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a b s t r a c t

Let D = (d1, d2, . . . , dn) and F = (f1, f2, . . . , fn) be two sequences of positive integers.
We consider the following decision problems: is there a (i) multigraph, (ii) loopless
multigraph, (iii) simple graph, (iv) cycle-free graph (forest or tree), (v) caterpillar G =

(V , E) such that for all k, d(vk) = dk and
∑

w∈N (vk)
d(w) = fk (d(v) is the degree of v and

N (v) is the set of neighbors of v). Here we show that all these decision problems can
be solved in polynomial time if ∆ := maxk dk is bounded. The problems are converted
into an integer programming feasibility problem in which both the number of variables
and the number of inequalities depend only on ∆ but not on n.

The problem is motivated by NMR spectroscopy of hydrocarbons. The algorithm has
been implemented in the ZIMPL language, and its applicability is demonstrated on trees
up to n = 1000 vertices. The average reconstruction time for trees with 1000 vertices
is still less than 40 ms.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In statistical testing of networks, a network from real life must be compared with a background distribution of
andom graphs. In such null models of random graphs, the degree sequence of the graphs is typically fixed. However,
here are structural properties that are not preserved by the degree sequence. One example for such a property is the
ssortativity [17]. A network is called assortative if vertices tend to be connected to vertices with similar degrees, and it is
alled dissortative if low degree vertices tend to connect to high degree vertices. The observation that real life networks
ith similar degree sequences might have different assortativity urged research to develop null models that preserve
tructural properties above the degree sequence. Such models are, for example, the joint degree matrix model [4,17]
hat prescribes the number of edges between vertex classes with given degrees and the dk-random graphs that considers
he distribution of induced sub-graphs up to a given size [15]. While there are polynomial algorithms to construct a
ealization of a joint degree matrix [4], constructing a graph with prescribed small sub-graph distribution appears to be
hard problem. This motivated the question: ‘‘What kind of local properties make the graph construction hard?’’ Erdős
nd Miklós showed that it is already NP-complete to ask if there exists a graph with given degree and neighbor degree
equence [7].
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rg/licenses/by-nc-nd/4.0/).
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In this paper, we show that there exists a polynomial algorithm to construct graphs with prescribed degree and
neighbor degree sequence if there is a bound on the maximum degree. We consider several variants of the problem: we
might require that the graph be a simple graph, cycle-free graph, or caterpillar. Particular emphases are on the cases when
the graph is a tree as it also has an application of obtaining the chemical structure of hydrocarbons by NMR spectroscopy
data.

Hydrocarbons are the simplest organic molecules consisting of only hydrogen and carbon atoms. A carbon atom makes
four covalent bonds, while a hydrogen atom makes only one covalent bond. What follows is that hydrogen atoms can
bond only to carbon atoms in hydrocarbons. Therefore, the information on the covalent bonds between carbon atoms
completely describes the chemical structure of a hydrocarbon molecule. Indeed, if a carbon atom makes k covalent bonds
o other carbon atoms, then it must make 4 − k bonds to hydrogen atoms. The diagram representing only the covalent
bonds between the carbon atoms is a connected graph with maximum degree 4. This graph is called the skeletal structure
and has complete information about the chemical structure. A hydrocarbon might contain multiple bonds between two
carbon atoms. Such a hydrocarbon is called unsaturated, and the skeletal structure is a connected, loopless multigraph
in that case. When there are only single bonds between carbon atoms, the hydrocarbon is called saturated, and then the
skeletal structure is a connected simple graph.

The chemical formula CnHm means that there are n carbon atoms and m hydrogen atoms in a molecule. There are
simple chemical measurements to obtain n and m. When m = 2n + 2, the skeletal structure is a tree. Indeed, in that
case, there are n − 1 covalent bonds between carbon atoms, and any connected graph with n vertices and n − 1 edges
is a tree. As m decreases, the number of covalent bonds between carbon atoms increases. This might be obtained by
multiple bonds between carbon atoms (that is, we are talking about unsaturated hydrocarbons) or making cycles in
the skeletal structure. Unsaturated hydrocarbons react with halogens while saturated hydrocarbons do not react, and
that simple chemical reaction helps separate unsaturated hydrocarbons from saturated hydrocarbons with cycles in their
skeletal structure. In conclusion, the chemical formula CnHm is easy to obtain and it is easy to decide if the hydrocarbon
is saturated or not as well.

More information on the chemical structure of a hydrocarbon can be attained from NMR spectroscopy. Roughly
speaking, the position (frequency) of a peak in the NMR spectroscopy depends on the number of hydrogen atoms bonding
to a particular carbon atom causing the peak, and the size of the peak tells the number of such carbon atoms. Furthermore,
a peak (roughly, a Gaussian bell-shaped curve) is split depending on the number of hydrogen atoms bonding to neighbor
carbon atoms. A peak is split into l + 1 parts when there are altogether l hydrogen atoms on the neighbor carbon atoms.
From this information, the degree of a carbon atom as well as the sum of the degrees of the neighbor carbon atoms in
the skeletal structure can be obtained. Indeed, if a peak related to k hydrogen–carbon bonds is split into l+ 1 parts, then
the degree of the carbon atom in the skeletal structure is 4− k, and the sum of the degrees of the neighbor carbon atoms
is 4 × (4 − k) − l.

This raises the following graph theoretical question: given degree sequences D = (d1, d2, . . . , dn) and F =

(f1, f2, . . . , fn), is there a graph G = (V , E), such that for all k, d(vk) = dk and
∑

w∈N (vk)
d(w) = fk, where d(v) is the

egree of vertex v and N (v) is the set of the neighbors of v? Erdős and Miklós showed that this decision problem is
P-complete in general [7]. Here we consider a specific case: the maximum degree is 4, and we are looking for tree
ealizations. We show that this specific case can be solved in polynomial time.

There is typically more than one graph with a given degree and neighbor degree sequence. Some of the solutions
re chemically not stable due to spherical constraints. For example, it is known that the hydrocarbon whose skeletal
tructure would be the balanced unrooted ternary tree with 17(= 1 + 4 + 12) vertices is chemically not stable. In
principle, molecules that have skeletal structure with larger diameter tend to be more stable. Among trees with given
degree sequence, caterpillars have the maximum diameter. This motivates us to ask when a caterpillar with given degree
and neighbor degree sequence exists.

The paper is structured as follows. In the Preliminaries, we give some definitions on graphs and also introduce the
concept of labeled stub-stars. When each edge in a graph is cut into two half-edges (stubs), we get stub-stars. If each
stub is labeled by the degree of the neighbor vertex incident to the edge whose cut resulted in the stub, the sum of
these labels is the sum of the neighbor degrees. In the next section, we give necessary and sufficient conditions when
a sequence of labeled stub-stars has graph realizations with certain properties. Our main interest is in the cases when
the graph is a simple graph or a cycle-free graph (tree or forest) or a caterpillar. However, for the sake of completeness,
we also discuss the cases when the graph is a multigraph or a loopless multigraph. After this, we show that for each of
the five cases (multigraph, loopless multigraph, simple graph, cycle-free graph, caterpillar) a polynomial time solvable
integer programming feasibility problem exists to find a sequence of stub-stars that is consistent with a given degree and
neighbor degree sequence and also satisfies the necessary conditions to have a graph realization with the given properties.

