎𝑥,𝑖 − 𝑎𝐾,𝑖(𝑘) ≥ 𝛥𝑖(𝑘), ∀𝑖 ∈ 𝑛, (13e)

𝛥𝑖 ∈ ∆𝑖, ∀𝑖 ∈ 𝑛, (13f)

where 𝑖, 𝑗 represent the pairs of interacting vehicles. ∆𝑖 represents the
domain on 𝛥𝑖.

The objective (13a) can be reformulated through (5), which leads
to
𝑛
∑

𝑖=1

(

𝑎𝑖(𝑘) − 𝑎𝐿,𝑖(𝑘)
)2 =

𝑛
∑

𝑖=1

(

𝑎𝐾,𝑖(𝑘) + 𝛥𝑖(𝑘) − 𝑎𝐿,𝑖(𝑘)
)2

= 𝛥(𝑘)𝑇 𝐼𝑛×𝑛𝛥(𝑘) + 2𝑓𝑇 𝛥(𝑘), (14)

where 𝛥(𝑘) =
[

𝛥1(𝑘)…𝛥𝑛(𝑘)
]𝑇 and 𝐼𝑛×𝑛 is an identity matrix. The vector

of 𝑓 is formed as 𝑓 =
[

𝑎𝐾,1 − 𝑎𝑙,1 … 𝑎𝐾,𝑛 − 𝑎𝑙,𝑛
]

. Thus, the optimization
(13) for computing 𝛥1(𝑘)…𝛥𝑛(𝑘) through relations (14), (8), (10) and
(12) is transformed to

min
𝛥(𝑘)

𝛥(𝑘)𝑇 𝐼𝑛×𝑛𝛥(𝑘) + 2𝑓𝑇 𝛥(𝑘) (15a)

subject to
[

−1
1

]

𝛥𝑖(𝑘) ≤

[ 𝑣𝑖(𝑘)
𝑇 + 𝑎𝐾,𝑖(𝑘)

𝑣𝑚𝑎𝑥−𝑣𝑖(𝑘)
𝑇 − 𝑎𝐾,𝑖(𝑘)

]

, ∀𝑖 ∈ 𝑛,

(15b)
and

[

−1
1

]

𝛥𝑖(𝑘) ≤
[

𝑎𝐾,𝑖(𝑘) − 𝑎𝑚𝑖𝑛,𝑖
𝑎𝑚𝑎𝑥,𝑖 − 𝑎𝐾,𝑖(𝑘)

]

, ∀𝑖 ∈ 𝑛, (15c)

and
𝛥𝑖 ∈ ∆𝑖, ∀𝑖 ∈ 𝑛,

(15d)
and
 m

7

[

𝑠𝑇 1,𝑖(𝑘)
𝑠𝑇 1,𝑗 (𝑘)

]𝑇
⎡

⎢

⎢

⎣

−𝑇 𝑣𝑖(𝑘) −
𝑇 2

2 𝑎𝐾,𝑖(𝑘)

−𝑇 𝑣𝑗 (𝑘) −
𝑇 2

2 𝑎𝐾,𝑗 (𝑘)

⎤

⎥

⎥

⎦

≤𝑇 2

2

[

𝑠𝑇 1,𝑖(𝑘)
𝑠𝑇 1,𝑗 (𝑘)

]𝑇 [

𝛥𝑖(𝑘)
𝛥𝑗 (𝑘)

]

, ∀𝑖, 𝑗 ∈ 𝑛,

(15e)
or

𝑠𝑇 2,𝑖(𝑘)
𝑠𝑇 2,𝑗 (𝑘)

]𝑇
⎡

⎢

⎢

⎣

−𝑇 𝑣𝑖(𝑘) −
𝑇 2

2 𝑎𝐾,𝑖(𝑘)

−𝑇 𝑣𝑗 (𝑘) −
𝑇 2

2 𝑎𝐾,𝑗 (𝑘)

⎤

⎥

⎥

⎦

≥𝑇 2

2

[

𝑠𝑇 2,𝑖(𝑘)
𝑠𝑇 2,𝑗 (𝑘)

]𝑇 [

𝛥𝑖(𝑘)
𝛥𝑗 (𝑘)

]

, ∀𝑖, 𝑗 ∈ 𝑛.

