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Abstract

The paper addresses the problem of accelerating predictive control of non-linear sys-
tem models augmented with Gaussian processes (GP-MPC). Due to the non-linear and
stochastic prediction model, predictive control of GP-based models requires to solve
a stochastic optimization problem. Different model simplification methods have to be
applied to reformulate this problem to a deterministic, non-linear optimization task that
can be handled by a numerical solver. As these problems are still complex, especially with
exact moment calculations, real-time implementation of GP-MPC is extremely challeng-
ing. The existing solutions accelerate the computations at the solver level by linearizing
the non-linear optimization problem and applying sequential convexification. In contrast,
this paper proposes a novel GP-MPC solution approach that without linearization formu-
lates a series of surrogate quadratic programs (QP-s) to iteratively obtain the solution of the
original non-linear optimization problem. The first step is embedding the non-linear mean-
variance dynamics of the GP-MPC prediction model in a linear parameter-varying (LPV)
structure and rewriting the constraints in parameter-varying form. By fixing the schedul-
ing trajectory at a known variation (based on previously computed or initial state-input
trajectories), optimization of the input sequence for the remaining varying linear model
reduces to a linearly constrained quadratic program. After solving the QP, the non-linear
prediction model is simulated for the new control input sequence and new scheduling tra-
jectories are updated. The procedure is iterated until the convergence of the scheduling,
that is, the solution of the QP converges to the solution of the original non-linear opti-
mization problem. By designing a reference tracking controller for a 4DOF robot arm,
we illustrate that the convergence is remarkably fast and the approach is computationally
advantageous compared to current solutions. The proposed method enables the applica-
tion of GP-MPC algorithms even with exact moment matching on fast dynamical systems
and requires only a QP solver.

1 INTRODUCTION

In the past two decades, model learning approaches gained an
increased interest in a variety of control applications [1], as they
provide efficient adaptation to variation or unknown aspects of
the dynamical behaviour through measurements.

Among the various approaches of machine learning, prob-
abilistic Gaussian process (GP) models have the advantage of
being able to describe efficiently difficult function relationships
and adapt quickly to continuously changing relations. Moreover,
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a GP can indicate the quality of the prediction through its
computed variance, which can be used to characterize the uncer-
tainty of the model. A GP is fully described by a mean function
and a covariance function [2], the latter also qualifies as a kernel
function in the associated reproducing kernel Hilbert space (RKHS),
allowing to characterize optimally of the GP as a function
estimator [3].

In learning-based control design, GPs often appear as an
additive augmentation term beside the nominal dynamical
model of the system and their role is to learn/capture the
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unknown part of the dynamics from measurement data [4, 5].
Although this structure is favourable for adaptive modelling
and the uncertainty of the GP-based model can be used to
characterize stability guarantees for the true underlying system
despite modelling errors [6–8], the control design is challenging,
because the GP adds a non-linear stochastic component to the
nominal system. This is especially true for GP-based model pre-

dictive control (GP-MPC), where a future prediction of the state
has to be constructed by recursive application of the augmented
model. The distribution of the predicted future state becomes
more and more complex as the time index goes forward,
therefore the control design results in a non-linear stochastic
optimization problem. Series of approximation steps have to
be carried out to transform the original stochastic optimization
problem to a deterministic one.

The majority of the GP-MPC implementations rely on
the assumption that at every prediction time step, the state
distribution can be well approximated by a normal distribu-
tion [9–13]. A few kernel functions even make it possible to
compute the first two moments of the predicted output dis-
tribution analytically if the GP input is normally distributed
[11–14]. This technique is often referred to as exact moment

(EM) matching. Alternatively, the state distribution can be
approximated by using the first-order part of the Taylor expan-
sion of the predictive mean function and the mean equivalent
approximation of the variance function [15]. Although these
techniques result in deterministic mean-variance prediction mod-
els, which enable implementation of GP-MPC in practice, they
still require the solution of a difficult non-linear optimization
problem.

Finding an optimal solution to the resulting non-linear MPC

(NMPC) is still cumbersome, and it is often approximated iter-
atively by solving a sequence of convex quadratic problems
[16–18]. These approaches are based on a linearization of the
optimization problem around a reference solution, and require
the differentiation of the dynamic prediction model. Similar
methods are available for non-linear systems with stochastic
error processes [19, 20] or GP-based stochastic autoregres-
sive models based on predictive control [21, 22]. However,
the method of gradients may become computationally too
intensive, when the moments of the GP-based state-prediction
are computed with EM matching. Hence, often only the
Taylor approximation is used at the expanse of increased
approximation error [12, 22].

