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a b s t r a c t

Efficiently computable stability and performance analysis of nonlinear systems becomes increasingly
more important in practical applications. Dissipativity can express stability and performance jointly,
but existing results are limited to the regions around the equilibrium points of these nonlinear
systems. The incremental framework, based on the convergence of the system trajectories, removes
this limitation. We investigate how stability and performance characterizations of nonlinear systems in
the incremental framework are linked to dissipativity, and how general performance characterization
beyond the L2-gain concept can be understood in this framework. This paper presents a matrix
inequalities-based convex incremental dissipativity analysis for nonlinear systems via quadratic storage
and supply functions. The proposed dissipativity analysis links the notions of incremental, differential,
and general dissipativity. We show that through differential dissipativity, incremental and general
dissipativity of the nonlinear system can be guaranteed. These results also lead to the incremental
extensions of the L2-gain, the generalized H2-norm, the L∞-gain, and passivity of nonlinear systems.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The linear time-invariant (LTI) framework has been a system-
atic and easy-to-use approach for modeling, identification and
control of physical systems for many years. Its success is driven by
powerful theoretical and computational results on stability, per-
formance, and shaping (Skogestad & Postlethwaite, 2005). Grow-
ing performance demands in terms of accuracy, response speed
and energy efficiency, together with increasing complexity of sys-
tems to accommodate such expectations, are pushing beyond the
modeling and control capabilities of the LTI framework. There-
fore, stability and performance analysis of nonlinear systems be-
comes increasingly more important.

A large variety of stability analysis tools are available for
nonlinear systems, including Lyapunov’s stability theory (Khalil,
2002), dissipativity theory (Willems, 1972) and contraction the-
ory (Lohmiller & Slotine, 1998). Moreover, techniques such as
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backstepping, input-output or feedback linearization (Khalil,
2002) have been introduced to stabilize the behavior and to
achieve reference tracking for nonlinear systems. However, these
techniques often require cumbersome computations and restric-
tive assumptions, and – unlike the LTI case – they have not lead
to systematic performance analysis and shaping methods. While
dissipativity theory in principle allows for analysis of nonlin-
ear systems, current results are not computationally attractive.
Furthermore, they only provide local stability and performance
guarantees, i.e., only w.r.t. a single point of natural storage (usu-
ally the origin), which is undesirable for disturbance rejection and
reference tracking. Hence, there is need for a computationally
efficient analysis tool for global conclusions on the dissipativity
property of a nonlinear system.

Several frameworks have been developed to extend computa-
tionally efficient LTI tools to nonlinear systems, e.g., using piece-
wise affine, linear time-varying (LTV), Fuzzy, or linear parameter-
varying (LPV) system representations. The LPV framework specifi-
cally aims at providing convex tools to analyze nonlinear systems
as a predefined convex set of LTI systems. However, the stability
and performance guarantees are still only valid w.r.t. a single
equilibrium point (Koelewijn, Sales Mazzoccante, Tóth, & Wei-
land, 2020). To analyze global stability properties of nonlinear
systems, independent of a specific equilibrium point, notions
such as incremental stability (Angeli, 2002) were introduced.
Incremental stability analyzes stability of a system w.r.t. arbitrary
trajectories of the system, instead of w.r.t. a single equilibrium
point. Similar stability notions have also been developed, such
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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s contraction (Lohmiller & Slotine, 1998; Manchester & Slo-
ine, 2018) and convergence theory (Pavlov, Pogromsky, van de
ouw, & Nijmeijer, 2004) with strong connections to incremental

tability theory (Rüffer, van de Wouw, & Mueller, 2013). Sim-
lar notions for performance have also been introduced such
s incremental L2-gain Fromion, Monaco, and Normand-Cyrot
2001) and passivity (Pavlov & Marconi, 2008). Extensions to-
ards global dissipativity analysis in the literature are differential
issipativity (Forni & Sepulchre, 2013; Forni, Sepulchre, & van
er Schaft, 2013; van der Schaft, 2013), incremental dissipativ-
ty (Pavlov & Marconi, 2008) and equilibrium independent dis-
ipativity (Simpson-Porco, 2019). However, they do not provide
omputationally efficient methods to verify these dissipativity
otions. Works discussing differential and incremental dissipa-
ivity only focus on passivity-based performance and how the
arious dissipativity notions are linked to general dissipativity is
enerally not discussed.
To address these shortcomings, the main contributions of this

aper are (i) conditions on general quadratic performance anal-
sis using incremental dissipativity, (ii) establishing the missing
ink between general dissipation theory and incremental analysis
f nonlinear systems, and (iii) computationally efficient convex
ools to analyze incremental stability and performance of nonlin-
ar systems. This is achieved by developing a general incremental
issipativity framework that connects differential dissipativity,
ncremental dissipativity and general dissipativity. As a conse-
uence, incremental notions of the L2-gain, the generalized H2-

norm, the L∞-gain and passivity are systematically introduced,
also recovering some existing results on these concepts. Further-
more, convex analysis tools to compute the resulting conditions
for differential and incremental dissipativity are derived using
a so-called differential parameter-varying (DPV) inclusion of the
nonlinear system.

In Section 2, a formal definition of the problem setting is
given. Section 3 gives the main results on differential, incremental
and general dissipativity and their connection. In Section 4, the
incremental extensions of well-known performance measures are
derived and the concept of DPV inclusions are discussed, yield-
ing convex computation methods. The introduced concepts and
methods are demonstrated on an academic example in Section 5,
while the conclusions are provided Section 6.

Notation.
R is the set of real numbers, while R+

0 and R+ stand for non-
negative reals and positive reals. The convex hull of a set S is
co{S}. Projection of D := A × B, with elements (a, b), onto
A is denoted by πaD, meaning a ∈ πaD = A. If a mapping
f : Rp

→ Rq is in Cn, it is n-times continuously differentiable.
L n

2 is the signal space of real-valued square integrable functions
f : R+

0 → Rn with associated norm ∥f ∥2 := (
∫

∞

0 ∥f (t)∥2 dt)
1
2

here ∥ · ∥ is the Euclidean (vector) norm. L n
∞

is the signal space
f functions f : R+

0 → Rn with finite amplitude, i.e., bounded
f ∥∞ := supt≥0 ∥f (t)∥. We use (∗) to denote a symmetric term
n a quadratic expression, e.g., (∗)⊤Q (a − b) = (a − b)⊤Q (a − b)
or Q ∈ Rn×n and a, b ∈ Rn. The notation A ≻ 0 (A ≽ 0)
ndicates that A is positive (semi-) definite, while A ≺ 0 (A ≼
) denotes a negative (semi-) definite A. The zero-matrix and
he identity matrix of appropriate dimensions are denoted as 0
nd I . Furthermore, col(x1, . . . , xn) denotes the column vector
x⊤

1 · · · x⊤
n ]

⊤.

. Problem definition

In this paper, we consider nonlinear, time-invariant systems
f the form

:

{
ẋ(t) = f (x(t), u(t));

(1)

y(t) = h(x(t), u(t));

2

here x(t) ∈ X ⊆ Rnx is the state, u(t) ∈ U ⊆ Rnu is the input,
nd y(t) ∈ Y ⊆ Rny is the output of the system. The sets X , U and
are open sets containing the origin, with X , U being convex,

nd the mappings f : X × U → Rnx and h : X × U → Y are in
1. We only consider solutions of (1) that are forward complete,
nique and satisfy (1) in the ordinary sense. The trajectories of
1) are also restricted to have left-compact support, i.e., ∃ t∗ ∈ R
uch that (x, u, y) is zero outside the left-compact set [t∗,∞). We
efine the state-transition map as φx : R × R × X × UR

→ X ,
escribing the evolution of the state such that

(t) = φx(t, t0, x0, u), (2)

ith x0 = x(t0). The behavior of the system, i.e., the set of all
ossible solutions, is denoted by

:= {(x, u, y) ∈ (X × U × Y)R | x ∈ C1 and (x, u, y)
satisfies (1) with left-compact support}. (3)

ote that B ⊆ BR, where B = X ×U×Y is called the signal value
et.
In this paper, the form presented in (1) will be referred to

s the primal form of the nonlinear system. For the primal form,
n extensive dissipativity theory has been developed over the
ears, with its roots in Willems (1972). From the notion of dissi-
ativity, many system properties can be derived, such as perfor-
ance characteristics and stability (Hill & Moylan, 1980; Willems,
972), as well as a link with the physical interpretation of the
ystem. Therefore, dissipativity is an important fundament in
onlinear system theory, which we will briefly review. We con-
ider Willems’ dissipativity notion (Willems, 1972) that allows for
imultaneous stability and performance analysis.

efinition 1 (General Dissipativity). The system (1) is dissipative
.r.t. a supply function S : U × Y → R, if there exists a storage

function V : X → R+

0 with an x∗ ∈ X , such that V(x∗) = 0 and

V(x(t1)) − V(x(t0)) ≤

∫ t1

t0

S(u(t), y(t))dt, (4)

or all t0, t1 ∈ R with t0 ≤ t1, and for all (x, u, y) ∈ B.