(15f)

The quadratic optimization in (15), due to the non-convex reach-
ble regions, incorporates in disjunctive inequalities. Consequently,
he presented optimization problem is a mixed-integer optimization
roblem (Belotti, Liberti, Lodi, Nannicini, & Tramontani, 2011). Never-
heless, it can be transformed to a set of quadratic optimization tasks,
ee at independent configuration below.

ndependent configuration

In the case of the configuration with independent automated vehi-
les, the following optimization problem is formed for all automated
ehicles:

min
𝛥(𝑘)

𝛥(𝑘)2 + 2𝑓𝑇 𝛥(𝑘) (16a)

subject to
[

−1
1

]

𝛥(𝑘) ≤
⎡

⎢

⎢

⎣

𝑣1(𝑘)
𝑇 + 𝑎𝐾 (𝑘)

𝑣𝑚𝑎𝑥−𝑣1(𝑘)
𝑇 − 𝑎𝐾 (𝑘)

⎤

⎥

⎥

⎦

(16b)

and
[

−1
1

]

𝛥(𝑘) ≤
[

𝑎𝐾 (𝑘) − 𝑎𝑚𝑖𝑛
𝑎𝑚𝑎𝑥 − 𝑎𝐾 (𝑘)

]

(16c)

and
[

𝑠𝑇 1,1(𝑘)
𝑠𝑇 1,𝑗 (𝑘)

]𝑇 [

−𝑇 𝑣1(𝑘) −
𝑇 2

2 𝑎𝐾 (𝑘)
−𝑇 𝑣𝑗 (𝑘)

]

≤𝑇 2

2

[

𝑠𝑇 1,1(𝑘)
0

]𝑇

𝛥(𝑘), ∀𝑗 ∈ 𝑛𝑠 (16d)

or

𝑠𝑇 2,1(𝑘)
𝑠𝑇 2,𝑗 (𝑘)

]𝑇 [

−𝑇 𝑣1(𝑘) −
𝑇 2

2 𝑎𝐾 (𝑘)
−𝑇 𝑣𝑗 (𝑘)

]

≥𝑇 2

2

[

𝑠𝑇 2,1(𝑘)
0

]𝑇

𝛥(𝑘), ∀𝑗 ∈ 𝑛𝑠, (16e)

here 𝑛𝑠 is the number of considered surrounding vehicles in the
nteraction scenario. The formed optimization problem (16) differs
rom the optimization problem of the centralized configuration (15).
he main difference is formed in the objective, because it is formulated
o only one vehicle, i.e., each vehicle has its own objective. Moreover,
he constraints have the same mathematical structure, but their number
s reduced, because the constraints are formulated not for 𝑛 number
f vehicles, but for 𝑛𝑠 number of surrounding vehicles (Németh &
áspár, 2021b). Consequently, the solution of (16) requires reduced
omputation effort, compared to (15).

Nonetheless, the mixed-integer optimization task (16) can be trans-
ormed to a set of quadratic optimization tasks. Its reason is that in the
ontext of supervisor, the optimization problem has always the same
tructure, i.e., 𝑛𝑠 leads to 2𝑛𝑠 number of distinct quadratic optimization
asks, which tasks differ only in one of their constraints. Each of the
∗𝑚 (𝑘), 𝑚 ∈ [1; 2𝑛𝑠 ] solutions of the quadratic optimization tasks result
n costs 𝛥∗𝑚 (𝑘)2 + 2𝑓𝑇 𝛥∗𝑚 (𝑘), 𝑚 ∈ [1; 2𝑛𝑠 ]. The solution of the mixed-
nteger optimization problem is 𝛥∗𝑚 (𝑘), which results in the lowest
ost from the set. Consequently, the online solution of the mixed-
nteger optimization task can be replaced with a set of fast quadratic
ptimization tasks and a selection process after that.

. Design of motion profile using reinforcement learning

The previous parts of the paper have provided the formulation of the
upervisor, which is responsible to guarantee safe performance require-

ents. In this section the design of the RL-based controller for each
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Fig. 7. Control structure in the learning process for different configurations.
onfiguration is presented, with which the non-safety performance level
f the vehicle control is improved. First, the learning-based process is
ormed to the centralized configuration and second, it is reformulated
o the independent configuration.

The aim of the method is to design a neural-network-based agent,
hich provides candidate control signals 𝑎𝐿,𝑖(𝑘) for improving non-

safety performance level, such as minimization of 𝑎𝑖(𝑘) and of travel-
ing time. The agent through the goal-directed reinforcement learning
method is trained. Through the learning process the agent is trained
to perform a task by interacting with an dynamic environment. This
environment can be unknown, e.g., in case of the related control
problem the number of vehicles, their distances etc. can vary. This
learning method enables the agent to make decisions to maximize the
expected cumulative reward for the task, where the reward function
must be predefined. A survey on reinforcement learning and on its
application to autonomous vehicles can be found in Kiran et al. (2022).