2. Preliminaries

First, we give some graph-theoretical definitions.

Definition 1. A graph G = (V , E) is a multigraph if E is a multiset of
(V
2

)
∪

(V
1

)
. G is a loopless multigraph if E is a multiset

of
(V
2

)
. G is a simple graph if E is a subset of

(V
2

)
.

A caterpillar is a tree in which the non-leaf vertices form a path.

A component of a (multi)graph is a connected subgraph that is not part of any larger connected subgraph.
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efinition 2. A degree sequence (d1, d2, . . . , dn) is graphical if there exists a vertex labeled graph G = (V , E) such that
or each vi ∈ V , d(vi) = di. Such a graph G is called a realization of the degree sequence (d1, d2, . . . , dn).

A pair of degree sequences (or bipartite degree sequence) (d1,1, d1,2, . . . , d1,n), (d2,1, d2,2, . . . , d2,m) is graphical if there
exists a simple bipartite graph G = (U, V , E), such that for each ui ∈ U , d(ui) = d1,i, and for each vj ∈ V , d(vj) = d2,j. Such
a bipartite graph G is also called a realization.

A degree sequence or bipartite degree sequence is forest realizable if it has a forest realization, that is, a realization
which is a forest.

Definition 3. Let D = (d1, d2, . . . , dn) and F = (f1, f2, . . . , fn) be a pair of degree and neighbor degree sequences. We say
that the graph G = (V , E) is a realization of (D, F ) if for all k, d(vk) = dk and

∑
w∈N (vk)

d(w) = fk, where N (v) denotes the
set of neighbors of v.

We now introduce the main technical concept used in this paper: the labeled stub-stars.

Definition 4. A labeled stub-star Sk of degree d is a vertex with d stubs (half edges). Each stub si is labeled with a positive
integer dk,i. The degree of a labeled stub-star is the number of its stubs. The neighbor degree sum of a labeled stub-star is
the sum of its labels. Let S = (S1, S2, . . . , Sn) be a sequence of labeled stub-stars. The maximum degree of a sequence of
labeled stub-stars is the maximum degree of its labeled stub-stars. We denote it by ∆.

The labels of a labeled stub-star form a partition of the sum of the labels. We will identify labeled stub-stars by these
partitions. We will write the numbers in a partition in decreasing order, and put them into square brackets.

A vertex labeled graph G = (V , E) is a realization of S if for each vk ∈ V , the neighbors of vk have degrees
dk,1, dk,2, . . . , dk,d(vk), where dk,1, dk,2, . . . , dk,d(vk) are the labels of the stub-star Sk. We say that S is multigraph, loopless
multigraph, simple graph, cycle-free graph, caterpillar realizable, respectively, if it has a realization which is a multigraph,
loopless multigraph, simple graph, cycle-free graph, caterpillar, respectively.

Definition 5. The chromatic degree d(i,j) (i ≤ j) of a labeled stub-star S is 0 if the degree of S is neither i nor j. If its degree
is i, then d(i,j)(S) is the number of times S contains label j. Finally, if the degree of S is j, then d(i,j)(S) is the number of
times S contains label i.

For a sequence of labeled stub-stars S = (S1, S2, . . . , Sn), we define a degree sequence

D(i,i)(S) := (d(i,i)(S1), d(i,i)(S2), . . . , d(i,i)(Sn)).

We also define the bipartite degree sequence D(i,j)(S) for all i < j. First we split S into two sequences. Let (A1, A2, . . . , Ar )
be the subsequence of S of stub stars with degree i and let (B1, B2, . . . , Bs) be the subsequence of stub stars with degree
not equal to i. Then

D(i,j)(S) := (d(i,j)(A1), d(i,j)(A2), . . . , d(i,j)(Ar )), (d(i,j)(B1), d(i,j)(B2), . . . , d(i,j)(Bs)).

For a graph G, we define the monochromatic sub-graph of G with color (i, j) to be the subgraph containing the edges
that connect vertices with degree i and j.

As an example, a realization of the sequence of labeled stub-stars

S = ([3, 2], [3, 2], [3], [2, 2, 1], [3], [3], [3, 1, 1], [3, 1, 1], [3], [3])

is given in Fig. 1. The chromatic degree sequences can be easily obtained by considering the monochromatic subgraphs
containing only the edges with the given color. For example, its D(2,2) degree sequence is

D(2,2)(S) = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0),

and its D(1,3) bipartite degree sequence is

D(1,3)(S) = (1, 1, 1, 1, 1), (0, 0, 1, 2, 2).

The labels of a labeled stub-star form a partition. Below we give the necessary definitions and notations for partitions
of integer numbers used in this paper.

Definition 6. We will denote by λ ⊣ n that λ = [λ1, λ2, . . . , λk] is a partition of a positive integer n. That is, each λi is a
positive integer, and it holds that

k∑
i=1

λi = n.

The height of λ = [λ1, λ2, . . . , λk] is k, and is denoted by h(λ). The size of λ is n, and is denoted by |λ|. Finally, N(λ, j)
denotes how many times j appears in λ, that is
N(λ, j) := |{i ∈ [h(λ)]|λi = j}|.
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Fig. 1. A realization of the sequence S = ([3, 2], [3, 2], [3], [2, 2, 1], [3], [3], [3, 1, 1], [3, 1, 1], [3], [3]) of labeled stub-stars. The vertices are labeled,
nd also, the colors of the edges are indicated.

If λ comes from the labels of a stub-star, then h(λ) corresponds to the degree of the stub-star while |λ| corresponds
o the neighbor degree sum, that is, the sum of the labels of the stubs.

We are going to solve the graph realization problems defined above via integer programming feasibility problems that
e introduce now.

efinition 7. The integer programming feasibility problem (X ,L) consists of a set X of variables, and a system L of linear
nequalities whose variables are from X and asks if there is an integer assignment to X that satisfies L.