The storage function V can be interpreted as a representation
of the stored ‘energy’ in the system with a point of neutral
storage x∗ (energy minimum), while the supply function S can
be seen as the total energy flowing in and out of the system.
If V(x(t)) is differentiable, the dissipation inequality (DI) (4) can
be rewritten as the so-called differentiated dissipation inequality
(DDI), i.e., d

dt

(
V(x(t))

)
≤ S(u(t), y(t)). In this paper, dissipativity

f the primal form of a system will be referred to as general
issipativity. Note that x∗, i.e., the point where V is considered
o be zero, does not need to be at x∗ = 0. In fact, it can be
hosen to be any (forced) equilibrium point of (1). However, if
he system is nonlinear, the DDI is different for each considered
∗ and unlike in the LTI case, this difference cannot be eliminated
y a coordinate transformation. This means that performance
nd stability analysis through general dissipativity is equilibrium
oint dependent.
An extension to this concept is incremental dissipativity,

.e., analysis of the (dissipated) energy flow between any two
ystem trajectories. We give an extension of the definition of
ncremental passivity in van der Schaft (2017, Def. 4.7.1):

efinition 2 (Incremental Dissipativity). The system (1) is called
ncrementally dissipative w.r.t. the supply function S∆ : U ×

U × Y × Y → R, if there exists a storage function V∆ : X ×

X → R+, with V (x, x) = 0, such that for any two trajectories
0 ∆
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Fig. 1. Collection of trajectories (x̄(λ), ū(λ), ȳ(λ)) ∈ B parametrized in λ ∈ [0, 1]
etween two arbitrary state and input trajectories, where ū(t, λ) = ũ(t)+λ(u(t)−

ũ(t)) and x̄0(λ) = x̃0 + λ(x0 − x̃0). Variation δx of x̄ is given in orange.

x, u, y), (x̃, ũ, ỹ) ∈ B, it holds that

V∆
(
x(t1), x̃(t1)

)
− V∆

(
x(t0), x̃(t0)

)
≤

∫ t1

t0

S∆
(
u(t), ũ(t), y(t), ỹ(t)

)
dt, (5)

for all t0, t1 ∈ R with t0 ≤ t1.

Besides analyzing the difference between two trajectories, it
is also possible to analyze infinitesimal variations of trajectories.
First, define the set of paths

ΓΦ (ϕ, ϕ̃) := {ϕ̄ ∈ Φ[0,1]
| ϕ̄ ∈ C1, ϕ̄(0) = ϕ̃, ϕ̄(1) = ϕ},

corresponding to all smooth paths along λ ∈ [0, 1] between
points ϕ ∈ Φ ⊆ Rn and ϕ̃ ∈ Φ ⊆ Rn. Consider any two
trajectories of (1): (x, u, y), (x̃, ũ, ỹ) ∈ B. As X , U are considered
to be convex, any trajectory between these can be parametrized
with x̄0 ∈ ΓX (x0, x̃0) and ū(t) ∈ ΓU (u(t), ũ(t)), e.g., x̄0(λ) = x̃0 +

λ(x0 − x̃0) ∈ X and ū(t, λ) = ũ(t)+λ(u(t)− ũ(t)) ∈ U , resulting in
the state transition map x̄(t, λ) = φx̄(t, t0, x̄0(λ), ū(λ)) ∈ X . Note
that this parametrization covers transitions between all possible
solutions in B. Given a λ, it holds that

˙̄x(t, λ) = f (x̄(t, λ), ū(t, λ)); (6a)

ȳ(t, λ) = h(x̄(t, λ), ū(t, λ)), (6b)

and for λ ∈ [0, 1], the resulting collection of trajectories (x̄(λ),
ū(λ), ȳ(λ)) ∈ B is depicted in Fig. 1. As f , h ∈ C1, taking
the derivative of (6) w.r.t. λ, the infinitesimal variation of the
original trajectories can be analyzed. A similar concept has been
introduced in Crouch and van der Schaft (1987), Forni et al. (2013)
and Reyes-Báez (2019) as variational dynamics1. Differentiation of
(6) w.r.t. λ yields the variational system

Σδ :

{
δẋ(t, λ) = Ā(t, λ)δx(t, λ) + B̄(t, λ)δu(t, λ);

δy(t, λ) = C̄(t, λ)δx(t, λ) + D̄(t, λ)δu(t, λ);
(7)

with δx(t, λ) =
∂ x̄
∂λ

(t, λ) ∈ Rnx , δu(t, λ) =
∂ ū
∂λ

(t, λ) ∈ Rnu ,
y(t, λ) =

∂ ȳ
∂λ

(t, λ) ∈ Rny , and, by omitting the dependence on
and λ for brevity, Ā = A(x̄, ū), . . . , D̄ = D(x̄, ū) with

A(x̄, ū) =
∂ f
∂x (x̄, ū), B(x̄, ū) =

∂ f
∂u (x̄, ū),

(x̄, ū) =
∂ h
∂x (x̄, ū), D(x̄, ū) =

∂ h
∂u (x̄, ū),

(8)

where (x̄, ū) ∈ πx,uB for all λ ∈ [0, 1]. Note that for a trajectory
n B, λ is fixed for all time. Hence, given a trajectory x̄(λ∗),
orresponding to λ∗, its variations are captured in δx(λ∗). In the
equel, we will generally omit λ for brevity, e.g., δx(t) = δx(t, λ∗).
nalogous to the primal form, solutions of the variational system
7) are considered in the ordinary sense and are restricted to have
eft-compact support. In this paper, we will refer to (7) as the
ifferential form of the nonlinear system (1).

1 In fact, we can obtain a variational system for any smooth (x, u)
parametrization (see Reyes-Báez (2019) for an alternative approach).
3

With the differential form of a system defined, we can define
the notion of differential dissipativity, interpreted as the ‘energy’
dissipation of variations of the system trajectory that are not
forced by the input. If the energy of these variations in the system
trajectories decreases over time, the trajectory will eventually
only be determined by the input of the system. Hence, the primal
form of the system will converge to a steady-state solution, which
is not necessary a forced equilibrium point, e.g., it can be a
periodic orbit. We use the definition from Forni and Sepulchre
(2013).

Definition 3 (Differential Dissipativity). Consider a system Σ of
the form (1) and its differential form (7), Σδ . Σ is differentially
dissipative w.r.t. a supply function Sδ : Rnu × Rny → R, if there
exists a storage function Vδ : X × Rnx → R+

0 , with Vδ(·, 0) = 0,
such that

Vδ
(
x̄(t1), δx(t1)

)
− Vδ

(
x̄(t0), δx(t0)

)
≤

∫ t1

t0

Sδ
(
δu(t), δy(t)

)
dt, (9)

for all (x̄, ū) ∈ πx,uB and for all t0, t1 ∈ R, with t0 ≤ t1.

Differential passivity definitions can be found in Forni et al.
(2013) and van der Schaft (2013).

Remark 4 (Differentiated dissipation inequalities). Note that when
the incremental and differential storage functions V∆ and Vδ are
differentiable, we can also define the differentiated forms of (5)
and (9).

Despite the interest in general dissipativity, incremental dissi-
pativity and differential dissipativity, the underlying connection
between these notions have not been explored in the literature
yet. We will establish this connection in case of quadratic supply
functions in the next section, based on which performance analy-
sis of nonlinear systems is achieved. Furthermore, we will discuss
implications of these dissipativity notions on stability as well.

3. Main results

In this section, we present our main results. We first exam-
ine differential dissipativity, then we show that this property
implies incremental dissipativity and general dissipativity of the
nonlinear system.

3.1. Differential dissipativity of a nonlinear system

Consider the differential form (7) of a nonlinear system, which
describes the variation of the system over a trajectory (x̄, ū, ȳ) ∈

B. Note that this system always exists if the mappings f and h
are in C1. To formulate our results for differential dissipativity,
we consider a quadratic storage function of the form

Vδ(x̄, δx) = δx⊤M(x̄)δx, (10)

where we assume:

A1 The matrix function M ∈ C1 is real, symmetric, bounded
and positive definite, i.e., there exists k1, k2 ∈ R+, such that
k1I ≼ M(x̄(t)) ≼ k2I for all x̄(t) ∈ X .