Inspired by the linear-parameter varying (LPV) scheme for deter-
ministic NMPC introduced in [23, 24], our main contribution
includes the following:

C1 Novel iterative method for rapid solution of GP-MPC
problems. Our developed approach is applicable for
discrete-time non-linear state-space models additively aug-
mented by GPs. To establish it, the following sub-
contributions of this paper are important.

C2 LPV embedding of the GP-MPC problem both under Tay-
lor and exact moment-based approximations of the stage
propagation.

C3 Recasting the embedded GP-MPC problem as a computa-
tionally cheap LPV problem (quadratic program with linear
constraints).

C4 Developing an iterative scheme where previous LPV solu-
tions are used to converge to the optimal solution of the
GP-MPC problem.

C5 Thorough testing of the developed scheme in simulation
studies.

In terms of C2, the mean-variance prediction dynamics
associated with the GP-MPC problem are embedded in an
LPV form that makes available linear prediction of the state-
dynamics along a fixed, time-varying scheduling sequence
and conversion of the state and input constraints to linear
scheduling-dependent form. This is directly needed to realize
C3. For C4, the computed sequence of optimal inputs from the
LPV-MPC problem is used to simulate the non-linear mean-
variance prediction model. Then the scheduling trajectory is
updated by the computed inputs and by the simulated state
distribution to iteratively re-solve the LPV-MPC problem until
convergence of the obtained solution occurs. Note that the
approach is proposed with both EM matching and Taylor-based
mean-variance prediction models and provides fast conver-
gence to an optimum of the GP-MPC problem with lower
computational cost than the available state-of-the-art solutions.
The significance of our contributions C1-C4 using this iterated
LPV-MPC form is in providing a simple yet efficient tech-
nique for solving large-scale GP-MPC problems even under
EM-based prediction models with simple QPs and without
compromising accuracy.

The paper is organized as follows: the problem setting and
important notions, such as GP-based model augmentation, are
discussed first in Section 2. Then, we present an overview of
the existing GP-MPC formulation and approximation results in
Section 3. As our main contribution (C1), the proposed LPV
acceleration approach for GP-MPC is presented in Section 4
detailing the required ingredients in terms of C2–C4. We illus-
trate the effectiveness of our approach in simulation studies in
Section 5 corresponding to C5. Finally, the main conclusions on
the presented approach are drawn in Section 6.

Notation 1. Let ℤ, ℕ and ℝ denote the set of integers, non-
negative integers and real numbers, respectively, while ℕ+ =
ℕ ⧵ 0 and ℝ+ is the set of non-negative reals. We denote by
𝕊n
+ the set of symmetric positive definite matrices in ℝn×n. Let

vec(x1, … , xn ) = [ x⊤1 ⋯ x⊤n ]⊤ denote the column-wise com-
position of vectors x𝜏 ∈ ℝ

n, while diag(x1, … , xn ) corresponds
to block diagonal matrix composition. Consider a time series
k ↦ x(k) ∈ ℝn, where k ∈ ℕ is the discrete time. Let x(i|k)
denote the value of x(k+i ) predicted at time k. When it is con-
venient, we suppress the time argument of x(k) representing
the whole series as x. Notation x+ refers to the forward shifted
sequence of x, that is, x+(k) = x(k+1) or x+(i|k) = x(i+1|k).
For two random variables x and y, taking values in ℝn, the
expected value and variance matrix of x are denoted by 𝔼(x )
and Var(x ), while the covariance matrix of x and y is Cov(x, y).
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970 POLCZ ET AL.

When x is normally distributed with expected value 𝜇 and vari-
ance Σ, we write x ∼ (𝜇x, Σx). We say that  is a credibility
set for x with probability level px if Pr(x ∈  ) ≥ px. We denote
the Kronecker delta function as 𝛿(x, x̃ ) with 𝛿(x, x ) = 1 and
𝛿(x, x̃ ) = 0 otherwise. We also denote a set of indices as 𝕀𝜏2

𝜏1
=

{s ∈ ℤ ∣ 𝜏1 ≤ s ≤ 𝜏2}. Note that in our notation, non-italic let-
ters in the subscript, such as in 𝜇x, are labels that express that the
coefficient or variable relates to an other variable, for example,
𝜇x is the expectation of vector x, while italic letters express that
the variable depends on an other variable, like 𝜅i expresses the
ith element of 𝜅. The textual superscripts in notation like 𝜇EM

z
are abbreviations, which denote different definitions or versions
of the same variable.