Some of the inequalities we are going to use contain the function min{x, y} or max{x, y}. These can be expressed as
inear inequality systems if an upper bound for |x − y| is available. The following lemma is well known in operational
esearch, but for the sake of completeness, we give a proof here.

emma 8. Let x, y and M be integer numbers satisfying

M ≥ |x − y|,

nd let z and b be variables. Then the following inequality system

z ≤ x (1)
z ≤ y (2)
z ≥ x − Mb (3)
z ≥ y − M(1 − b) (4)
0 ≤ b (5)
b ≤ 1 (6)

as at most two integer solutions, and in every case z = min{x, y}.
Similarly, the following inequality system

z ≥ x (7)
z ≥ y (8)
z ≤ x + Mb (9)
z ≤ y + M(1 − b) (10)
0 ≤ b (11)
b ≤ 1 (12)

as at most two integer solutions, and in every case z = max{x, y}.

roof. We prove the min{x, y} case. Observe that b is either 0 or 1. If x < y, then there is no solution with b = 1 since
he inequalities in Eqs. (1) and (4) would contradict each other. On the other hand, b = 0 and z = x is a solution, and the
nly solution since x ≤ z ≤ x must hold.
Similarly, when y < x, the only solution is z = y, b = 1. Finally, if x = y, then z = x(= y) and b ∈ {0, 1}.
The proof for max{x, y} goes analogously. □

. Realizations of a set of labeled stub-stars

In this section, we state and prove theorems on realizations of labeled stub-stars. We need the well known Erdős–Gallai
nd Gale–Ryser inequalities.
50
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heorem 9 (Erdős–Gallai, [6]). Let D = (d1 ≥ d2 ≥ · · · ≥ dn) be a degree sequence. Then D is simple graph realizable if and
nly if the sum of the degrees is even, and for each k = 1, 2, . . . , n, the inequality

k∑
g=1

dg ≤ k(k − 1) +

n∑
h=k+1

min{k, dh} (13)

olds.

heorem 10 (Gale–Ryser, [8,16]). Let D = (d1,1 ≥ d1,2 ≥ · · · ≥ d1,n), (d2,1, d2,2, . . . , d2,m) be a bipartite degree sequence.
Then D is bipartite graph realizable if and only if

n∑
g=1

d1,g =

m∑
h=1

d2,h (14)

nd for each k = 1, 2, . . . , n, the inequality

k∑
g=1

d1,g ≤

m∑
h=1

min{k, d2,h} (15)

olds.

When the degree sequences have a maximum degree ∆, then only the first ∆ Erdős–Gallai and the first ∆ − 1
ale–Ryser inequalities have to be checked as the following well known lemma states.

emma 11. Let D = (d1 ≥ d2 ≥ · · · ≥ dn) be a degree sequence. Then for each k > d1, the inequality in Eq. (13) holds.
imilarly, let D = (d1,1 ≥ d1,2 ≥ · · · ≥ d1,n), (d2,1, d2,2, . . . , d2,m) be a bipartite degree sequence satisfying equation (14).
hen for all k ≥ maxj{d2,j}, the inequality in Eq. (15) holds.

For sake of completeness, we mention the following well-known theorems.

heorem 12. A degree sequence D = (d1, d2, . . . , dn) is tree-realizable if and only if all degrees are positive and
∑n

i=1 di =

n − 2. D is forest-realizable if and only if there are exactly m non-zero degrees, and their sum is even and at most 2m − 2. A
egree sequence is caterpillar realizable if and only if it is tree realizable.

In the following theorem and later in the paper, we use conditional sums. Conditions are introduced after a ‘|’. For
xample, ‘λ|h(λ) = i’ means that the summation is only for those partitions λ whose height is i.

heorem 13. Let S = (S1, S2, . . . , Sn) be a sequence of labeled stub-stars with maximum degree ∆. Let xλ denote the number
f labeled stub-stars in S whose labels form the partition λ. Then S is

(a) multigraph
(b) loopless multigraph
(c) simple graph

realizable if and only if

(a) for each i = 1, 2, . . . , ∆,∑
λ|h(λ)=i

xλN(λ, i) ≡ 0 (mod 2) (16)

and for each 1 ≤ i < j ≤ ∆∑
λ|h(λ)=i

xλN(λ, j) =

∑
λ′|h(λ′)=j

xλ′N(λ′, i). (17)

(b) the conditions in case (a) holds and for each i = 1, 2, . . . , ∆,

2 max
λ|h(λ)=i

{min{1, xλ}N(λ, i)} ≤

∑
λ′|h(λ′)=i

xλ′N(λ′, i). (18)

(c) the conditions in case (a) holds, for each i = 1, 2, . . . , ∆, the first ∆ Erdős–Gallai inequalities hold for D(i,i)(S), and for

each i < j, i, j = 1, 2, . . . , ∆, the first ∆ − 1 Gale–Ryser inequalities hold for the bipartite degree sequence D(i,j)(S).
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(a) It is well known that a degree sequence (d1, d2, . . . , dn) has a multigraph realization if and only if
∑n

i=1 di is
even. Similarly, the bipartite degree sequence (d1,1, d1,2, . . . , d1,n), (d2,1, d2,2, . . . , d2,m) has a bipartite multigraph
realization if and only if

∑n
i=1 d1,i =

∑m
j=1 d2,j. Observe that Eq. (16) says that the sum of the degrees in D(i,i)(S)

is even, furthermore, Eq. (17) says that the sum of the degrees in the two sequences are the same in the bipartite
degree sequence D(i,j)(S).
Let G be a multigraph realization of S. Then for each i = 1, 2, . . . , ∆, the monochromatic subgraph with color (i, i)
is a multigraph, and for each i < j, i, j = 1, 2, . . . , ∆, the monochromatic subgraph with color (i, j) is a bipartite
multigraph. That is, Eqs. (16) and (17) hold.
On the other hand, if Eqs. (16) and (17) hold, then there are multigraph realizations for each D(i,i)(S) and there are
bipartite multigraph realizations for each D(i,j)(S). The union of them is a multigraph realization of S.

(b) It is also well known that a degree sequence (d1, d2, . . . , dn) has a loopless multigraph realization if and only if the
sum of the degrees is even and

max
i

{di} ≤

n∑
i=1

di − max
i

{di}.

Observe that Eq. (18) describes this condition for the degree sequence D(i,i)(S).
Let G be a loopless multigraph realization of S. Then for each i = 1, 2, . . . , ∆, the monochromatic subgraph
with color (i, i) is a loopless multigraph, and for each i < j, i, j = 1, 2, . . . , ∆, the monochromatic subgraph
with color (i, j) is a bipartite (loopless) multigraph. (Observe that bipartite graphs cannot contain a loop.) That
is, Eqs. (16), (17) and (18) hold.
On the other hand, if Eqs. (16), (17) and (18) hold, then there are loopless multigraph realizations for each
D(i,i)(S) and there are bipartite multigraph realizations for each D(i,j)(S). The union of them is a loopless multigraph
realization of S.