The scheme of the training process related to the centralized con-
figuration is shown in Fig. 7(a). The model for learning incorporates in
the supervisor within (15), the robust controller (see Németh & Gáspár,
2021a, 2021b for its design process) and the vehicle motion equations.
This model is able to guarantee collision avoidance in each time step,
independently from the values of 𝑎𝐿,𝑖(𝑘) on each vehicle. Thus, due to
the supervisor, the training process do not provide 𝑎𝐿,𝑖 signals, which
signals result in collision. During the learning process the safe vehicle
motion, together with the enhancement of the non-safety performance
level, is simultaneously guaranteed. The 𝑟(𝑘) reward for the learning
process is determined by the values of 𝑎𝑖(𝑘) and 𝑣𝑖(𝑘), such as

𝑟(𝑘) = −𝑄1

𝑛
∑

𝑖=1
𝑎2𝑖 (𝑘) +𝑄2

𝑛
∑

𝑖=1
𝑣𝑖(𝑘), (17)

in which 𝑄1, 𝑄2 are design weights with positive values. The purpose of
𝑄1 is to highlight the reduction of control input, such as the reduction
of traction energy. The reason of negative sign is that through the
reduction of 𝑎2𝑖 (𝑘) the value of 𝑟(𝑘) must be increased. The goal of 𝑄2 is
to achieve increased velocity profile for the vehicle, i.e., to facilitate the
reduction of traveling time. Through the selection of 𝑄1, 𝑄2 a balance
between traction energy and traveling time reductions can be achieved.
Selection of high value for 𝑄1 and low value for 𝑄2 can lead to
𝑎𝑖(𝑘) = 0, i.e., to unacceptable slow motion for the vehicles. Similarly,
high value for 𝑄2 and low value for 𝑄1 can lead to 𝑎𝑖(𝑘) = 𝑎𝑚𝑎𝑥,𝑖,
i.e., to unacceptable high traction energy consumption. The appropriate
selection of 𝑄1, 𝑄2 requires experimental tuning through the control
designer. The observation for the agent contains the positions of the
vehicles 𝑠𝑖(𝑘) and their velocities 𝑣𝑖(𝑘).

The training in the reinforcement learning through performing
episodes is carried out. The goal of the training is to maximize the
reward (17), which maximization through the evaluation of the sim-

ulation results in each episode is achieved. In the training method of

8

this paper, the model-free, online and off-policy deep deterministic
policy gradient (DDPG) has been applied, see Lillicrap et al. (2016).
The resulted DDPG agent in the structure of an actor–critic relationship,
with approximators is developed. During the training an optimal policy
is calculated, which is able to maximize the reward on a long-term,
where finding an optimal policy is equal to the learning of Bellman
equation. The actor and critic approximators have observations, which
are noted by 𝑆. The goal of the approximator on actor 𝜇(𝑆) is to find an
action 𝐴, i.e., 𝑎𝐿,𝑖(𝑘), with which the long-term reward is maximized.
The purpose of critic 𝑄(𝑆,𝐴) element is to approximate the expected
value of the long-term reward.

The training results in a neural network, whose output signals are
the candidate control inputs, such as 𝑎𝐿,𝑖(𝑘). The values of these signals
in each 𝑘 step are the inputs of the supervisor, see (15), and thus, the
non-safety performance level is enhanced.

In the independent configuration (see Fig. 7(b)), the reward func-
tion 𝑟(𝑘) slightly differs from (17). For each vehicle it also contains
𝑎1(𝑘), 𝑣1(𝑘), such as:

𝑟(𝑘) = −𝑄1𝑎
2
1(𝑘) +𝑄2𝑣1(𝑘). (18)

The reward contains the control input 𝑎(𝑘) and the longitudinal velocity
of the automated vehicle 𝑣1(𝑘). The reason of using these signals
is the same as detailed in reward of the centralized configuration,
i.e., to provide balance between control input reduction and velocity
maximization.

Illustration on the impact of design weights

The impact of design weights on the performances of the control
system through simulation examples is illustrated. In these example the
interactions of two vehicles in an intersection are examined, where one
of the vehicle is automated and the another is a non-automated with
constant velocity.