2 MODEL AUGMENTATION

2.1 System model

As the plant to be controlled, we consider a discrete-time non-
linear system in the following form:

x+ = f (x, u) + gd(x, u) + v, (1a)

y = Cx, (1b)

where x(k) ∈ ℝnx , u(k) ∈ ℝnu , y(k) ∈ ℝny , and v(k) ∈ ℝnx are
the state, control input, measured output and external distur-
bance signals, respectively, while f ∶ ℝnx×nu → ℝnx and gd ∶
ℝnx×nu → ℝnx are bounded deterministic vector functions. The
function f constitutes the physically well-interpretable and a
priori known dynamics of the system, that is, its nominal model,
whereas, gd represents the unknown, that is, unmodelled dynam-
ics of the system. To simplify the notation, we introduce w =
vec(x, u) to denote the arguments of these functions. In terms
of the measured output y, we assume that (1b) is linear with
a constant C ∈ ℝny×nx . The external disturbance v is assumed
to be an independent and identically distributed (i.i.d.) white noise
process with variance Σv = diag(𝜎2

v,1, … , 𝜎
2
v,nx

). We moreover
assume that the full state vector is available for measurement.

Our objective is twofold, (i) next to efficiently estimate the
unknown part of the dynamics gd from data together with
reliable uncertainty bounds, (ii) we aim to design a reference
tracking model predictive controller for the resulting estimated
model of (1) which can provide computationally efficient con-
trol of (1) with stability and performance guarantees. Step
(i) is required to provide a prediction model for (ii) that is
able to generate a prediction x(1|k), … , x(Np|k) of the future
state trajectory as the response of the system for the initial
state x(0|k) = x(k) and the future control sequence u(k), u(k+
1), … , u(k+Np−1). Here Np > 0 is the prediction horizon, and
k ≥ 0 is any time instant.

2.2 Augmentation by a Gaussian process

The major challenge in establishing the predictor for (ii) is
that the system model (1) is only partially known, therefore,

the unknown dynamic component z = x+ − f (w) = gd(w) + v

has to be estimated by using a collection of measurement
data N = {(w(k), z (k))}N

k=1 generated by (1). To identify an
unknown mapping w ∈ ℝnw → z ∈ ℝnz , where nz = nx, effi-
ciently with a characterization of the remaining uncertainty of
the estimate, we use GP regression [2, 13]. To distinguish w from
the control input u, and z from the system output y, we call w

and z as the GP-input and GP-output, respectively.
In terms of definition, a vectorial Gaussian Process  ∶

ℝnw → ℝnz assigns to every point w ∈ ℝnw a random vari-
able  (w) taking values in ℝnz such that, for any finite
set {w(𝜏)}N𝜏=1 ⊂ ℝ

nw , the joint probability distribution of
 (w(1)), … , (w(N )) is multidimensional Gaussian. GPs are
fully determined by their mean m and covariance functions 𝜅,
hence if g ∼  (m, 𝜅),

m(w) = 𝔼{g(w)}

𝜅(w, w̃) = 𝔼{(g(w) − m(w))(g(w̃) − m(w̃))⊤},

Both m and 𝜅, where the latter is also called a kernel function,
are often parameterized in terms of hyperparameters 𝜃 ∈ ℝn𝜃 . In
fact, taking g ∼  (m, 𝜅) as the prior distribution in the estima-
tion process defines the prior knowledge about gd in terms of
the mean function m. On the other hand, the choice of 𝜅 deter-
mines the function space in which an estimate of the function gd
is searched for together with the prior model of the noise pro-
cess. Parameterization of m and 𝜅 in terms of hyperparameters 𝜃
allows to adjust the prior, that is, these choices to the estimation
problem of gd using N .

Furthermore, GP regression is often implemented for each
element of the GP-output variable separately, i.e, in terms of
scalar-valued gi ∼  (mi , 𝜅i ) with i ∈ 𝕀

nz
1 constituting to g =

vec(g1, … , gnz
). While this approach greatly simplifies the esti-

mation problem, it inherently results in the choice of 𝜅 =
diag(𝜅1, … , 𝜅nz

).
Various types of kernels are used in applications, for example,

the Matérn class, the exponential family, the dot product family,
periodic kernels, and so on, or their combinations [2, Sec. 4.2].
Due to its simplicity and advantageous properties regarding the
moment matching concept we will exploit later on, we consider the
scalar squared exponential (SE) kernel for the modelling of gd:

𝜅SE
𝜎g,Λ

(w, w̃) = 𝜎2
g exp

(
−

1
2

(w − w̃)⊤Λ−1(w − w̃)
)
, (2)

where 𝜎g ∈ ℝ+ and Λ ∈ ℝnw×nw is positive definite. By tak-
ing into account the assumed i.i.d. properties of v and that
its variance is Σv = diag(𝜎2

v,1, … , 𝜎
2
v,nx

), the kernel 𝜅i for each
gi ∼  (mi , 𝜅i ) is formulated as

𝜅i (w, w̃) = 𝜅SE
𝜎g,i ,Λi

(w, w̃) + 𝛿(w, w̃)𝜎2
v,i . (3)

With the choice of (3) and with a zero prior mean (mi ≡

0), commonly used in the literature [2, Sec. 2.7], 𝜃 =
vec({𝜎g,i , Λi , 𝜎v,i }

nz
i=1) are the tunable hyperparameters of the GP

model and often optimized by the maximization of the marginal
likelihood of z under 𝜃 and the observed N [2, Sec. 5.4.1].
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POLCZ ET AL. 971

Based on the given N and the prior gi ∼  (0, 𝜅i ),

p(Zi |W , 𝜃) = (0,Kw,w,i ), (4)

where [Kw,w,i ]𝜏,�̃� = 𝜅i (w(𝜏), w(�̃�)) with 𝜏, �̃� ∈ 𝕀N1 , describes
the probability density function of the outputs Zi =
[ zi (1) ⋯ zi (N ) ]⊤ seen as random variables conditioned on the
observed inputs W = [ w(1) ⋯ w(N ) ]⊤ and hyper-parameter
values 𝜃.

To predict the value of zi at a test point w∗, the following joint
distribution[

Zi

z∗,i

]
∼

([
0

0

]
,

[
Kw,w,i Kw,i (w∗ )

K⊤w,i (w∗ ) 𝜅i (w∗, w∗ )

])
with [Kw,i (w∗ )]𝜏 = 𝜅i (w(𝜏), w∗ ) holds based on the previous
considerations. Hence, the predictive distribution for z∗,i , based
on the observed samples {zi (𝜏)}N𝜏=1 in N , is the posteriori
p(z∗,i |N , w∗ ) = (𝜇GP

z,i (x∗ ), 𝜎GP
z,i (w∗, w∗ )) characterized by

𝜇GP
z,i (w∗ ) =

𝛽i⏞⎴⎴⏞⎴⎴⏞

K⊤w,i (w∗ )K−1
w,w,i Zi (5a)

𝜎GP
z,i (w∗, w̃∗ ) = 𝜅i (w∗, w̃∗ )−K⊤w,i (w∗ )K−1

w,w,iKw,i (w̃∗ ). (5b)

Computation of (5) requires only elementary matrix opera-
tions, therefore it is computationally efficient. In terms of the
complete predictive distribution of z , the mean 𝜇GP

z (w∗ ) with
𝜇GP

z = vec(𝜇GP
z,1 , … , 𝜇

GP
z,nz

) gives an approximation of gd(w∗ )

while the variance ΣGP
z (w∗, w∗ ) with ΣGP

z = diag(𝜎GP
z,1 , … , 𝜎

GP
z,nz

)
gives a measure of the uncertainty of this approximation
together with the added uncertainty of v.

By using the resulting predictive distribution to define z =
 (𝜇GP

z , ΣGP
z ) that approximates the unknown term g(w) + v in

(1), the prediction model can be written as follows:

x̂+ = f (w) + z(w)
⏟⏟⏟

ẑ

. (6)

Recursive application of this model requires the evaluation of
f and the z at uncertain w as the state transition predicted
in a previous step results in a Gaussian distribution of possi-
ble values. If w is a random variable and f is non-linear, then
the distribution of f (w) and the posterior distribution of the
GP are both non-Gaussian, which makes the computation often
intractable. To overcome this problem, various approximations
have been introduced in the literature, which are overviewed in
the next subsection.

2.3 Model approximation

To simplify the model (6) and express the predicted states in
an efficiently computable closed form, which is a function of
the control input, the general practice is to approximate every

predicted future state x(i|k), i ∈ 𝕀
Np

1 by a Gaussian random
variable, where Np ∈ ℕ+ is the prediction horizon. If the con-
trol input is also deterministic or Gaussian (e.g., linear function
of the state), then w in (6) is Gaussian as well. Hence, based
on the Gaussian assumption of w, we need to construct a
Gaussian approximation for x+ in (6) to provide an efficient
recursively computable approximation of the distribution of
x(i|k). This section gives an overview of the most commonly
used approaches for this purpose.