(c) Let G be a simple graph realization of S. Then for each color (i, i), i = 1, 2, . . . , ∆, the monochromatic subgraph
is a simple realization of the degree sequence D(i,i)(S), and for each color (i, j), i < j, i, j = 1, 2, . . . , ∆, the
monochromatic subgraph is a simple bipartite realization of the bipartite degree sequence D(i,j)(S). Therefore the
conditions in case (a) as well as the first ∆ Erdős–Gallai and the first ∆ − 1 Gale–Ryser inequalities hold.
On the other hand, if the conditions in case (a) as well as the first ∆ Erdős–Gallai and the first ∆ − 1 Gale–
Ryser inequalities hold, then there are monochromatic simple graph realizations of each color (i, i), and there
are monochromatic simple bipartite graph realizations for each color (i, j), i < j, i, j = 1, 2, . . . , ∆. Observe that
the union of them is a simple graph realization of S. Indeed, no parallel edges are possible in the union of these
monochromatic graphs. Any parallel edge in the union would be a parallel edge in one of the monochromatic graphs,
but they are all simple. □

We now consider when a sequence of labeled stub-stars has a forest realization. Given the previous theorem, we might
hope that a sufficient condition is if for each i ≤ j, i, j = 1, 2, . . . , ∆, D(i,j) is a forest realizable degree sequence. However,
this is not the case, as the following example demonstrates.

The example sequence of labeled stub-stars S consists of four labeled stub-stars, S1, S2, S3, S4, respectively, with labels
forming partitions [3, 2], [3, 2], [3], [2, 2, 1], respectively.

In this case, each D(i,i)(S) and D(i,j)(S) is forest realizable, but S has only one realization, shown below.

1

2

4 3

(2, 2)

(2, 3)

(2, 3)

(1, 3)

The issue is that unlike loops and parallel edges, cycles can occur among multiple colors, so checking each individual
degree sequence is not sufficient. This motivates the next definition.

Definition 14. Let S = (S1, S2, . . . , Sn) be a sequence of labeled stub-stars with maximum degree ∆. For any subset
⊆ {(i, j)|1 ≤ i ≤ j ≤ ∆}, we define the multichromatic degree of Sk to be dI (Sk) :=

∑
(i,j)∈I d(i,j)(Sk) and the multichromatic

degree sequence to be DI (S) := (dI (S1), dI (S2), . . . , dI (Sn)).

For example, let I = {(2, 2), (2, 3)} for the previous example S. Then dI (S1) = 2, dI (S2) = 2, dI (S3) = 0, and
dI (S4) = 2. We also would like to warn the readers that multichromatic degree sequences differ from monochromatic
degree sequences even if the set I contains a single color. For example, for the set of labeled stub-stars S whose realization
was shown in Fig. 1, the bipartite degree sequence for the color (1, 3) was D(1,3)(S) = (1, 1, 1, 1, 1), (0, 0, 1, 2, 2). However,
the multichromatic degree sequence for I = {(1, 3)} is D (S) = (0, 0, 1, 1, 1, 1, 2, 2, 1, 1).
{(1,3)}
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T
heorem 15. Let S = (S1, S2, . . . , Sn) be a sequence of labeled stub-stars with maximum degree ∆. S is forest realizable
if and only if it is multigraph realizable and for any subset I ⊆ {(i, j)|1 ≤ i ≤ j ≤ ∆}, the multichromatic degree sequence
(dI (S1), dI (S2), . . . , dI (Sn)) is forest realizable.

Before we give the proof, we note that multigraph realizability is not a consequence of the condition that for all
subsets of colors, the multichromatic degree sequence is forest realizable. The example is the following sequence of labeled
stub-stars:

S = ([3, 1, 1, 1], [4, 1, 1], [4, 1, 1], [4, 1, 1], [4], [4], [4], [3], [3], [3], [3], [3], [3]).

This sequence of labeled stub-stars is clearly not multigraph-realizable, as there is only one degree 4 stub-star, however,
there are 6 stubs with label 4. However, for all subsets of colors, the multichromatic degree sequence is forest realizable.
The key is that the monochromatic degree sequence for color (3, 4) is the bipartite degree sequence

(1), (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

which is not bipartite graph realizable. On the other hand, the multichromatic degree sequence for I = {(3, 4)} is
(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) which is forest realizable.

Proof of Theorem 15. We first show the conditions are necessary. Let G be a forest realization of S. Then G is also a
multigraph realization, so S is multigraph realizable. For any subset of colors I , we define the color-induced subgraph of
G, denoted G[I], in the following way. For each edge, we label the edge with color (i, j) if the edge is created by joining
two stubs with labels i and j. Then G[I] is the subgraph consisting of all vertices of G along with all edges labeled with
some element of I . Since G is a forest, then G[I] is also a forest. The degree sequence of G[I] is (dI (S1), dI (S2), . . . , dI (Sn)),
so this sequence must be forest realizable.

To show the conditions are sufficient, we consider a multigraph realization G which is minimal among all realizations
of S in the number of components. By assumption multigraph realizations exist and there are a finite number of them,
so there exists a realization with minimal number of components.

Assume to the contrary that G has a cycle or a loop. Since we start with a multigraph realization, a cycle might have a
length of two, that is, two vertices connected by two parallel edges. In the case that G contains a cycle or a loop, we will
produce another realization of S, which we will call G′, with one fewer components. First we construct a subgraph Hk of
G, then we will find a series of swap operations that lead to G′ with one fewer components.

Let C := C0 be a cycle or a loop, and let I0 be the set of colors of its edges. Let H0 be G[I0]. H0 cannot have only
one component as it would contradict that DI0 is forest realizable. Indeed, a connected graph with a cycle has a degree
sequence that is not forest realizable. However, it can happen that H0 is contained in one component of G. Therefore,
we define two sequences Hi, Ci of subgraphs of G and a sequence of subsets of colors, Ii starting with i = 0. While Hi is
contained in one component of G, we construct an Hi+1, a Ci+1 and Ii+1 in the following way:

1. For all pairs of edges (e1, e2) such that e1 and e2 have the same color in Ii, e1 is in Ci and e2 is in another component
of Hi, find a path from e1 to e2 in G. Such path exists as Hi is contained in one component of G. For each edge f in
that path whose color is not in Ii, add its color to Ii+1, and label f by (e1, e2). An edge might be in several paths for
several (e1, e2) pairs, in that case take any of these labels.

2. Add all the colors in Ii to Ii+1. Then Hi+1 is defined as G[Ii+1]. Note that Hi+1 is disconnected because it has a cycle
yet DIi+1 is forest realizable. Define Ci+1 as the component of Hi+1 that contains Ci.

In a finite number of steps, this procedure will create an Hk which is contained in more than one component of G. Indeed,
note that Hi created by the procedure is always disconnected (this is since the degree sequence DIi is forest realizable and
Hi contains a cycle). At the same time, the inclusion of Hi in Hi+1 is always proper (indeed, as long as Hi is contained in one
component of G, we have Ii ⊂ Ii+1). Recall that G is disconnected (this is since its degree sequence is forest realizable and
G contains a cycle). Consequently, the procedure will finally create Hk which is contained in more than one component
of G. Since the set of colors is finite, the procedure will terminate in a finite number of steps.