This storage function represents the energy of the variation along
the state trajectory x̄. We consider the following quadratic supply
function,

Sδ(δu, δy) = (∗)⊤
(
Q S
S⊤ R

)(
δu
δy

)
, (11)

with real, constant, bounded matrices R = R⊤, Q = Q⊤ and S.

With (10) and (11), we formulate the following theorem.
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heorem 5 (Differential Dissipativity Condition). The system in pri-
mal form (1) is differentially dissipative w.r.t. the quadratic supply
function (11) under a quadratic storage function (10) satisfying A1,
if and only if for all (x̄, ū) ∈ πx,uB and t ∈ R, omitting dependence
on time for brevity,

(∗)⊤
(
Ṁ(x̄) M(x̄)
M(x̄) 0

)(
I 0

A (x̄, ū) B (x̄, ū)

)
− (∗)⊤

(
Q S
S⊤ R

)(
0 I

C (x̄, ū) D (x̄, ū)

)
≼ 0, (12)

ith Ṁ(x̄) =
∑nx

i=1
∂M(x̄)
∂ x̄i

˙̄xi, ˙̄xi =
dx̄i
dt , and A, . . . ,D as in (8).

roof. By Definition 3, the primal form (1) is differentially dissi-
pative, if the differential form (7) is dissipative. Hence, it suffices
to show that if (12) holds, the differential form is dissipative with
storage function (10) and supply function (11). Note that (10) is
differentiable. Therefore, we start with substituting (10) and (11)
into the differentiated differential dissipation inequality,

d
dt

(
δx⊤M(x̄)δx

)
≤ (∗)⊤

(
Q S
S⊤ R

)(
δu
δy

)
. (13)

y Willems (1972), (13) is satisfied for all possible trajectories of
7) if and only if (13) holds for all values (δx(t), δu(t), δy(t)) ∈
nx × Rnu × Rny , and x̄(t) ∈ X . Writing out (13) yields,

2δx⊤M(x̄)
(
A (x̄, ū) δx + B (x̄, ū) δu

)
+ δx⊤Ṁ(x̄)δx ≤

δu⊤Q δu + 2δu⊤S
(
C (x̄, ū) δx + D (x̄, ū) δu

)
+

(
∗
)
⊤R

(
C (x̄, ū) δx + D (x̄, ū) δu

)
, (14)

with A, . . . ,D as in (8) and Ṁ(x̄) =
∑nx

i=1
∂M(x̄)
∂ x̄i

˙̄xi. It is trivial to see
that (14) is equivalent to the pre- and post multiplication of (12)
with col(δx, δu)⊤ and col(δx, δu), respectively. Requiring (14) to
hold for all (x̄, ū) ∈ πx,uB and t ∈ R is equivalent to require the
condition in (12) to hold for all (x̄, ū) ∈ πx,uB and t ∈ R, which
proves the statement. ■

Note that the velocity of x̄ is required to verify differential
dissipativity. Often this is solved in practice by capturing ˙̄x(t) in
a set D, such that ˙̄x(t) ∈ D for all time.

3.2. Incremental dissipativity of a nonlinear system

First, we show that the property of differential dissipativity
under supply function (11) implies the property of incremental
dissipativity with supply function

S∆(u, ũ, y, ỹ) = (∗)⊤
(
Q S
S⊤ R

)(
u − ũ
y − ỹ

)
. (15)

Secondly, we give a computable condition to analyze incremental
dissipativity. The following result is the core of our contribution.

Theorem 6 (Induced Incremental Dissipativity). When the system in
primal form (1) is differentially dissipative w.r.t. the supply function
(11) with R ≼ 0 under a storage function Vδ , then there exists a
storage function V∆ such that the system is incrementally dissipative
w.r.t. the supply function (15).

Proof. Writing out the λ-dependence in (9) for differential dissi-
pativity, allows to integrate it over λ:∫ 1

0

[
Vδ

(
x̄(t1, λ), δx(t1, λ)

)
− Vδ

(
x̄(t0, λ), δx(t0, λ)

)
−∫ t1

Sδ
(
δu(τ , λ), δy(τ , λ)

)
dτ

]
dλ ≤ 0. (16)
t0

4

We compute the integral of the storage terms first. We define the
following minimum energy path between x and x̃ by

χ(x,x̃)(λ) := arg inf
x̂∈ΓX (x,x̃)

∫ 1

0
Vδ

(
x̂(λ),

∂ x̂(λ)
∂λ

)
dλ. (17)

When Vδ(x̄, δx) = δx⊤M(x̄)δx, χ(x,x̃) can be seen as the geodesic
connecting x and x̃ corresponding to the Riemannian metric M(x̄),
see also Manchester and Slotine (2018) and Reyes-Báez (2019).
Next, we define

V∆(x, x̃) :=

∫ 1

0
Vδ

(
χ(x,x̃)(λ),

∂χ(x,x̃)(λ)
∂λ

)
dλ, (18)

which will be our incremental storage function. Note that V∆ ≥ 0
as by definition Vδ ≥ 0. Furthermore, V∆(x, x̃) = 0 when x = x̃ as
∂χ(x,x̃)(λ)

∂λ
= 0 and by definition Vδ(·, 0) = 0. Using this incremental

storage function, we have that

V∆(x(t1), x̃(t1)) ≤

∫ 1

0
Vδ

(
x̄(t1, λ), δx(t1, λ)

)
dλ, (19)

or any x̄(t1) ∈ ΓX (x(t1), x̃(t1)) with x(t1), x̃(t1) ∈ X , t1 ∈ R,
nd x̄(λ) ∈ πxB for any λ ∈ [0, 1]. Furthermore, we take
s parametrization for our initial condition x̄(t0, λ) = x̄0(λ) =

(x0,x̃0)(λ). Hence, we have that

− V∆(x(t0), x̃(t0)) = −

∫ 1

0
Vδ

(
x̄(t0, λ), δx(t0, λ)

)
dλ. (20)

ombining (19) and (20) gives that

∆

(
x(t1), x̃(t1)

)
− V∆

(
x(t0), x̃(t0)

)
≤∫ 1

0

[
Vδ

(
x̄(t1, λ), δx(t1, λ)

)
− Vδ

(
x̄(t0, λ), δx(t0, λ)

)]
dλ.

his together with (16) implies

∆

(
x(t1), x̃(t1)

)
− V∆

(
x(t0), x̃(t0)

)
≤∫ 1

0

∫ t1

t0

Sδ
(
δu(τ , λ), δy(τ , λ)

)
dτdλ. (21)

We now consider the right-hand side of the inequality (21).
Changing the order of integration gives∫ t1

t0

∫ 1

0
(∗)⊤

(
Q S
S⊤ R

)(
δu(τ , λ)
δy(τ , λ)

)
dλ dτ . (22)

We now solve the individual terms in the inner integral,∫ 1

0
(∗)⊤

(
Q S
S⊤ R

)(
δu(τ , λ)
δy(τ , λ)

)
dλ =

∫ 1

0
(∗)⊤Q δu(τ , λ)dλ+

2
∫ 1

0
δu(τ , λ)⊤Sδy(τ , λ)dλ+

∫ 1

0
(∗)⊤Rδy(τ , λ)dλ. (23)

aking ū(t, λ) = ũ(t) + λ(u(t) − ũ(t)) as a parametrization, we
btain δu(t) =

∂ ū(t,λ)
∂λ

= u(t) − ũ(t). Hence, the first term in (23)
esolves to (∗)⊤Q (u(τ ) − ũ(τ )), while the second term gives

(u(τ ) − ũ(τ ))⊤S
∫ 1

0

∂ ȳ(τ ,λ)
∂λ

dλ = 2(u(τ ) − ũ(τ ))⊤S (y(τ ) − ỹ(τ )).