In the first example initial conditions 𝑠1(0) = −20 m, 𝑣1(0) = 40 km∕h
for the automated vehicle and 𝑠2(0) = −40 m, 𝑣2(0) = 50 km∕h for
the non-automated vehicle are selected. Thus, in this example the
automated vehicle is able to leave the intersection first easily, i.e., it is
possible to reduce its velocity without colliding to the non-automated
vehicle. In this example the results with two scenarios with differently
trained agents can be found, i.e., agents with 𝑄1 = 0.001, 𝑄2 = 1 and
𝑄1 = 10 000, 𝑄2 = 1 selections. In case of 𝑄1 = 0.001 selection the high
velocity motion of the automated vehicle is facilitated, while in case
of 𝑄1 = 10 000 the reduction of control intervention is highlighted.
Fig. 8(a),(b) show the differences in the characteristics of 𝑣1 and 𝑎1
signals, which results fit to prior expectations. Nevertheless, both 𝑠1 −
𝑠2 trajectories are out of the avoidable region, i.e., the selection of
𝑄1, 𝑄2 does not influence the safe motion of the automated vehicle,
see Fig. 8(c).
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Fig. 8. Comparison on the impact of different agents in Example 1.
Fig. 9. Illustration on the learning process at 𝑄1 = 0.001 in Example 1.
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The illustration on some results of the learning process at 𝑄1 = 0.001
can be found in Fig. 9. The results of the maximization process on the
cumulative reward can be seen in Fig. 9(a). The improvement of 𝑣1
haracteristics during the learning process is illustrated in Fig. 9(b). It
an be seen that the increasing of cumulative reward and the improve-
ent of 𝑣1 are in strong relationship, which is achieved through low
1 selection.

Fig. 10 illustrates the 𝑣1, 𝑎1 signals of Example 2. In these scenarios
he initial conditions are modified to 𝑠1(0) = −40 m, 𝑣1(0) = 40 km∕h
nd 𝑠2(0) = −40 m, 𝑣2(0) = 40 km∕h, i.e., there is a conflict situation.

Since the motion of the non-automated vehicle is not influenced, i.e., it
accelerates to 50 km∕h, the avoidance of the collision through the
braking of the automated vehicle can be guaranteed, see Fig. 10(b)
around 3 s. In these scenarios the impacts of various 𝑄1 selections

on the signals are shown. Fig. 10(a) shows that the velocity profile r

9

after the braking significantly differs, depending on 𝑄1. Similar to the
consequences of Example 1, low 𝑄1 results in high velocity and high 𝑄1
leads to reduced 𝑎1. Moreover, the value of velocity reduction through
𝑄1 can be effectively set, see e.g., the results of 𝑄1 = 1, 𝑄1 = 2 selections
etween the another two 𝑄1 values. Thus, the selection of 𝑄1, 𝑄2 values
or achieving the required performances through simulations can be
arried out.

. Comparison on the effectiveness of the configurations

In this section the effectiveness of the proposed centralized and
ndependent configurations through simulation examples is illustrated.
he example contains three automated vehicles, see Fig. 11. The goal
f this section is to compare the effectiveness of the two configu-

ations through simulation examples. Two scenarios at each of the
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Fig. 10. Comparison of 𝑣1 , 𝑎1 signals in Example 2.
Fig. 11. Illustration on the comparative example.

configurations are examined. The initial positions of the vehicles are
the same in both scenarios, such as 𝑠1(0) = −12 m, 𝑠2(0) = −5 m,
3(0) = −18 m. The safety distance is selected to 𝑠𝑠𝑎𝑓𝑒 = 8 m, the input
onstraints are 𝑎𝑚𝑖𝑛,𝑖 = −4 m∕s2 and 𝑎𝑚𝑎𝑥,𝑖 = 3 m∕s2 for all vehicles.
ampling time is selected to 𝑇 = 0.05 s. In the first scenario the initial
elocities of the vehicles are 𝑣1(0) = 5 m∕s, 𝑣2(0) = 4 m∕s, 𝑣3(0) = 4 m∕s,
hich are modified to 𝑣1(0) = 5 m∕s, 𝑣2(0) = 4 m∕s, 𝑣3(0) = 6 m∕s in

he second scenario.

.1. Centralized configuration

In the examples of centralized configuration, the outputs of the RL-
ased controller are 𝑎𝐿,1(𝑘), 𝑎𝐿,2(𝑘), 𝑎𝐿,3(𝑘) and its observation contains

the signals 𝑠1(𝑘), 𝑠2(𝑘), 𝑠3(𝑘), 𝑣1(𝑘), 𝑣2(𝑘), 𝑣3(𝑘), see Fig. 7(a). During the
training process of the RL-based agent, the initial values of the vehicle
states (𝑠𝑖(0), 𝑣𝑖(0)) for the intersection scenarios in each of the episodes
are generated randomly: 𝑠𝑖(0) can vary between −10 m and −20 m, and
𝑣𝑖(0) is between 0 km∕h and 50 km∕h. The actor network has 6 neurons
in the input layer, 3 fully connected layers with 48 neurons and ReLu
functions in each layer and 3 neurons with hyperbolic tangent functions
10
in the output layer. The critic network has the same structure, but it
also contains the actions as inputs. The sampling time in each episode
is selected to 𝑇 = 0.05 s and 500 episodes are carried out. The terms in
the reward function are considered with the same design parameters,
such as 𝑄1 = 𝑄2 = 0.1. The achieved value of the reward at the end of
the training process is above 400.