Now we are going to construct a G′ that has one fewer component than G. Let f1,k and f2,k be two edges with the same
color in Ik \ Ik−1 such that f1,k is in Ck and f2,k is not in the same component of G as f1,k. Assume that f1,k = (v1, v2),
f2,k = (v3, v4), and v1 and v4 have the same degree. Furthermore, let us call the two components (in G) containing f1,k
and f2,k by G1 and G2.

Now we remove f1,k and f2,k from G and add edges f ′

1 = (v1, v3) and f ′

2 = (v2, v4). This swap operation creates another
simple graph realization of S from G. If f1,k or f2,k is in a cycle in G, then the swap operation merges G1 and G2 of G into
one component, thus, we arrive at a realization G′ of S with one fewer component. Otherwise the swap operation does
not change the number of components. Indeed, in that case, both removing f1,k and f2,k splits their components, G1 and
G2 in G into two components, G1,a, G1,b and G2,a, G2,b; however, the two new edges connects G1,a to G2,a and G1,b to G2,b.

On the other hand, consider the label (f1,k−1, f2,k−1) of f1,k if the swap operation does not decrease the number of
components. We claim the following: if the swap operation does not decrease the number of components in G then f1,k−1
and f2,k−1 are in different components of G after the swap operation. Indeed, we know that there was a path between
f and f before the swap operation that contained f . If there is a path between f and f after the swap
1,k−1 2,k−1 1,k 1,k−1 2,k−1
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peration, then either this path is in G1, and in that case f1,k was in a cycle, a contradiction, or this path contains edges
n G2, but in that case f2,k was in a cycle, also a contradiction (or both).

Now we can also perform a swap operation using edges f1,k−1 and f2,k−1. This operation either decreases the number
f components, and then we arrive at G′ with 1 fewer component, or separates f1,k−2 and f2,k−2, the two edges in the label
f f1,k−1. We can iterate this process since all the swap operations separating f1,i and f2,i use edges with color in Ik \ Ii,
nd thus do not change any edge in the paths between f1,j and f2,j for any j < i.
Eventually, one of the swap operations will merge two components in G since f1,0 is in the cycle or loop C . We remark

ere if C is a loop, then the swap operation removes the loop (v, v) and edge (u, w) and adds the edges (v, u) and (v, w).
We arrived at a contradiction that G had the minimum number of components. Therefore, G does not have a cycle,

hus it is a forest realization. □

Observe that the proof also provides an algorithmic construction. Take any multigraph realization and if it contains a
oop or cycle, then the construction in the proof provides a series of swap operations decreasing the number of components
n the realization. We remark that a series of swap operations given by the proof leads to a realization (called G′) with
ne fewer component. Eventually, after a finite number of swap operations (possibly via several G′s), a forest realization
s constructed.

Finally, we give the necessary and sufficient conditions when a sequence of labeled stub-stars are caterpillar realizable.

heorem 16. Let S = (S1, S2, . . . , Sn) be a sequence of labeled stub-stars, such that none of the stub-stars has 0 degree. Then
has a caterpillar realization if it is forest realizable, the sum of the degrees is 2n − 2, and there is no labeled stub-star in S
ith more than two labels larger than 1.

roof. First we show that the conditions are necessary. Let G be a caterpillar realization of S. Then S is clearly forest-
ealizable, and the sum of the degrees of the labeled stub-stars is 2n − 2. Also, in a caterpillar realization, any vertex has
t most two neighbors with degree larger than 1.
Now we show that the conditions are sufficient. If S is forest realizable, take any forest realization of it, G. We show

hat G is a caterpillar. First, G is a tree since the sum of the degrees is 2n − 2. Furthermore, it is a caterpillar since there
s no vertex with more than two neighbors whose degrees are larger than 1. □

. Degree and neighbor degree constraint realizations

In the previous section, we gave necessary and sufficient conditions when a sequence of labeled stub-stars have
ealizations with given properties. In this section, we show how those results fit into an integer programming feasibility
roblem. Recall that an integer programming feasibility problem asks if a bunch of linear inequalities have an integer
olution. Although the integer programming feasibility problem in general is NP-complete, here we will have constant
umber of variables and equations. That is, both the number of variables and the number of inequalities depend only on ∆

nd not on n. Therefore, for each mentioned problem, the same integer programming feasibility problem instance is solved
or any problem instance, just with different constants. The constants grow linearly with the number of vertices, thus the
unning time of the integer programming feasibility grows only with a poly-log function of the number of vertices.

First, we give the equation system that defines the possible sequences of labeled stub-stars whose realizations are
ealizations of a given degree and neighbor degree sequence.

emma 17. Let D = (d1, d2, . . . , dn) and F = (f1, f2, . . . , fn) be a pair of degree and neighbor degree sequences. Then a graph
= (V , E) is a realization of (D, F ) if and only if G is a realization of S = (S1, S2, . . . , Sn) satisfying the following inequality

ystem: ∑
λ|λ⊣f ∧ h(λ)=d

xλ = yd,f (19)

xλ ≥ 0 (20)

here xλ is the number of labeled stub-stars in S with labels λ (recall that the labels of a labeled stub-star form a partition of
positive integer) and yd,f is the number of cases when di = d and fi = f (di and fi in the sequences D and F).

roof. Assume that G = (V , E) is a realization of (D, F ). Then cutting each edge in E and labeling the stubs of the so-
merging stub-stars by the degree of the neighbor vertices yields a labeled stub-star S for each vertex v ∈ V . The degree
f S is d(v) and its labels form a partition of f :=

∑
w∈N (v) d(w). Therefore any realization of (D, F ) is also a realization of

sequence of labeled stub-stars that satisfies the equation system summarized in Eq. (19).
Similarly, if G = (V , E) is a realization of a sequence of labeled stub-stars satisfying the equation system presented

n Eq. (19), then the degree sequence of G is D, and the neighbor degree sum sequence is F . □

We can combine the equation system given in Eqs. (19) and (20) with appropriate linear inequality systems describing
he conditions (a)–(c) in Theorem 13 and the conditions in Theorems 15 and 16.

First, we start with multigraph realizations.
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heorem 18. Let D = (d1, d2, . . . , dn) and F = (f1, f2, . . . , fn) be a pair of degree and neighbor degree sequences. Let ∆

enote the largest degree in D. Then (D, F ) is multigraph realizable if and only if the integer programming feasibility problem
{X ,L} has a solution, where X consists of all xλ variables for all partitions λ = [λ1, λ2, . . . , λh(λ)] such that h(λ) ≤ ∆ and for
ll i, λi ≤ ∆ and auxiliary variables p1, p2, . . . , p∆, and L consists of

• the inequality system given in Eqs. (19) and (20),
• for all 0 < i < j ≤ ∆, the equation∑

λ|h(λ)=i

xλN(λ, j) =

∑
λ′|h(λ′)=j

xλ′N(λ′, i), (21)

• and for all i, the equation∑
λ|h(λ)=i

xλN(λ, i) = 2pi. (22)

Proof. Assume that (D, F ) has a multigraph realization G. Decompose G into labeled stub-stars S , then G is a multigraph
realization of S.