For the third term in (23) where R ≼ 0, i.e., −R ≽ 0, we use
Lemma 23 in Appendix to obtain an upper bound:∫ 1

0

[
(∗)⊤R ∂ ȳ(τ ,λ)

∂λ

]
dλ ≤ (∗)⊤R

(∫ 1
0
∂ ȳ(τ ,λ)
∂λ

dλ
)

=

(∗)⊤R (ȳ(τ , 1) − ȳ(τ , 0)) = (∗)⊤R (y(τ ) − ỹ(τ )). (24)

ombining our results yields∫ t1
(∗)⊤

(
Q S
⊤

)(
u(τ ) − ũ(τ )
y(τ ) − ỹ(τ )

)
dτ , (25)
t0
S R
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C∫
s an upper bound for (22). Thus, if (9) holds, we know that (16)
olds, which in turn implies, considering a supply function (11)
ith R ≼ 0, that

V∆
(
x(t1), x̃(t1)

)
− V∆

(
x(t0), x̃(t0)

)
≤∫ t1

t0

(∗)⊤
(
Q S
S⊤ R

)(
u(τ ) − ũ(τ )
y(τ ) − ỹ(τ )

)
dτ , (26)

via the upper bound (25). Hence, if the system is differentially dis-
sipative w.r.t. the supply function (11) with R ≼ 0, then the sys-
tem is incrementally dissipative w.r.t. the equally parametrized
supply function (15). ■

Remark 7 (Restricted R). Restriction R ≼ 0 is a technical necessity
in the proof of Theorem 6. In case of R ≻ 0 or R being indefinite,
validity of Theorem 6 is an open question.

Comparing Theorem 6 to existing results in this context, we
want to highlight that Waitman, Massioni, Bako, Scorletti, and
Fromion (2016a, 2016b) also give some results on incremental
dissipativity. However, these works only focus on a specific and
restrictive form of the supply function. Moreover, the technical
result of Waitman et al. (2016a) refers to a proof in a paper that
has never appeared to the authors’ knowledge.

From Theorem 6, we have the following (trivial) result:

Corollary 8 (Incremental Dissipativity Condition). The system in
primal form (1) is incrementally dissipative w.r.t. the supply function
(15) with R ≼ 0, if (12) holds for all (x̄, ū) ∈ πx,uB with M satisfying
A1.

Corollary 8 gives a sufficient condition to verify incremental
dissipativity of a general nonlinear system. Note that by this
result, if the matrix inequality (12) holds for all (x̄, ū) ∈ πx,uB,
then we know that there exists a valid storage function of the
form (18). However, calculating this function in an explicit form
might be difficult (see Section 3.3). If no positive definite M
can be found to satisfy (12), then it does not necessarily mean
that the system is not differentially or incrementally dissipative.
Inequality (12) might hold for a non-quadratic Vδ , or a more
complex M .

3.3. Explicit incremental storage function

Even if deriving an explicit form of (18) is challenging in
general, under the quadratic form of (10), we can take an extra
assumption to give an explicit construction:

A2 M(x̄) can be decomposed as M(x̄) = N⊤(x̄)PN(x̄), P ≻ 0, and
∃ ν : Rnx → Rnx s.t. ∂ ν(x̄)

∂x = N(x̄).

While this decomposition of M(x̄) is always possible if it satisfies
A1, see Verhoek, Koelewijn, Tóth, and Haesaert (2022), existence
of ν such that ∂ ν(x̄)

∂x = N(x̄) is not guaranteed for any M(x̄). This
llustrates well the challenges for obtaining an explicit construc-
ion of V∆. For the sake of simplicity, we assume in the remainder
f this subsection that X = Rnx .

emma 9 (Induced Incremental Storage Function). If the system in
rimal form (1) is differentially dissipative with a storage function

δ(x̄, δx) = δx⊤M(x̄)δx,

here M satisfies A1 and A2, then the incremental storage function
∆ in Theorem 6 is given by

∆(x, x̃) = (ν(x) − ν(x̃))⊤P(ν(x) − ν(x̃)). (27)

dditionally, if M(x̄) = M for all x̄ ∈ X , then, the incremental storage
function simplifies to

V (x, x̃) = (x − x̃)⊤M(x − x̃). (28)
∆

5

Proof. Based on (16), we need to compute the terms∫ 1

0
Vδ(x̄(t1, λ), δx(t1, λ))dλ (29a)

and

−

∫ 1

0
Vδ(x̄(t0, λ), δx(t0, λ))dλ. (29b)

Based on A2, we can decompose M(x̄) into

M(x̄) = N⊤(x̄) P N(x̄), (30)

where P ≻ 0 with P ∈ Rnx×nx and, because of A1, N(x̄(t, λ)) ∈

Rnx×nx is invertible on X , i.e., detN(x̄) ̸= 0, ∀ x̄ ∈ X . Furthermore,
by A2, there exists a diffeomorphism ν : Rnx → Rnx such that
dν
dx (x̄) = N(x̄), ∀ x̄ ∈ X . Next, define z̄(t, λ) := ν(x̄(t, λ)), which
atisfies that

z(t, λ) =
∂
∂λ

z̄(t, λ) = N(x̄(t, λ))δx(t, λ). (31)

his allows to rewrite (10) as

x⊤M(x̄)δx = δx⊤N⊤(x̄)PN(x̄)δx = δz⊤Pδz. (32)

sing this relation, the first term (29a) can be written as∫ 1

0
δz⊤(t1, λ)Pδz(t1, λ)dλ. (33)

pplying Lemma 23, see Appendix, to (33) results in

∗)⊤P
(∫ 1

0 δz(t1, λ)dλ
)

≤

∫ 1

0
δz⊤(t1, λ)Pδz(t1, λ)dλ.

ence,

∗)⊤ P
(
ν(x(t1)) − ν(x̃(t1))

)
= (∗)⊤ P

(
z̄(t1, 1) − z̄(t1, 0)

)
≤∫ 1

0
(δz⊤(t1, λ)Pδz(t1, λ))dλ =∫ 1

0

(
δx⊤(t1, λ)M(x̄(t1, λ))δx(t1, λ)

)
dλ. (34)

efore looking at the second term, i.e., (29b), let us recall some
efinitions. As aforementioned, the parametrized initial condition

¯(t0, λ) = x̄0(λ) can be taken as any smooth parametrization
¯0 ∈ ΓX (x0, x̃0). Recall that ν is a diffeomorphism, implying that

−1
: Rnx → Rnx exists and ν, ν−1

∈ C1. Hence, w.l.o.g. we take

¯0(λ) = ν−1(z̄(t0, λ)), (35)

here z̄(t0, λ) = ν(x̃0)+ λ(ν(x0)− ν(x̃0)). Note that this choice of
¯0(λ) satisfies the aforementioned conditions. Consequently, we
ave that

z(t0, λ) =
∂
∂λ

z̄(t0, λ) = ν(x0) − ν(x̃0). (36)

sing this result and (32), the second term (29b) gives
1

0

(
ν(x0) − ν(x̃0)

)
⊤P

(
ν(x0) − ν(x̃0)

)
dλ =(

ν(x0) − ν(x̃0)
)
⊤P

(
ν(x0) − ν(x̃0)

)
. (37)

ombining the results of (34) and (37), it holds that
1

0

[
Vδ(x̄(t1, λ), δx(t1, λ)) − Vδ(x̄(t0, λ), δx(t0, λ))

]
dλ ≥

(∗)⊤P
(
ν(x(t1)) − ν(x̃(t1))

)
− (∗)⊤P

(
ν(x(t0)) − ν(x̃(t0))

)
. (38)

Combining this result with (25) gives

V∆(x(t1), x̃(t1)) − V∆(x(t0), x̃(t0)) ≤∫ t1
(∗)⊤

(
Q S
⊤

)(
u(τ ) − ũ(τ )
y(τ ) − ỹ(τ )

)
dτ , (39)
t0
S R
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here V∆ is according to (27). Hence, (27) qualifies as an incre-
ental storage function for (1).
In case M(x̄) = M for all x̄ ∈ X , the decomposition in (30)

implifies to N = I and P = M , hence, ν(x) = x and we
btain (28). Note that the same result is obtained when solving
17) and (18) directly for Vδ(x̄, δx) = δx⊤Mδx, as in that case
(x,x̃) = x̃ + λ(x − x̃) and hence V∆ is given by (28). ■

In case X is a bounded convex set, Lemma 9 can be also shown
to hold true, if either beyond A2 it holds that ν(X ) is also convex,
r if M is a constant matrix.

3.4. General dissipativity analysis of a nonlinear system

We now show that incremental dissipativity implies that the
onsidered system is globally dissipative, i.e., dissipative w.r.t. any
orced equilibrium point in B.

Theorem 10 (Induced General Dissipativity). Given a nonlinear
ystem in its primal form (1). Suppose that (xe, ue, ye) ∈ B is a
forced) equilibrium point of the system, i.e., (x̆(t), ŭ(t), y̆(t)) =

xe, ue, ye) and (x̆(t), ŭ(t), y̆(t)) satisfies (1) for all t ∈ R. If the
ystem is incrementally dissipative under the supply function (15),
hen for every equilibrium (xe, ue, ye), the system is dissipative w.r.t.
an equally parametrized supply function.