The scenarios with different initial values result in different control
input and ordering in the intersection. The motions of the vehicles for
each scenario are illustrated in Fig. 12. In both scenarios 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 2
reaches the intersection, but the ordering of the further vehicles is not
the same in the two scenarios. In the first Scenario 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 1 is the
second (see Fig. 12(b)), while in the second Scenario 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 3 is the
second in the ordering (see Fig. 12(d)).

The keeping of 𝑠𝑠𝑎𝑓𝑒 is illustrated in Fig. 13 for all constraints and
scenarios. Fig. 13(a) shows that the trajectories of the vehicles are close
to the border of the avoidable region, but in case of the constraint on
𝑠1 and 𝑠3 increased distance between the vehicles are achieved, see
Fig. 13(b). But, in the Scenario 2 both trajectories are close to the
borders, see Fig. 13(c)–(d). These differences in the scenarios can also
be seen in Fig. 12(b) and (d). In Scenario 1 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 3 is far from 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒
1 in the conflict situation (Fig. 12(b)), while in Scenario 2 the vehicles
are close to each other (Fig. 12(b)). Moreover, the differences in the
directions of the trajectories show the different ordering of 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 2
and 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 3. In Scenario 2 𝑠3 is significantly increased, which means
that 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 3 reached the intersection earlier as 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 1.

The control input signals 𝑎𝑖 and the output of the agents 𝑎𝐿,𝑖 are
shown in Fig. 14. It can be seen that all 𝑎𝑖 signal keep the input con-
straints, which underlines the effectiveness of the robust longitudinal
controller. Moreover, it can be seen that 𝑎𝑖 and 𝑎𝐿,𝑖 have the same
values in most of the simulations. The signals of 𝑎𝐿,𝑖 are generally over-
ridden at the beginning of the simulations. For example, in Scenario
2 𝑎3 is slightly increased and 𝑎2 is reduced to generate braking, with
which the avoidance of the collision between 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 2 and 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒
3 is achieved. Since 𝑎𝐿,𝑖 signals are rarely overridden, the improved
economy performance of the learning agent is preserved.

5.2. Independent configuration

In the rest of this section the effectiveness of the hierarchical control
with independently controlled automated vehicles is presented, i.e., the
Fig. 12. Illustration of the intersection scenarios (from the viewpoint of the vehicle with last ordering).
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Fig. 13. Illustration of the positions of the vehicles with the avoidable regions.

Fig. 14. Control inputs on the vehicles.
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Fig. 15. Illustration of the positions of the vehicles with the avoidable regions.
control systems of the vehicles using (16) and (18) are designed.
Fig. 15 shows the trajectories of 𝑠1 − 𝑠2 and 𝑠1 − 𝑠3 for all scenarios.
The first contribution of the trajectories is that the collision of the
vehicles in case of all scenarios is guaranteed, see Fig. 15(a)–(d).
Nevertheless, there are some differences in the scenarios, depending
on the configurations. The second contribution is that the vehicles are
further from each other, i.e., in case of independent configuration the
𝑠1 − 𝑠𝑖 trajectories are slightly further from the avoidable region, see
e.g., Figs. 13(a) and 15(a). It results in that 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 2, and consequently,
𝑉 𝑒ℎ𝑖𝑐𝑙𝑒3 spend slightly more time in the intersection. For example,
at the end of the 10 𝑠 simulation time 𝑠1 is smaller in case of the
independent configuration. The difference through the comparison of
𝑎𝑖 and 𝑎𝐿,𝑖 signals can be illustrated, see Figs. 14(a),(b) and 16(a),(b).
The tendency of 𝑎𝑖 signals is the same in both configurations, but in
case of the centralized configurations the signals are smoother, whose

reason is in the difference of 𝑎𝐿,𝑖 signals.

12
The third contribution of the comparison is that the ordering of the
vehicles in case of Scenario 2 is the same as in Scenario 1. Thus, the
increase of 𝑣3(0) does not result in priority for 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 3 against 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒
1, while in the centralized cases the slight initial speed variation has
been used for increasing the speed of 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 3. The initial speed 𝑣3(0)
must be increased to 9 m∕s to modify vehicle ordering, which is known
as Scenario 3, see Fig. 15(e),(f). Fig. 16(e) shows that 𝑎3 in Scenario 3
is increased earlier as in Scenario 2. It results in that the last vehicle in
Scenario 3, i.e., 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 1 is further from the intersection at the end of
the simulation (𝑠1(10) = 47 m), as the last vehicle in Scenario 2, i.e,.,
𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 3, such as 𝑠3(10) = 39 m.