Let xλ denote the number of labeled stub-stars in S whose labels are λ. Furthermore, let

pi :=
1
2

∑
λ|h(λ)=i

xλN(λ, i).

We claim that these assignments form a solution to (X ,L). Indeed, the inequality system in Eqs. (19) and (20) holds due
to Lemma 17. Eqs. (21) and (22) hold due to Theorem 13. Indeed, Eq. (21) shows that for each i < j, the degree sequence
(i,j)(S) has a bipartite graph realization where all edges go between centers of stub-stars with degree i and j. Furthermore,

Eq. (22) shows that for each i, the sum of the degrees in D(i,i)(S) is even. Therefore, if (D, F ) has a multigraph realization,
the integer programming feasibility problem (X ,L) has a solution.

Now assume that (X ,L) has a solution. Let S denote the sequence of labeled stub-stars in which the number of labeled
stub-stars with labels λ is xλ. Since Eqs. (21) and (22) hold, S has a multigraph realization G according to Theorem 13.
This realization G is a realization of (D, F ) by Lemma 17 since the inequality system given in Eqs. (19) and (20) hold. □

For loopless multigraphs, a similar theorem can be proved.

Theorem 19. Let D = (d1, d2, . . . , dn) and F = (f1, f2, . . . , fn) be a pair of degree and neighbor degree sequences. Let ∆ denote
the largest degree in D. Then (D, F ) is loopless multigraph realizable if and only if the integer programming feasibility problem
{X ,L} has a solution, where X consists of all xλ variables for all partitions λ = [λ1, λ2, . . . , λh(λ)] such that h(λ) ≤ ∆ and for
all i, λi ≤ ∆ and auxiliary variables p1, p2, . . . , p∆, z1, z2, . . . , zr , b1, b2, . . . , br , where r =

∑∆

i=1(2i − 1) and L consists of

• the inequality system given in Eqs. (19) and (20),
• for all 0 < i < j ≤ ∆, the equation∑

λ|h(λ)=i

xλN(λ, j) =

∑
λ′|h(λ′)=j

xλ′N(λ′, i), (23)

• for all i, the equation∑
λ|h(λ)=i

xλN(λ, i) = 2pi, (24)

• and for all i, the integer linear programming feasibility problem defining

zs(i) = max
k∈{1,2,...,i}

⎧⎨⎩min

⎧⎨⎩1,
∑

λ|h(λ)=i∧N(λ,i)=k

xλ

⎫⎬⎭ k

⎫⎬⎭ , (25)

where s(i) is the index of the auxiliary variable storing the maximum degree in D(i,i)(S) as well as the inequality

2zs(i) ≤

∑
λ|h(λ)=i

xλN(λ, i). (26)

Proof. Similar to the proof of Theorem 18. Observe that the linear programming described in Eqs. (25) and (26) is
equivalent with the inequality in Eq. (18). Indeed, the maximum degree is the largest k for which

∑
λ|h(λ)=i∧N(λ,i)=k xλ is not

0. There are iminimums in Eq. (25). We need i auxiliary z and b variables for them. Then we have to select the maximum of
the i variables. It can be done by i−1 pairwise maximization. Thus, for one i, there are 2i−1 maximization/minimizations,
needing 2i − 1 z’s and b’s. This explains that the number of auxiliary variables, r is

∑∆ (2i − 1). □
i=1
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In case of simple graph realizations, the first few Erdős–Gallai and Gale–Ryser inequalities should be checked. The
challenge is that the degrees in D(i,j)(S) and D(i,i)(S) are not ordered so we do not know what the first k highest degrees
are. Fortunately, it is possible to give a dynamic programming algorithm that computes the sum of the first k highest
degrees. Below we introduce a dynamic programming algorithm that computes ti,k for k = 1, 2, . . . , ∆, which are the
auxiliary variables that count the sum of the k largest degrees needed for Erdős–Gallai inequalities and the values tl,k
for l < i which are needed for recursive derivation of the ti,k’s. The number of arithmetic operations in the dynamic
programming algorithm depends only on ∆.

Lemma 20. Let S be a sequence of labeled stub-stars in which the number of labeled stub-stars with labels λ is xλ. Fix an i
and j, and let

sl :=

∑
λ|h(λ)=i∧N(λ,j)=l

xλ.

Let tl,k denote the largest possible sum of at most k entries in D(i,j)(S) corresponding to labeled stub-stars with degree i such
that each term in the sum is at most l. Then the equations

tl,0 = 0 (27)

and

tl,k = max
0≤k′≤k

{
tl−1,k−k′ + l × min{k′, sl}

}
∀ l > 1 (28)

hold.

Proof. Eq. (27) is trivial. We prove Eq. (28) by proving two inequalities. To prove that the left hand side is smaller than
or equal the right hand side, consider the sum that maximizes tl,k. Assume that it contains k − k̃ terms that are smaller
than l. Then

tl,k ≤ tl−1,k−k̃ + l × min{k̃, sl}

since the sum of these k − k̃ terms cannot be larger than tl−1,k−k̃. Thus,

tl,k ≤ tl−1,k−k̃ + l × min{k̃, sl} ≤ max
0≤k′≤k

{
tl−1,k−k′ + l × min{k′, sl}

}
.

To prove that the left hand side is greater than or equal the right hand side, consider the k̃ that maximizes the right hand
side, and consider the sum that maximizes tl−1,k−k̃. Add min{k̃, sl} times l to this sum, then we get a sum that contains at
most k terms, the largest term is at most l, and its value is tl−1,k−k′ + l × min{k′, sl}. It cannot be larger than tl,k, thus we
get that

tl,k ≥ tl−1,k−k̃ + l × min{k̃, sl} = max
0≤k′≤k

{
tl−1,k−k′ + l × min{k′, sl}

}
. □

We need the same dynamic programming algorithm for each D(i,j)(S), and we will denote the variables in Eq. (28) by
t i,jl,k.

In the Erdős–Gallai inequalities, we also need to compute
∑n

h=k+1 min{k, dh}. We can define the degree sequence D̃ as
d̃h := min{k, dh}, and then

n∑
h=k+1

min{k, dh} =

n∑
g=1

d̃g − t̃k

where t̃k is the sum of the k largest degrees in D̃. This can be obtained by the dynamic programming recursion

t̃l,0 = 0 (29)

t̃l,k = max
0≤k′≤k

{
t̃l−1,k−k′ + min{l, k} × min{k′, sl}

}
∀ l > 1, (30)

and then defining t̃k := t̃i,k The correctness of Eqs. (29) and (30) can be proved similarly to the proof of Lemma 20. We
need the same dynamic programming algorithm for each D(i,i)(S), and we will denote the variables in Eq. (30) by t̃ il,k.

Now we are ready to prove the theorem on simple graph realizations.