Proof. If the system is incrementally dissipative w.r.t. the supply
function (15) under the storage function V∆, then it holds that

V∆
(
x(t1), x̃(t1)

)
− V∆

(
x(t0), x̃(t0)

)
≤∫ t1

t0

(∗)⊤
(
Q S
S⊤ R

)(
u(t) − ũ(t)
y(t) − ỹ(t)

)
dt,

for all t0, t1 ∈ R, with t0 ≤ t1. Let the trajectory (x̃, ũ, ỹ) be equal
to the equilibrium trajectory (x̆, ŭ, y̆), i.e., the equilibrium point
(xe, ue, ye). Hence, for all t0, t1 ∈ R, with t0 ≤ t1

V∆
(
x(t1), xe

)
− V∆

(
x(t0), xe

)
≤

∫ t1

t0

(∗)⊤
(
Q S
S⊤ R

)(
u(t) − ue
y(t) − ye

)
dt,

Next, introduce the coordinate shift

q = x − xe, w = u − ue, z = y − ye,

and define

V(q) := V∆(q + xe, xe), (40)

which is non-negative and satisfies that V(0) = 0. Substituting
this in the inequality gives that

V
(
q(t1)

)
− V

(
q(t0)

)
≤

∫ t1

t0

(∗)⊤
(
Q S
S⊤ R

)(
w(t)
z(t)

)
,

holds for all t0, t1 ∈ R, with t0 ≤ t1, which is the general dissipa-
tion inequality (4) with V as defined in (40) being the correspond-
ing storage function. Hence, (1) is dissipative w.r.t. any arbitrary
forced equilibrium point if it is incrementally dissipative. ■

By this last result, we have obtained a chain of implications,
which connect the notions of dissipativity. Moreover, we gave
a condition (matrix inequality (12)) that allows to examine dif-
ferential, incremental and general dissipativity and thus examine
global stability and performance of a nonlinear system. This chain
of implications is summarized in Fig. 2. A result similar to The-
orem 10 is given in Liu, Hill, and Zhao (2014) for single-input-
single-output networked nonlinear systems. However, note that
Theorem 10 is more general, as it holds for general nonlinear
multi-input-multi-output systems of the form (1).
 H

6

Fig. 2. Chain of implications with the dissipativity notions: differential dissipa-
tivity (DD) implies incremental dissipativity (ID), and incremental dissipativity
implies general dissipativity (GD). Condition (12) can be used to analyze the
various dissipativity notions.

Remark 11 (Implied Stability). If the supply function satisfies

S(0, y) ≤ 0 ∀y ∈ πyB, (41)

then it is well-known that dissipativity implies Lyapunov stability
of (1) (Angeli, 2002; van der Schaft, 2017). Under a similar condi-
tion on S∆, incremental dissipativity implies incremental stability,
which means that there exists a function β ∈ KL, such that, for
all u ∈ πuB, all x0, x̃0 ∈ X and all t ≥ 0,φx(t, 0, x0, u) − φx(t, 0, x̃0, u)

 ≤ β(
x0 − x̃0

 , t).
ee Angeli (2002) for more details. Similarly, we have that differ-
ntial dissipativity implies stability of (7) when ∀δy ∈ (Rny)R :

δ(0, δy) ≤ 0. As R ≼ 0, these conditions are trivially satisfied
y our considered supply functions and through Theorems 6 and
0, the same chain of implications hold between these stability
otions as in Fig. 2. Hence, by showing differential dissipativity
ith the considered supply functions, we also show incremental
nd Lyapunov stability of (1). If the above conditions on S hold in
he strict sense, then the implications hold in terms of asymptotic
orms of stability.

. Performance analysis via convex tests

We now use the dissipativity results of Section 3 to recover
ncremental notions of well-known performance indicators (L2-
ain, L∞-gain, passivity and the generalized H2-norm) and pro-
ose a method that allows for global, convex performance anal-
sis of nonlinear systems. This contribution can also serve as
stepping stone for the formulation of incremental controller

ynthesis methods. We want to highlight that the results in this
ection resemble to conditions of respective performance indica-
ors 2 of LPV systems. The LPV conditions differ from these results
s we use the differential form of a nonlinear system. Hence, the
elations follow from a completely different analysis that allows
or global nonlinear performance analysis.

We will introduce the incremental performance notions for
torage functions of the form of (28). It is trivial to extend these
esults to the case when a matrix function M(x̄) is considered.

.1. Incremental L2-gain

A system has finite L2-gain γ < ∞ if the system is dissipative
.r.t. to the supply rate S(u, y) = γ 2 ∥u∥2

2 − ∥y∥2
2 (Scherer

Weiland, 2015), i.e., u must be in L
nu
2 . Let B2 be defined

s B2 :=
{
(x, u, y) ∈ B

⏐⏐ u ∈ L
nu
2

}
. There are several defini-

ions in the literature that extend the classical L2-gain defini-
ion towards the incremental setting (Fromion, Scorletti, & Fer-
eres, 1999; Koelewijn, Tóth, Nijmeijer, & Weiland, 2021; van der
chaft, 2017). The following definition fits with the incremental
issipativity notion discussed in this paper.

2 Therefore, the proofs in this section are omitted. For the interested reader,
he proofs are included in the extended version of this paper Verhoek, Koelewijn,
aesaert, and Tóth (2022).
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efinition 12 (Incremental L2-Gain). The incremental L2-gain,
i.e., Li2-gain, of the system Σ of the form (1) is

∥Σ∥Li2 := sup
0<∥u−ũ∥2<∞

y − ỹ

2u − ũ


2

, (42)

here (x, u, y), (x̃, ũ, ỹ) ∈ B2 are any two arbitrary trajectories of
Σ for which x(0) = x̃(0).

Remark 13 (Li2-Gain in the LTI Case). The L2-gain and the Li2-gain
re equivalent for LTI systems (Koelewijn & Tóth, 2019). Hence,
he L2-gain of a differential LTI system is equal to the L2-gain of
primal LTI system.

The results in Fromion et al. (1999), Koelewijn et al. (2021)
nd van der Schaft (2017), together with Corollary 8 lead to the
ollowing result:

orollary 14 (Li2-Gain Bound). Consider Σ as the system (1) and
et γ ∈ R+. If there exists an M = M⊤

≻ 0 s.t. ∀(x̄, ū) ∈ πx,uB,⎛⎝A(η̄)⊤M + MA(η̄) MB(η̄) C(η̄)⊤

B(η̄)⊤M −γ 2I D(η̄)⊤
C(η̄) D(η̄) −I

⎞⎠ ≼ 0, (43)

where η̄ = col(x̄, ū), then ∥Σ∥Li2 ≤ γ .

Proof. The proof follows by combining Corollary 8 with the
results in van der Schaft (2017). See also Verhoek, Koelewijn,
Haesaert, and Tóth (2022). ■

In Fromion and Scorletti (2003), it is shown that ∥Σδ∥L2 <
γ ⇔ ∥Σ∥Li2 < γ . It is an interesting (open) question how
necessity can also be established via Theorem 6 in this case.
Additionally, note that (43) is linear, i.e., convex, in M and γ 2,
but it is an infinite semi-definite problem. We will discuss in
Section 4.5 how to turn it into a finite number of linear matrix
inequalities (LMIs)-based optimization problem.

4.2. Incremental L∞-gain

The well-known L1-norm is defined for stable LTI systems that
map inputs with bounded amplitude to outputs with bounded
amplitude. For LTI systems, the L1-norm is equivalent with the
induced L∞-norm, i.e., the peak-to-peak gain of a system. We
extend the notion of the L∞-gain to the incremental setting,
which characterizes the peak-to-peak gain between two arbi-
trary trajectories of a system. Let B∞ be defined as B∞ :={
(x, u, y) ∈ B

⏐⏐ u ∈ L nu
∞

}
.

Definition 15 (Incremental L∞-Gain). The incremental L∞-gain,
i.e., Li∞-gain, of the system Σ of the form (1) is

∥Σ∥Li∞ := sup
0<∥u−ũ∥

∞
<∞

y − ỹ


∞u − ũ


∞

, (44)

here (x, u, y), (x̃, ũ, ỹ) ∈ B∞ are any two arbitrary trajectories
f Σ for which x(0) = x̃(0).

As an extension of Scherer (2000, Sec. 10.3) and Scherer and
Weiland (2015, Sec. 3.3.5), the following result gives a sufficient
condition for an upper bound γ of the Li∞-gain of a nonlinear
system.