Finally, the comparison of the simulations illustrate that the pro-
posed hierarchical control guarantees safety performances (1) in both
configurations. Evaluating non-safety performances, i.e., which are

formed in the rewards (17),(18), the hierarchical control with
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Fig. 16. Control inputs on the vehicles.
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centralized configuration is more efficient than with independent con-
figuration. Nevertheless, the centralized configuration results in only
a slight improvement of the non-safety performance level. In spite
of this improvement, the advantage of the control with independent
configuration is that the complexity of the RL-based controller, i.e., the
neural network, and the optimization task in the supervisor is lower.

This conclusion is confirmed by the simulation result below. Table 1
summarizes the results of simulations with different 𝑛𝑠 number of
vehicles in an intersection. The simulations have been performed at
independent and centralized configurations and the computation times
𝑇𝑐𝑜𝑚𝑝 of the supervisory algorithm, related to a given input set, have
been measured. For simulation purposes MATLAB 2020a on PC with
Intel Core i7 10th Gen processor has been used. It can be seen that
the increase of 𝑛𝑠 has significant impact on 𝑇𝑐𝑜𝑚𝑝, and that is more
relevant on the centralized configuration. The increase in 𝑇 is
𝑐𝑜𝑚𝑝 s

13
resulted that the number of cases in the mixed-integer optimization is
2𝑛. Nevertheless, in case of centralized configuration further increasing
s resulted that the number of optimization variables is 𝑛𝑠 + 1, while
n case of independent configuration it is 1 constantly. Consequently,
igh 𝑛𝑠 at centralized configuration requires high 𝑇𝑐𝑜𝑚𝑝, and thus, the
lgorithm in real-time may not be performed. But, in case of the
ndependent configuration the considered number of vehicles during
he computation is fixed. In the example, 𝑛𝑠 = 3 is selected, and thus,
𝑐𝑜𝑚𝑝 < 𝑇 , which is a criterion against the implementation.

. Implementation of the motion control algorithm

The goal of this section is to demonstrate the effectiveness of
he proposed control algorithm through its implementation on a HiL
imulator environment.
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Table 1
Computation time of the supervisory algorithm.
𝑛𝑠 1 2 3 4 5 6 7 8 9 10

𝑇𝑐𝑜𝑚𝑝 (s) for ind. 0.012 0.022 0.044 0.057 0.080 0.106 0.226 0.426 0.866 1.904
𝑇𝑐𝑜𝑚𝑝 (s) for centr. 0.019 0.028 0.057 0.065 0.091 0.116 0.269 0.529 1.001 2.189

𝑛𝑠 11 12 13 14 15

𝑇𝑐𝑜𝑚𝑝 (s) for ind. 3.097 6.610 16.292 34.886 66.817
𝑇𝑐𝑜𝑚𝑝 (s) for centr. 4.015 9.429 21.355 43.820 138.362
Fig. 17. Scheme of the HiL architecture with multiple vehicles.
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The scheme of the HiL architecture is illustrated in Fig. 17. The com-
unication between the elements through their connection to Robot
perating System (ROS) is realized. All of the elements in the HiL
rchitecture, i.e., the test vehicles, the motion capture system, the com-
uter for high level control, the computer for virtual vehicle simulation
nd the tablet for visualization as nodes into the ROS network are
onnected.

In the given setup the test vehicles are F1TENTH type of 1/10
ized wheeled RC vehicles. The vehicle contains a Jetson Xavier NX
omputer and various sensors, i.e., camera, LiDAR, IMU etc., but for
chieving high precision positioning of the vehicles (±0.2 mm), the

OptiTrack motion capture system is used. The lateral motion of the
vehicle is influenced by front wheel steering, whose value through
a PID controller based on the actual lateral error is computed. Mea-
suring the longitudinal speed of the vehicles is also the role of the
OptiTrack motion capture system. The system contains 6 cameras, the
measurements through reflective passive markers on the vehicles are
realized. The measured position and speed signals through Wi-Fi are
transmitted to the ROS server, and thus, these signals for all equipment
with ROS nodes are available. The motions of the virtual vehicles on a
computer using Matlab based on the vehicle model (4) are simulated.
The advantage of virtual vehicles is that a high number of vehicles
without their expensive physical realization in training and evaluation
process can be incorporated. The augmented reality, with which the
virtual vehicles can be visualized, is implemented on a tablet based on
Android. For visualization purposes, an application based on Vuforia
engine in Unity is developed. The operation requires a marker (e.g., on
the floor) for the positioning of the tablet. The position, orientation
information on the virtual vehicles to the tablet via the ROS network
are transmitted. Moreover, the RL-based agent of the control loop on a
computer is implemented, which is also connected to the ROS network.
The RL-based agent through ROS gets information on the position and
speed values of all test vehicles and virtual vehicles, which are used for
the computation of the candidate control input 𝑎𝐿,𝑖(𝑘).