Theorem 21. Let D = (d1, d2, . . . , dn) and F = (f1, f2, . . . , fn) be a pair of degree and neighbor degree sequences. Let ∆

denote the largest degree in D. Then (D, F ) is simple graph realizable if and only if the integer programming feasibility problem
{X ,L} has a solution, where X consists of all xλ variables for all partitions λ = [λ1, λ2, . . . , λh(λ)] such that h(λ) ≤ ∆ and
for all i, λi ≤ ∆ and auxiliary variables p1, p2, . . . , p∆, t i,jl,k for all 1 ≤ i ≤ j ≤ ∆, 1 ≤ k ≤ ∆ − 1 and 1 ≤ l ≤ ∆, t̃ il,k for all
1 ≤ i ≤ ∆ and 1 ≤ k, l ≤ ∆, z , z , . . . , z , b , b , . . . , b , with r = O(∆5) and L consists of
1 2 r 1 2 r
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• the inequality system given in Eqs. (19) and (20),
• for all 1 ≤ i ≤ j ≤ ∆, the integer linear programming feasibility problem defining the dynamic programming recursions

in Eqs. (27) and (28), and for all i, the integer linear programming feasibility problem defining the dynamic programming
recursions in Eqs. (29) and (30),

• for all 1 ≤ i < j ≤ ∆, the equation∑
λ|h(λ)=i

xλN(λ, j) =

∑
λ′|h(λ′)=j

xλ′N(λ′, i), (31)

as well as the linear inequality system for the first ∆ − 1 Gale–Ryser inequalities presented as

t i,ji,k ≤

∑
λ|h(λ)=j

xλ min{k,N(λ, i)} (32)

• and for all i, the equation∑
λ|h(λ)=i

xλN(λ, i) = 2pi. (33)

as well as the first ∆ Erdős–Gallai inequalities expressed as

t ii,k ≤ k(k − 1) +

⎛⎝ ∑
λ|h(λ)=i

xλ min{k,N(λ, i)}

⎞⎠ − t̃ ii,k. (34)

Proof. Similar to the proof of Theorem 18. The auxiliary variables bi and zi appear in the integer programming descriptions
of minimization and maximization problems in the dynamic programming recursions. There are O(∆2) pairs of (i, j), for
each fixed such pairs, there are O(∆2) tl,k auxiliary variables, that is, there are O(∆4) auxiliary variables to compute t i,ji,k’s.
Similarly, it is easy to see that there are O(∆3) auxiliary variables to compute the auxiliary variables t ii,k and t̃ ii,k. For each
of them, there are O(∆) minimization and maximization problems in Eqs. (28) and (30). Thus, there are O(∆5) auxiliary
ariables of b’s and z’s. □

The theorem for forest realizations does not need inequalities with minimums and/or maximums.

heorem 22. Let D = (d1, d2, . . . , dn) and F = (f1, f2, . . . , fn) be a pair of degree and neighbor degree sequences. Let ∆

enote the largest degree in D. Then (D, F ) is forest realizable if and only if the integer programming feasibility problem {X ,L}

has a solution, where X consists of all xλ variables for all partitions λ = [λ1, λ2, . . . , λh(λ)] such that h(λ) ≤ ∆ and for all i,
i ≤ ∆ and auxiliary variables p1, p2, . . . , p∆ and L consists of

• the inequality system given in Eqs. (19) and (20),
• for all 1 ≤ i < j ≤ ∆, the equation∑

λ|h(λ)=i

xλN(λ, j) =

∑
λ′|h(λ′)=j

xλ′N(λ′, i), (35)

• for all i, the equation∑
λ|h(λ)=i

xλN(λ, i) = 2pi. (36)

• and for all subsets I ⊆ {(i, j)|1 ≤ i ≤ j ≤ ∆}, the inequality

∑
(i,j)∈I|i̸=j

⎛⎝ ∑
λ|h(λ)=i

xλN(λ, j) +

∑
λ|h(λ)=j

xλN(λ, i)

⎞⎠ +

∑
(i,i)∈I

∑
λ|h(λ)=i

xλN(λ, i) ≤

2
∑

λ

xλ min

⎧⎨⎩1,
∑

j|(h(λ),j)∈I

N(λ, j)

⎫⎬⎭ − 2. (37)

Furthermore, (D, F ) has a caterpillar realization if none of the degrees is 0,
∑n

i=1 di = 2n− 2 (which can be given by requiring
that Eq. (37) holds with equality) and a solution exists with

xλ = 0 (38)

for all λ for which h(λ) > 1 and
∑

N(λ, j) ≤ 2.
j>1
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roof. We show that the conditions are necessary and sufficient for the existence of a sequence of labeled stub-stars S
hat (according to Theorem 15) is multigraph realizable, and for all subsets of colors I , DI (S) is forest realizable. Note that
he multigraph realizability is ensured by first three points of the statement of the theorem. The inequality in Eq. (37)
xpresses that the sum of the non-zero degrees DI (S) is less than twice the number of non-zero degrees minus 2.
ogether with the fact that the sum of the degrees is even (Eq. (36)), these are the necessary and sufficient conditions for
orest-realizability according to Theorem 12.

For a caterpillar realization, we need the conditions from Theorem 16 to be fulfilled, that is, none of the degrees is 0,
he sum of the degrees is 2n − 2 and each stub has at most 2 labels larger than or equal to 2. □

Note that the forest realization will be a tree realization if
∑n

i=1 di = 2n − 2.
For each case, we transformed the realization problem into an integer programming feasibility problem. Both the

umber of equations and the number of variables depends on ∆ and not on n. Therefore, if ∆ is fixed, then the
omputational time to solve the integer programming feasibility problem grows only as a poly-log function of n due
o the complexity of performing the arithmetic operations. The practicality of the approach is demonstrated in the next
ection.

. Simulation results

In order to demonstrate the practical implications of the presented results, we devised a set of experiments which
how the potential of our approach in certain types of applications.
Furthermore, we were also able to show where the limitations of this approach were. Since the original motivation

or this work comes from chemistry, we considered evaluating a reconstruction of saturated hydrocarbons.
The first part of the task was to find feasible sequences of labeled stub-stars for which we construct an integer linear

rogram. Even though, in general, this is a hard problem, the restricted integer programs that we use have a constant
umber of variables, which makes it solvable in polynomial time [14].
We wanted to see two main results (1) how fast we can find one solution (i.e., one tree from a given input sequence)

nd (2) how fast the number of solutions grows with the size of the input. We constructed two different testsets for each
f these two goals. For the first goal we generated trees of sizes 100 to 1000 with a step of 100. For the second goal we
enerated testsets of sizes only from 10 to 80 with a step of 10 (for reasons that will be obvious from the results). For all
izes we generated 100 trees and the obtained results are all averages (average times and average counts) for these 100
easurements.
Each tree is generated with a simple recursive procedure described below. The procedure generates a random tree

ith maximal degree k such that for the current vertex,

1. it generates a random degree d from [1 . . . k−1] (except for the first node where the interval is [1 . . . k]) uniformly
at random,

2. it chooses a random partition of n − 1 into d pieces, i.e., choose how large each of the d subtrees will be,
3. then it recursively repeats the process for all d neighbors until reaching the leaves.