First, note that the nominal and the disturbance models
in (6) are different in their nature. The nominal model f (w)
is often a general non-linear term without probabilistic com-
ponents, whereas the Gaussian process z(w) represents a
stochastic term with a fixed non-linear structure. Therefore, the
two terms are often handled separately in the approximation
schemes.

The distribution of f (w) can be approximated by computing
the Taylor series of f around 𝜇w and keeping only the affine
terms:

f (w) ≈ f (𝜇w) +
𝜕 f

𝜕w
(𝜇w) (w − 𝜇w) (7)

Clearly, if w is Gaussian, that is, w ∼ (𝜇w, Σw), the right-hand
side of (7) defines a Gaussian random variable.

Next, to characterize the stochastic properties of x+, the dis-
tribution of f (w) + ẑ with ẑ = z(w) has to be determined.
This can be done by computing the joint distribution of the
summed random variables. Since f (w) is approximated by the
linear mapping (7), only the joint distribution of w and ẑ is
needed to be determined to answer this question. To get a nor-
mal distribution for x+, the joint distribution is approximated
by a Gaussian one:[

w

ẑ

]
∼

([
𝜇w

𝜇z(𝜇w, Σw)

]
,

[
Σw Σwz(𝜇w, Σw)

⋆ Σz(𝜇w, Σw)

])
. (8)

Despite the conceptual simplicity of (8), the moments of (8)
are still challenging to determine. Various approaches have
been introduced to compute or at least approximate the val-
ues of 𝜇z, Σz, and Σwz. Next, we present two of these
techniques.

Taylor approximation: One may assume that the mean and the
variance of the GP are separable, namely, z(w) ≈ 𝜇GP

z (w) +
 (0, ΣGP

z (w)). Then, the first-order Taylor approximation of
the mean function 𝜇GP

z , and the mean equivalent approximation
of the variance function ΣGP

z gives

𝜇z(𝜇w, Σw) ≈ 𝜇GP
z (𝜇w) (9a)

⎡⎢⎢⎣
Σwz(𝜇w, Σw)

Σz(𝜇w, Σw)

⎤⎥⎥⎦ ≈
⎡⎢⎢⎢⎢⎢⎣

Σw

(
𝜕𝜇GP

z

𝜕w
(𝜇w)

)⊤

ΣGP
z (𝜇w) +

(
𝜕𝜇GP

z

𝜕w
(𝜇w)

)
Σw

(
𝜕𝜇GP

z

𝜕w
(𝜇w)

)⊤

⎤⎥⎥⎥⎥⎥⎦
.

(9b)
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972 POLCZ ET AL.

𝜇EM
z,i (𝜇w, Σw) = 𝛽⊤i qi (𝜇w, Σw), (10a)

ΣEM
z,i,i (𝜇w, Σw) = 𝛽⊤i Qi,i (𝜇w, Σw) 𝛽i −

(
𝜇EM

z,i (𝜇w, Σw)
)2
+ 𝜎2

g,i − Tr(K−1
w,w,i Qi,i (𝜇w, Σw)), (10b)

ΣEM
z,i, j (𝜇w, Σw) = 𝛽⊤i Qi, j (𝜇w, Σw) 𝛽 j − 𝜇

EM
z,i (𝜇w, Σw)𝜇EM

z, j (𝜇w, Σw), if i ≠ j , (10c)

ΣEM
wz,∶,i (𝜇w, Σw) =

∑N

𝜏=1 𝛽i,𝜏 qi,𝜏 (𝜇w, Σw)Σw(Σw + Λi )
−1(w(𝜏) − 𝜇w), (10d)

where qi,𝜏 (𝜇w,�w) = 𝜎2
g,i det

(
�w�−1

i + Inw

)− 1

2 exp
(
−

1

2
(w(𝜏) − 𝜇w)⊤(�w +�i )

−1(w(𝜏) − 𝜇w)
)
, (10e)

[Qi, j (𝜇w, Σw)]𝜏,�̃� = det(Ri, j (Σw))−
1

2 𝜎2
g,i 𝜎

2
g, j [Q̆i, j (𝜇w, Σw)]𝜏,�̃� (10f)