Corollary 16 (Li∞-Gain Bound). Consider Σ as the system (1) and
et γ ∈ R+. If there exist an M⊤

= M ≻ 0, κ > 0 and µ > 0 such
hat ∀(x̄, ū) ∈ πx,uB,

A (η̄)⊤M + MA (η̄)+ κM MB (η̄)
⊤

)
≺ 0, (45a)
B (η̄) M −µI e

7

⎛⎝ κM 0 C (η̄)⊤

0 (γ − µ)I D (η̄)⊤
C (η̄) D (η̄) γ I

⎞⎠ ≻ 0, (45b)

where η̄ = col(x̄, ū), then ∥Σ∥Li∞ < γ .

Proof. The proof follows by combining Corollary 8 with the
results in Scherer (2000) and Scherer and Weiland (2015). See
also Verhoek, Koelewijn, Haesaert, and Tóth (2022). ■

Despite of the fact that (45a) is not convex in κ and M due
to their multiplicative relation, by fixing κ and performing a line-
search over it, (45a) again corresponds to an infinite Semi-Definite
Program (SDP).

4.3. Incremental passivity

Passivity is a widely studied system property and it has been
recently extended towards the incremental setting (Pavlov &
Marconi, 2008; van der Schaft, 2017) and the differential set-
ting (Forni & Sepulchre, 2013; Forni et al., 2013; van der Schaft,
2013). In Kawano, Kosaraju, and Scherpen (2020), the connection
between differential and incremental passivity has been estab-
lished for a storage function (10) with constant M . That work
might serve as a parallel proof for Theorem 6, when focusing only
on passivity.

A system is said to be passive if it is dissipative w.r.t. to the
supply rate S(u, y) = u⊤y + y⊤u. Based on van der Schaft (2017),
the definition of incremental passivity is as follows:

Definition 17 (Incremental Passivity). A system of the form (1) is
ncrementally passive, if for the supply

∆(u, ũ, y, ỹ) = (u − ũ)⊤(y − ỹ) + (y − ỹ)⊤(u − ũ), (46)

here exists a storage function V∆ : X × X → R+

0 s.t.

∆

(
x(t1), x̃(t1)

)
− V∆

(
x(t0), x̃(t0)

)
≤

∫ t1

t0

S∆(u, ũ, y, ỹ)dt,

or all (x, u, y), (x̃, ũ, ỹ) ∈ B.

Based on Corollary 8, the following result holds:

orollary 18 (Incremental Passivity Condition). The system (1) with
y = nu is incrementally passive if there exists an M⊤

= M ≻ 0
uch that ∀(x̄, ū) ∈ πx,uB(
A(η̄)⊤M + MA(η̄) MB(η̄) − C(η̄)⊤

B(η̄)⊤M − C(η̄) −D(η̄) − D(η̄)⊤

)
≼ 0, (47)

here η̄ = col(x̄, ū).

roof. The proof follows by direct application of Corollary 8 with
= R = 0 and S = I . ■

Comparing Corollary 18 to Kawano et al. (2020) and van der
chaft (2013), these papers give results on differential passivity
or a combined primal and differential system formulation (a
rolonged system Crouch & van der Schaft, 1987) using a spe-
ific form of storage function. The result depends on equality
onstraints, which serve as a decoupling condition between the
ifferential storage and the primal storage, while in this paper
he differential storage and the primal storage have the same
tructure (quadratic form with the same M), not requiring such

quality constraints.
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.4. Generalized incremental H2-norm

here are several extensions of the H2-norm for nonlinear sys-
ems embedded as LPV systems (Bouali, Yagoubi, & Chevrel, 2008;
e Souza, Trofino, & de Oliveira, 2003; Xie, 2005). In this pa-
er, we extend the notion of the generalized H2-norm to the
ncremental setting:

efinition 19 (Incremental Generalized H2-Norm). Consider Σ
as the system (1) with ∂ h

∂u = 0. The generalized incremental
2-norm, i.e., Hg

i2-norm, of Σ is

Σ

Hg

i2
:= sup

0<∥u−ũ∥2<∞

y − ỹ


∞u − ũ

2

, (48)

where (x, u, y), (x̃, ũ, ỹ) ∈ B2 are any two arbitrary trajectories of
Σ for which x(0) = x̃(0).

Note that if assumption ∂ h
∂u = 0 does not hold, then the

g
i2-norm is trivially unbounded. As an extension of Scherer and
eiland (2015, Sec. 3.3.4), the following result characterizes an
pper bound γ on the Hg

i2-norm.

Corollary 20 (Hg
i2-Gain Bound). Consider Σ as the system (1) with

∂ h
∂u = 0 and let γ ∈ R+. If there exists an M⊤

= M ≻ 0 such that
(x̄, ū) ∈ πx,uB,

A(η̄)⊤M + MA(η̄) MB(η̄)
B(η̄)⊤M −γ I

)
≺ 0,

(
M C(η̄)⊤

C(η̄) γ I

)
≻ 0,

where η̄ = col(x̄, ū), then ∥Σ∥Hg
i2
< γ .

Proof. The proof follows by combining Corollary 8 with the re-
sults in Scherer and Weiland (2015). See also Verhoek, Koelewijn,
Haesaert, and Tóth (2022). ■

4.5. Convex computation with DPV inclusions

So far, the obtained results have yielded matrix inequali-
ties that correspond to infinite dimensional SDPs. This section
presents a convexification of the constraint variation to recast
these problems as regular SDPs by embedding of the differential
form of the system in a DPV inclusion. Inspired by Tóth (2010)
and Wang, Tóth, and Manchester (2020), we define the DPV
inclusion of (1) as follows.

Definition 21 (DPV Inclusion). The DPV inclusion of (1), given by

ΣDPV :

{
δẋ(t) = A(p(t))δx(t) + B(p(t))δu(t),
δy(t) = C(p(t))δx(t) + D(p(t))δu(t),

(49)

with p(t) ∈ P being the scheduling variable, is an embedding of
the differential form of (1) on the compact convex region P ⊂

Rnp , if there exists a function ψ : Rnx ×Rnu → Rnp , the so-called
scheduling map, such that ∀(x̄(t), ū(t)) ∈ X × U:

A(ψ(x̄, ū)) =
∂ f
∂x (x̄, ū), B(ψ(x̄, ū)) =

∂ f
∂u (x̄, ū),

(ψ(x̄, ū)) =
∂ h
∂x (x̄, ū), D(ψ(x̄, ū)) =

∂ h
∂u (x̄, ū),

here A, . . . ,D belong to a given function class (affine, polyno-
ial, etc.), implying that p(t) = ψ(x̄(t), ū(t)), and P ⊇ ψ(X ,U).

The convex set P is usually a superset of the ψ-projected
values of possible state and input trajectories (even if X , U are
convex), hence the DPV embedding of a nonlinear system in-
troduces conservatism. However, this is considered to be the
trade-off for efficiently computable stability and performance
analysis of nonlinear systems. To reduce the conservatism of the
DPV embedding (49) for a given preferred dependency class of
 S
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A, B, C,D (e.g., affine, polynomial, rational), we can optimize ψ
(with minimal np) such that co{ψ(X ,U)} \ ψ(X ,U) has minimal
volume (Sadeghzadeh & Tóth, 2020; Tóth, 2010). Note that the
DPV embedding serves as an important tool to convexify the
variation of the matrix inequalities in the analysis. In turn, that
allows to solve the derived infinite set of LMIs using a finite
set of LMIs using SDP, e.g., via polytopic or multiplier based
methods (Hoffmann & Werner, 2014).

In case that X × U is unbounded, the DPV embedding is often
realized on a convex subset X × U of X × U , such that there
exists a compact and convex P ⊇ ψ(X,U). In this case, one either
requires to add an extra condition of invariance of the system on
X × U or assume it, which may introduce conservatism in the
analysis, as not the full behavior of the original primal system
is considered. Note that existence of a compact and convex P ,
in case of unbounded X × U , follows when ∂ f

∂x ,
∂ f
∂u ,

∂ h
∂x ,

∂ h
∂u are

ounded matrix functions, e.g., if ∂ f
∂x = sin(x), with x ∈ R, we can

take p = ψ(x) = sin(x) ∈ [−1, 1].

5. Example

This section demonstrates the developed notions of incre-
mental dissipativity theory3 and the analysis tools on an exam-
ple. The extended version (Verhoek, Koelewijn, Haesaert, & Tóth,
2022) contains an additional example on the relation between
incremental and general dissipativity.