In the rest of this section the effectiveness of the hierarchical motion
control algorithm with independent configuration is demonstrated,
i.e., two scenarios demonstrate the efficient motion of physical and
virtual automated vehicles in a roundabout with and without high level
connection.
14
Fig. 18. Illustration of the roundabout example.

.1. Demonstration on roundabout scenario

The scheme of the roundabout of the demonstration example in
ig. 18 is illustrated. The roundabout has anticlockwise circulation
nd three entrance/exit connections. This type of roundabout in the
earning process with different entrance/exit variations of the vehicles
as been used. During the simulations it has been assumed that the
otions of the non-automated surrounding vehicles are not influenced

y the automated vehicles, i.e., the automated vehicle must adapt to
he other vehicles in the actual roundabout scenario. With regards to
he roundabout scenario, the results of four simulation cases are shown.
n simulation Case 1 and Case 2 the high level control is connected to
he vehicles, while in Case 3 and Case 4 the connection has been lost,
.e., 𝑎𝐿,𝑖 ≡ 0. Moreover, in Case 1 and Case 3 the initial position of a
irtual vehicle with automated control differs from its position in Case
and Case 4.

In the roundabout scenario three automated vehicles in independent
onfiguration are involved, i.e., two F1TENTH test vehicles and a
irtual automated vehicle (red), and two further non-automated virtual
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Fig. 19. Illustration on the roundabout scenario. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ehicles (green, burgundy) are found, see the snapshots of Case 1 in
ig. 19. Fig. 19(a) shows the interaction of two automated vehicles,
.e., virtual vehicle and test vehicle I. Since the virtual vehicle starts
ts motion close to Entrance I, test vehicle I has to stop to keep
𝑠𝑎𝑓𝑒. Nevertheless, when the virtual vehicle leaves Entrance I, the test
ehicle enters into the roundabout, see Fig. 19(b). During its motion
he distances of 𝑠𝑠𝑎𝑓𝑒 from both vehicles, i.e., the preceding and the
ollower test vehicle II are kept. In the next phase of the HiL simulation,
irtual vehicle leaves the roundabout on Exit II and the motion of
est vehicle I must be adapted to the preceding green virtual vehicle.
ig. 19(c) illustrates that test vehicle I also leaves the roundabout on
xit III and then, test vehicle II must adapt to the entering burgundy
irtual vehicle, which has a slow motion. Finally, the virtual vehicle
eaves the roundabout on Exit I and then the test vehicle II also leaves
he roundabout on Exit I, while 𝑠𝑠𝑎𝑓𝑒 has been kept, see Fig. 19(d).

In Fig. 19(e) a snapshot on another scenario is illustrated, in which
he initial position of red virtual vehicle is modified (Case 2), i.e., the
ed vehicle is further from Entrance I. The goal of this snapshot is to
how that the automated test vehicle I is able to make an alternative
ecision, i.e., to enter prior to the red vehicle, if s 𝑠𝑎𝑓𝑒 can be kept. This
ifference can be seen through the comparison of Fig. 19(a) and (e).

The results on the roundabout scenario at Case 1 are shown in
ig. 20. The acceleration command of test vehicle I, that is 𝑎1, is
llustrated in Fig. 20(a). It can be seen that 𝑎1 is close to 𝑎𝐿,1, which

means that the high level control provides efficient candidate control
inputs. Between 1 s and 2.5 s, the value of 𝑎1 is reduced to −1 m∕s2

to guarantee priority for the red virtual vehicle, see also Fig. 19(a).
Its impact is also shown in Fig. 20(d), see 𝑣1 speed signal. Due to the
priority, red virtual vehicle is able to move with its maximum speed
0.6 m∕s almost during the entire route, see Fig. 20(c). Nevertheless,
the test vehicle I and the test vehicle II must adapt to the surrounding
vehicles, which adaptations result in varying acceleration profiles, see
Fig. 20(a)–(b). The distance between the vehicles, i.e., 𝑠𝑖 values for
Case 1 are shown in Fig. 22(a). For example, between 4 s and 5 s
the keeping of 𝑠1 above 𝑠𝑠𝑎𝑓𝑒 (see Fig. 22(a)) requires the reduction
of 𝑎1 (see Fig. 20(a)), which also leads to decreased 𝑣1 (see Fig. 22(d)).
Since in this phase of the HiL simulation test vehicle I moves already in
the roundabout, test vehicle II must also adapt to this situation, see its
acceleration profile between 4 s and 5 s (Fig. 20(b)), its varying speed
profile (Fig. 20(d)) and the keeping of 𝑠2 above 𝑠𝑠𝑎𝑓𝑒 in (Fig. 22(a)).