In order to harness the best practices in integer programming, we chose a state-of-the-art solver and used it to
onstruct feasible sequences of labeled stub-stars. Our goal was to use out-of-the-box IP solvers and evaluate its
erformance by varying the size of the problem. Since in chemical applications the input represents a feasible tree (i.e. we
now there exists a feasible solution) we also start with a tree, decompose it into a degree sequence and a sequence of
ums of neighbor degrees.
We used an openly accessible SCIP solver [9] and in order to generate a specific integer program we used the ZIMPL

anguage [13]. The final trees were reconstructed with the custom written program in Python.
The main two results are presented in Figs. 2 and 3. Fig. 2 shows that the time required to find one feasible solution

oes not increase in the range that we tested it. It is not surprising because neither the number of variables nor the
umber of inequalities in the integer programming depends on the input size. In the indicated range of input size, most
f the time is spent on solving the integer programming problem and only a minor part of the running time of the solver
s spent on actually building the tree.

The algorithm for creating a tree from a sequence of labeled stub-stars (the output of the integer programming solver) is
he following: We first create a multigraph realization of the sequence of labeled stub-stars G. Then while G is not minimal
mong all realizations in the number of components, we apply the procedure described in the proof of Theorem 15 to
roduce a G′ with one fewer component than G. By applying Depth-First Search algorithm to find cycles and paths in the
rocedure described in the proof of Theorem 15, it is easy to see that we can construct a tree in O(|V |

2
|E|

2
+ |V ||E|

3).
n practice, we can construct an initial multigraph solution by packing monochromatic forests together. This good start
auses the running time of the construction algorithm in practice is less than the time spent on the integer programming
art.
Fig. 3 shows the exponential growth of the average number of feasible solutions to the given input. Already with

= 30 carbon atoms, the average number of solutions to a random input approaches 10 and with n = 40 carbon atoms,
he average number of solutions is about 86. The average number of solutions keeps growing exponentially with the
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Fig. 2. The average time (t , measured in milliseconds) needed to generate one feasible solution of a tree with n vertices, maximum degree 4 and
prescribed degree and sum of neighbor degree sequences. See text for details about generating input trees and finding a solution.

Fig. 3. The average number of solutions of a (degree, sum of neighbor degree) sequence of length n. See text for detail.

umber of carbon atoms, indicating that it is not feasible to reconstruct large hydrocarbons using only NMR data and
hen testing each potential solution.

In chemistry however, besides the information about the neighborhood, other information could be used. Some of those
hemical and physical limitations also infer various structural limitations which need to be further explored. Namely,
ompletely unrestricted trees yield chemically unfeasible compounds so further work needs to be focused on trees with
pecial structures so that the exponential growth of the number of solutions is postponed even further thus making this
pproach practical for even larger compounds.

. Discussion

In this paper, we considered the problem of constructing a bounded degree graph with prescribed degree and neighbor
egree sequence. The key is to find an appropriate sequence of labeled stub-stars that can realize the given degree
nd neighbor degree sequence. We talked about monochromatic subgraphs that considers only stubs with given labels
ncident to vertices with given degrees. This approach highly resembles the color-degree matrix problem that is also
ntensively studied [1,2,11,12]. The input of a color-degree matrix problem is a k × n matrix M , and the output is an
dge-colored simple graph G = (V , E), |V | = n. The number of colors is k, and for each color ci, the degree sequence of
he monochromatic subgraph of G for that color is the ith row of M .

Indeed, a sequence of labeled stub-stars, S = (S1, S2, . . . , Sn), can be represented by a special color-degree matrix M . M
as

(
∆

2

)
+ ∆ rows and n columns, where ∆ is the maximum degree in S. The rows are labeled by (i, j) ∈ {(i, j)|1 ≤ i ≤

≤ ∆}. When (i, j) is the label of the kth row, then

mk,l =

⎧⎨⎩
number of j labels of Sl if Sl has degree i
number of i labels of Sl if Sl has degree j
0 otherwise

e call the (i, j) labels colors. We will index the rows of M by their color indexes, that is, we will talk about the (i, j)th
ow and we index entries as m(i,j),l.

Color-degree matrices appeared earlier in the scientific literature, see for example [12]. The color-degree matrices
ntroduced here are special in two ways: first, for any two rows with indexes (i, j) and (i′, j′) such that i /∈ {i′, j′} and
59
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Fig. 4. Caterpillar counterexample C1 . See text for details.

Fig. 5. Caterpillar counterexample C2 .

/∈ {i′, j′} and for any column index l, m(i,j),l ̸= 0 implies that m(i′,j′),l = 0. Second, we consider only special realizations of
these special color-degree matrices.

Indeed, observe that not all edge disjoint monochromatic realizations of the degree sequences in the rows of M are
realizations of the corresponding sequence of labeled stub-stars. For each i < j, it is required that the monochromatic
realization be a forced bipartite realization, that is, we require that each edge goes between prescribed vertex classes.

To see why this is necessary, consider the caterpillar C1, shown in Fig. 4. Its color-degree matrix will have the form

M =

(1, 2)
(1, 3)
(2, 3)
(1, 1)
(2, 2)
(3, 3)

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0 1 1
1 2 1 0 1 1 0 0
0 1 0 2 2 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

otice that the plain, dashed, dotted subgraphs in Fig. 5, respectively, are edge disjoint realizations for the (1, 2)-th,
1, 3)-th, and (2, 3)-th rows of M , respectively. However, their union is C2 which is not a realization of M because C2 has
2, 2) and (3, 3) edges. Also observe that the dotted subgraph in Fig. 5 is a bipartite graph, however, it is not a forced
ipartite graph.
In general, it is NP-complete to decide if a color-degree matrix has any realization [5,10]. On the other hand, Carroll

nd Isaak showed that the problem is easy if for each subset of rows, the corresponding column sums form a degree
equence of a forest [3]. Hillebrand and McDiarmid showed that the problem remains easy if the column sums form a
egree sequence that has a realization with at most one cycle [12]. These results cannot be directly applied to our problem
ince we require special realizations as discussed above.
Nonetheless, it is worth mentioning that the hard part of the degree and neighbor degree realization problem is to

ind the appropriate sequence of labeled stub-stars. Indeed, it remains easy to decide if a special color-degree matrix has
simple graph realization even if there is no bound on the maximal degree: due to the speciality of the color-degree
atrices obtained from sequence of labeled stub-stars, it is guaranteed that the union of monochromatic simple graph

ealizations will remain simple graphs (given that the realizations for (i, j) colors, i < j are forced bipartite).
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