Example 22. Consider a second-order Duffing oscillator given in
a state-space form by⎧⎪⎨⎪⎩
ẋ1(t) = x2(t);

ẋ2(t) = −a x2(t) −
(
b + c x21(t)

)
x1(t) + u(t);

y(t) = x1(t),
(50)

here a and b represent the linear damping and stiffness, respec-
ively, and c represents the nonlinear stiffness component. The
ifferential form of (50) is given by

δẋ(t) =

(
0 1

−b − 3 c x21(t) −a

)
δx(t) +

(
0
1

)
δu(t);

δy(t) =
(
1 0

)
δx(t).

(51)

oreover, we assume for this system that (x1, x2) ∈ X , with
= XR, where X = [−

√
2,

√
2] × R, and

u ∈ U := L2 ∩
{
RR

⏐⏐ (50) holds and (x1, x2) ∈ X
}
.

By choosing a = 3.3, b = 7.9, c = 1, (50) yields a system
with finite Li2-gain. In this example, we determine the Li2-gain
of the system, using Corollary 14. Note that the nonlinearity
x21(t) in (51) can be captured by using a DPV inclusion p(t) =

ψ(x1(t)) = x21(t) ∈ [0, 2]. By this substitution, (43) becomes a
matrix inequality linear in p, which can be reduced to a finite
number of LMI constraints at the vertices, due to convexity of
[0, 2]. Solving the resulting SDP (constrained minimization of
γ ) yields M =

(
0.592 0.0896
0.0896 0.0543

)
≻ 0 and γ = 0.155. Hence,

within less than a second, we know that the nonlinear system is
differentially, incrementally and generally dissipative on X w.r.t.
the supply function (11) with Q = 0.1552, R = −1 and S = 0, and
that it has an Li2-gain less than 0.155. The system is simulated
with two different input signals, given in (52), for which we know
they are in U .

u1(t) = 3e−0.2t cos (π t) 1(t), (52a)

3 There are some works under review that apply the developed theory in
ection 3 on a practical example.
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Fig. 3. The applied inputs to the system (left) and the resulting state trajectories
(right). Both trajectories start at

(
x1(0), x2(0)

)
= (1, 1).

Fig. 4. Simulation results for the different notions of dissipativity for a Duffing
oscillator w.r.t. the supply function S(u, y) = γ 2

∥u∥2
− ∥y∥2 , corresponding to

the (incremental) L2-gain.

u2(t) = −2e−0.1t sin
(
0.6π t +

π
4

)
1(t), (52b)

where 1(t) is the unit step-function. The inputs and the state
trajectories are shown in Fig. 3, which shows that the states stay
within the defined state-space X .

To verify whether the system is differentially dissipative, con-
sidering these specific trajectories, the signals of (51) are sub-
stituted in the DI for the differential form (9). The left- and
right-hand side of the DI (9) are plotted in Fig. 4(a) corresponding
to the system trajectories of Fig. 3. As can be seen in Fig. 4(a),
the stored energy in the system is always less than the sup-
plied energy plus the initial stored energy, hence the system is
differentially dissipative w.r.t. the considered L -gain supply.
2

9

Since the system is differentially dissipative it is also incre-
mentally dissipative. Fig. 4(b) shows the incremental dissipa-
tion inequality, i.e., the stored energy and the supplied energy
between the two trajectories in Fig. 3. As can be observed in
Fig. 4(b), the stored energy between two trajectories is always
less than the supplied energy between two trajectories. Hence,
considering these trajectories, the system is incrementally dissi-
pative. Therefore, we can state (based on these two trajectories)
that these results correspond to the developed theory.

Moreover, by Theorem 10, incremental dissipativity implies
general dissipativity of the original system (50). Fig. 4(c) gives
the storage and supply function evolution over time for the two
considered trajectories, showing that the original system is dis-
sipative, since the stored energy is always less than the supplied
energy. ◀

6. Conclusions

In this paper, we established the link between general dissi-
pation theory, incremental dissipativity analysis and differential
dissipativity analysis for nonlinear systems. Moreover, we have
given results on general quadratic incremental performance no-
tions and parameter-varying inclusion based computation tools
to analyze the different notions of dissipativity in a convex setting
by SDPs. The established link gives us a generic framework to
analyze stability and performance of a nonlinear system from a
global perspective. Finally, the presented computation tools allow
to efficiently analyze global stability and performance of a rather
general class of nonlinear systems. These results open up the
possibility to establish controller synthesis based on PV inclusions
of the differential form, such that we can synthesize (nonlinear)
controllers for nonlinear systems with incremental stability and
performance guarantees of the closed-loop behavior. For future
work, we aim to extend the developed theory for discrete-time
and time-varying nonlinear systems.
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Appendix. Norm integral inequality

From Koelewijn and Tóth (2021, Lem. 16), we have the follow-
ing useful lemma.

Lemma 23. For 0 ≺ M = M⊤
∈ Rn×n and a continuous function

φ : [0, 1] → Rn, it holds that(∫ 1
0 φ(t)dt

)⊤

M
(∫ 1

0 φ(t)dt
)

≤

∫ 1

0
φ⊤(t)M φ(t) dt. (A.1)

References

Angeli, D. (2002). A Lyapunov approach to incremental stability properties. IEEE
Transactions on Automatic Control.

Bouali, A., Yagoubi, M., & Chevrel, P. (2008). H2 gain scheduling control for
rational LPV systems using the descriptor framework. In Proc. of the 47th
IEEE conference on decision and control.

Crouch, P. E., & van der Schaft, A. J. (1987). Variational and Hamiltonian Control
Systems. Berlin: Springer-Verlag.

Forni, F., & Sepulchre, R. (2013). On differentially dissipative dynamical systems.
In Proc. of the 9th IFAC symposium on nonlinear control systems.

Forni, F., Sepulchre, R., & van der Schaft, A. J. (2013). On differential passivity of
physical systems. In Proc. of the 52nd IEEE conference on decision and control.

Fromion, V., Monaco, S., & Normand-Cyrot, D. (2001). The weighted incremental
norm approach: From linear to nonlinear H∞ control. Automatica.

romion, V., & Scorletti, G. (2003). A theoretical framework for gain scheduling.
International Journal of Robust and Nonlinear Control.

http://refhub.elsevier.com/S0005-1098(23)00009-2/sb1
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb1
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb1
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb2
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb2
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb2
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb2
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb2
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb3
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb3
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb3
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb4
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb4
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb4
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb5
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb5
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb5
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb6
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb6
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb6
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb7
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb7
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb7


C. Verhoek, P.J.W. Koelewijn, S. Haesaert et al. Automatica 150 (2023) 110859

F

l
t

romion, V., Scorletti, G., & Ferreres, G. (1999). Nonlinear performance of a
PI controlled missile: An explanation. International Journal of Robust and
Nonlinear Control.

Hill, D. J., & Moylan, P. J. (1980). Dissipative dynamical systems: Basic
input-output and state properties. Journal of the Franklin Institute.

Hoffmann, C., & Werner, H. (2014). A survey of linear parameter-varying control
applications validated by experiments or high-fidelity simulations. IEEE
Transactions on Control Systems Technology.

Kawano, Y., Kosaraju, K. C., & Scherpen, J. M. A. (2020). Krasovskii and shifted
passivity based control. IEEE Transactions on Automatic Control.

Khalil, H. K. (2002). Nonlinear Systems (3rd ed.). Upper Saddle River, NJ, USA:
Prentice Hall.

Koelewijn, P. J. W., Sales Mazzoccante, G., Tóth, R., & Weiland, S. (2020). Pitfalls
of guaranteeing asymptotic stability in LPV control of nonlinear systems. In
Proc. of the European control conference Saint Petersburg.

Koelewijn, P. J. W., & Tóth, R. (2019). Incremental gain of LTI systems. Technical
Report TUE CS, Eindhoven University of Technology.

Koelewijn, P. J. W., & Tóth, R. (2021). Incremental stability and performance
analysis of discrete-time nonlinear systems using the LPV framework. In Proc.
of the 4th IFAC workshop on linear parameter-varying systems.

Koelewijn, P. J. W., Tóth, R., Nijmeijer, H., & Weiland, S. (2021). Nonlinear
tracking and rejection using linear parameter-varying control. arXiv preprint
arXiv:2104.09938.

Liu, T., Hill, D. J., & Zhao, J. (2014). Incremental-dissipativity-based output
synchronization of dynamical networks with switching topology. In Proc. of
the 53rd IEEE conference on decision and control. IEEE.