The similar effect between 13 s and 14.5 s is shown, when test vehicle

15
II has to adapt to the motion of burgundy non-automated vehicle, see
Fig. 20(b).

The speed profile for each automated vehicle in Case 2 and Case
3 for comparison purposes in Fig. 21 can be found. The difference of
Case 1 and Case 2 is only the initial position of the red virtual vehicle,
see also Fig. 19(a),(e). In Case 2 test vehicle I enters the roundabout
before red virtual vehicle arrives at Entrance I, and thus, 𝑣1 increases
sharply at 1 s, while 𝑣3 is reduced at 1.5 s. In Case 2 the speed profile
of all vehicles differ from Case 1, compare Figs. 20(d) and 21(a). It
reason is that after the entrance of test vehicle I, the ordering of the
four vehicles in the roundabout is different. I.e., at Case 1: green virtual
vehicle, red virtual vehicle, test vehicles I, test vehicle II, at Case 2:
green virtual vehicle, test vehicle I, red virtual vehicle, test vehicle II,
compare Fig. 19(e),(f). Moreover, in Fig. 21(b) the speed profiles of
the automated vehicles at Case 3 are illustrated. It is shown that the
loss of the high level control connection has only slight impact on the
vehicle speeds, which is beneficial for safety purposes, see Fig. 21(b).
Nevertheless, through the loss of the connection, the speed value and
its variation on test vehicle I and on test vehicle II are increased. It
means that the economy performance, i.e., minimization of 𝑎𝑖 in the
reward (see (18)) has not been achieved.

Finally, it is demonstrated that the variation of the initial speed or
the loss of the high level control connection are not able to result in
the violation of safety performance. In Fig. 22 the 𝑠𝑖 values in all cases
are illustrated. It can be seen that at all cases, all of the 𝑠𝑖 values are
above 𝑠𝑠𝑎𝑓𝑒. It means that the proposed hierarchical control can provide
guarantees on collision avoidance.

7. Conclusions

The paper has proposed the design of a hierarchical control strategy
for guaranteeing the safe motion of automated vehicles under the sce-
narios of their interactions. The hierarchical structure has been formed
for two configurations, i.e., centralized and independent configurations.
Each configuration has a learning-based control on the high level, a
robust control and a supervisor on the vehicle level. The advantages
of the configurations through a comparative simulation scenario have
been presented.

The hierarchical control strategy in independent configuration of
the automated vehicles has been implemented. It has been demon-

strated through HiL simulations under intersection and roundabout
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Fig. 20. Results on roundabout scenario (Case 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 21. Speed profiles at different cases.
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nvironments, that the safe motion of the vehicles in all of the scenarios
an be guaranteed. Moreover, through the learning-based control the
conomy performance of the automated vehicles can be improved.
he demonstrations have also shown that the independently-controlled
utomated vehicles are able to adapt to the motions of each other and
he those of non-automated vehicles.

In spite of the safe and effective operation of the hierarchical
ontrol strategy, some limitations on the method can be found. The
pplicability of the method can be increased with the improvement
f the kinematic vehicle model in the supervisor to dynamic vehicle
odel. This improvement can result in the application of the method

or handling vehicle interactions in high speed roundabouts. Another
imitation of the method is the point mass model of the vehicle.
lthough this limitation through increased safety distance between the
ehicles can be compensated, but through consideration of real vehicle
izes the distance between the vehicles can be reduced.
 t

16
Moreover, a further theoretical challenge of the research is to
rovide a control strategy, which is able integrate the benefits of cen-
ralized and independent configurations. For example, in the proposed
oundabout scenario the modification of the initial position of a vehicle
as led to different vehicle ordering in the roundabout. The different
rdering has also led to different speed profiles. Nevertheless, it can
e a further challenge to select the speed profile of the individual
utomated vehicles to improve the economy performances of all ve-
icles. It requests a control strategy, in which the centralized control
an be decentralized to achieve independent configuration, but the
erformance level of the centralized configuration can be preserved,
ee e.g., the concept of global/local control (Nguyen, Hara, & Tsumura,
017; Wang, Fujimoto, & Hara, 2017), or distributed reinforcement
earning (Jiang, Huang, Jafari, & Jalayer, 2022; Li, Wu, & He, 2022;
uzahid et al., 2023; Wang, Zhang, Xu, Li, & Ran, 2019). Using
hese methods, due to the distributed functionality in the individual
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Fig. 22. Distances between the vehicles in the roundabout scenario.
C

C

configuration, further improvement on the reductions of traveling time
and traction energy can be achieved. These approaches can lead to the
design of automated vehicle control in an individual configuration, and
the global performances on the local level can be considered.
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