Lohmiller, W., & Slotine, J.-J. E. (1998). On contraction analysis for non-linear
systems. Automatica.

Manchester, I. R., & Slotine, J. -J. E. (2018). Robust control contraction metrics:
A convex approach to nonlinear state-feedback H∞ control. IEEE Control
Systems Letters.

Pavlov, A., & Marconi, L. (2008). Incremental passivity and output regulation.
Systems & Control Letters.

Pavlov, A., Pogromsky, A., van de Wouw, N., & Nijmeijer, H. (2004). Convergent
dynamics, a tribute to Boris Pavlovich Demidovich. Systems & Control Letters.

Reyes-Báez, R. (2019). Virtual contraction and passivity based control of nonlinear
mechanical systems (Ph.D. thesis), Groningen, The Netherlands: University of
Groningen.

Rüffer, B. S., van de Wouw, N., & Mueller, M. (2013). Convergent systems vs.
incremental stability. Systems & Control Letters.

Sadeghzadeh, A., & Tóth, R. (2020). Linear parameter-varying embedding of
nonlinear models with reduced conservativeness. In Proc. of the 21st IFAC
world congress. Berlin.

van der Schaft, A. J. (2013). On differential passivity. In Proc. of the 9th IFAC
symposium on nonlinear control systems.

van der Schaft, A. J. (2017). L2-gain and passivity techniques in nonlinear control
(3rd ed.). Cham, Switzerland: Springer International Publishing AG.

Scherer, C. W. (2000). Robust mixed control and linear parameter-varying control
with full block scalings. In Advances in linear matrix inequality methods in
control (pp. 187–207). SIAM.

Scherer, C. W., & Weiland, S. (2015). Linear matrix inequalities in control. https:
//www.imng.uni-stuttgart.de/mst/files/LectureNotes.pdf.

Simpson-Porco, J. W. (2019). Equilibrium-independent dissipativity with
quadratic supply rates. IEEE Transactions on Automatic Control.

Skogestad, S., & Postlethwaite, I. (2005). Multivariable feedback control (2nd ed.).
John Wiley & Sons Ltd.

de Souza, C. E., Trofino, A., & de Oliveira, J. (2003). Parametric Lyapunov function
approach to H2 analysis and control of linear parameter-dependent systems.
IEE Proceedings D (Control Theory and Applications).

Tóth, R. (2010). Modeling and identification of linear parameter-varying systems
(1st ed.). Springer-Verlag.

Verhoek, C., Koelewijn, P. J. W., Haesaert, S., & Tóth, R. (2022). Convex incre-
mental dissipativity analysis of nonlinear systems (extended version). arXiv
preprint arXiv:2006.14201.

Verhoek, C., Koelewijn, P. J. W., Tóth, R., & Haesaert, S. (2022). Decomposition of a
positive definite matrix function that is continuously differentiable. Technical
Report TUE CS, Eindhoven University of Technology.

Waitman, S., Massioni, P., Bako, L., Scorletti, G., & Fromion, V. (2016a). Incremen-
tal analysis of nonlinear systems with efficient methods for piecewise-affine
systems. arXiv preprint arXiv:1611.08322.
10
Waitman, S., Massioni, P., Bako, L., Scorletti, G., & Fromion, V. (2016b). Incremen-
tal L2-gain analysis of piecewise-affine systems using piecewise quadratic
storage functions. In Proc. of the 55th conference on decision and control.

Wang, R., Tóth, R., & Manchester, I. R. (2020). Virtual Control contraction metrics:
Convex nonlinear feedback design via behavioral embedding. arXiv preprint
arXiv:2003.08513.

Willems, J. C. (1972). Dissipative dynamical systems part I: General theory.
Archive for Rational Mechanics and Analysis.

Xie, W. (2005). H2 gain scheduled state feedback for LPV system with new LMI
formulation. IEE Proceedings D (Control Theory and Applications).

Chris Verhoek received his B.Sc. degree in Mechatron-
ics from the Avans University of Applied Sciences and
M.Sc. degree (Cum Laude) in Systems and Control from
the Eindhoven University of Technology, in 2017 and
2020 respectively. His M.Sc. thesis was selected as best
thesis of the Electrical Engineering department in the
year 2020.

He is currently pursuing a Ph.D. degree at the
Control Systems Group, Dept. of Electrical Engineering,
Eindhoven University of Technology. His main research
interests include (data-driven) analysis and control of

nonlinear and LPV systems and learning-for-control techniques with stability
and performance guarantees.

Patrick J.W. Koelewijn received his B.Sc. degree in
Automotive and M.Sc. degree in Systems and Control
from the Eindhoven University of Technology, both
Cum Laude, in 2016 and 2018 respectively.

During his Master's degree he spent three months
at the Institute of Control Systems at the Hamburg
University of Technology (TUHH).

He is currently pursuing a Ph.D. degree at the
Control Systems Group, Department of Electrical Engi-
neering, Eindhoven University of Technology. His main
research interests include analysis and control of non-

inear and LPV systems, optimal and nonlinear control, and machine learning
echniques.

Sofie Haesaert received the B.Sc. degree cum laude
in mechanical engineering and the M.Sc. degree cum
laude in systems and control from the Delft University
of Technology, Delft, The Netherlands, in 2010 and
2012, respectively, and the Ph.D. degree from Eind-
hoven University of Technology (TU/e), Eindhoven, The
Netherlands, in 2017.

She is currently an Assistant Professor with the
Control Systems Group, Department of Electrical En-
gineering, TU/e. From 2017 to 2018, she was a
Postdoctoral Scholar with Caltech. Her research inter-

ests are in the identification, verification, and control of cyber-physical systems
for temporal logic specifications and performance objectives.

Roland Tóth received his Ph.D. degree with cum laude
distinction at the Delft Center for Systems and Con-
trol (DCSC), Delft University of Technology (TUDelft),
Delft, The Netherlands in 2008. He was a Post-Doctoral
Research Fellow at TUDelft in 2009 and Berkeley in
2010. He held a position at DCSC, TUDelft in 2011–12.
Currently, he is an Associate Professor at the Control
Systems Group, Eindhoven University of Technology
and a Senior Researcher at SZTAKI, Budapest, Hungary.
His research interests are in identification and control
of linear parameter-varying (LPV) and nonlinear sys-

tems, developing machine learning methods with performance and stability
guarantees for modeling and control, model predictive control and behavioral
system theory.

http://refhub.elsevier.com/S0005-1098(23)00009-2/sb8
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb8
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb8
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb8
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb8
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb9
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb9
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb9
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb10
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb10
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb10
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb10
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb10
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb11
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb11
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb11
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb12
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb12
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb12
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb13
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb13
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb13
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb13
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb13
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb14
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb14
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb14
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb15
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb15
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb15
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb15
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb15
http://arxiv.org/abs/2104.09938
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb17
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb17
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb17
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb17
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb17
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb18
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb18
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb18
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb19
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb19
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb19
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb19
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb19
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb20
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb20
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb20
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb21
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb21
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb21
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb22
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb22
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb22
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb22
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb22
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb23
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb23
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb23
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb24
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb24
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb24
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb24
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb24
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb25
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb25
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb25
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb26
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb26
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb26
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb27
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb27
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb27
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb27
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb27
https://www.imng.uni-stuttgart.de/mst/files/LectureNotes.pdf
https://www.imng.uni-stuttgart.de/mst/files/LectureNotes.pdf
https://www.imng.uni-stuttgart.de/mst/files/LectureNotes.pdf
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb29
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb29
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb29
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb30
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb30
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb30
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb31
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb31
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb31
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb31
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb31
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb32
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb32
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb32
http://arxiv.org/abs/2006.14201
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb34
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb34
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb34
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb34
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb34
http://arxiv.org/abs/1611.08322
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb36
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb36
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb36
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb36
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb36
http://arxiv.org/abs/2003.08513
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb38
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb38
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb38
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb39
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb39
http://refhub.elsevier.com/S0005-1098(23)00009-2/sb39

	Convex incremental dissipativity analysis of nonlinear systems
	Introduction
	Notation.

	Problem definition
	Main results
	Differential dissipativity of a nonlinear system
	Incremental dissipativity of a nonlinear system
	Explicit incremental storage function
	General dissipativity analysis of a nonlinear system

	Performance analysis via convex tests
	Incremental L2-gain
	Incremental L∞-gain
	Incremental passivity
	Generalized incremental H2-norm
	Convex computation with DPV inclusions

	Example  
	Conclusions
	Acknowledgment
	Appendix. Norm Integral Inequality
	References