[Qi, j (𝜇w, Σw)]𝜏,�̃� = exp
(1

2
𝜉⊤𝜏,�̃� (𝜇w)R−1

i, j (Σw)Σw 𝜉𝜏,�̃� (𝜇w) −
1
2
𝜁⊤𝜏 (𝜇w)Λ−1

i 𝜁𝜏 (𝜇w) −
1
2
𝜁⊤�̃� (𝜇w)Λ−1

j 𝜁�̃� (𝜇w)
)
, (10g)

Ri, j (Σw) = Σw(Λ−1
i + Λ−1

j ) + Inw
, 𝜁𝜏 (𝜇w) = w(𝜏) − 𝜇w, 𝜉𝜏,�̃� (𝜇w) = Λ−1

i 𝜁𝜏 (𝜇w) + Λ−1
j 𝜁�̃� (𝜇w), (10h)

for each i, j ∈ 𝕀
nz
1 and 𝜏, �̃� ∈ 𝕀N1 .

Exact moment matching. According to [11, 13], the squared
exponential kernel (3) makes it possible to determine the first
two moments (10) of the joint distribution (8) analytically:
𝜇z = 𝜇

EM
z , Σz = Σ

EM
z , Σwz = Σ

EM
wz . Compared to the Taylor

approximation, the exact moment (EM) matching gives a more
precise Gaussian approximation of the actual distribution of
the Gaussian process z(w) at a non-deterministic query point
w. However, analytic moment calculations require heavy matrix
operations and involve complicated non-linear expressions (10)
of the mean and the variance of w.

2.4 Approximative non-linear prediction
model

The introduced approximation approaches provide a rolling
computation of the predicted states:

x(i|k) ≈ (𝜇x(i|k), Σx(i|k)), (11)

where the mean and the variance are computed as

𝜇x(i + 1|k) = A
(
𝜇w(i|k)

)
𝜇w(i|k) + c

(
𝜇w(i|k), Σw(i|k)

)
,

(12a)

�x(i + 1|k) = [A
(
𝜇w(i|k)

)
I ]

⋅

[
�w(i|k) �wz(𝜇w(i|k),�w(i|k))

⋆ �z(𝜇w(i|k),�w(i|k))

]
[A

(
𝜇w(i|k)

)
I ]
⊤

(12b)

where coefficient functions A and c depend on the actual
approximation technique (Taylor or EM) applied for (8). In par-
ticular, the Taylor approximation of the predictive mean function
𝜇GP

z gives

A(𝜇w) =
𝜕 f

𝜕w
(𝜇w) +

𝜕𝜇GP
z

𝜕w
(𝜇w) (13a)

c (𝜇w, Σw)= f (𝜇w)+𝜇GP
z (𝜇w)−

𝜕 f

𝜕w
(𝜇w)𝜇w −

𝜕𝜇GP
z

𝜕w
(𝜇w)𝜇w,

(13b)

the EM approach results in

A(𝜇w) =
𝜕 f

𝜕w
(𝜇w) (14a)

c (𝜇w, Σw) = f (𝜇w) −
𝜕 f

𝜕w
(𝜇w)𝜇w + 𝜇

EM
z (𝜇w, Σw). (14b)

3 THE PREDICTIVE CONTROL
PROBLEM

In this section, we formulate a model predictive control design
problem for system (6). By applying the introduced approx-
imation schemes and (12), this problem can be rewritten to
a deterministic non-linear optimization task. This section is
intended to introduce this non-linear optimization problem,
which we reformulate in Section 4 to be solved efficiently
in terms of QP iterations both under the Taylor and EM
approximation schemes.
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POLCZ ET AL. 973

We consider a reference tracking control problem, where
a time-varying reference signal r (k) ∈ ℝny is required to be
tracked by the system output y. Following the MPC concept,
the controller seeks at each time instant k, a sequence of control

inputs {u(i|k)}
Np−1
i=0 by ‘minimizing’ the cost

Jk =

Np∑
i=1

‖r (k+i ) −Cx(i|k)‖2
Q
+

Np−1∑
i=0

‖u(i|k)‖2
R
. (15)

Here ‖⋅‖Q and ‖⋅‖R denote the weighted 2-norm with respect
to symmetric positive definite matrices Q ∈ ℝny×ny and R ∈
ℝnu×nu and Np ∈ ℕ+ is the prediction horizon. As the state and
input can be both random variables, the cost function (15) is
inherently probabilistic. Therefore, an often-used strategy is to
minimize the ‘most likely,’ that is, expected value of the cost (15):
𝔼(Jk ).

In physical systems, the states and inputs are often restricted
to an operating region, which can be expressed in terms of sets
 ⊆ ℝnx ,  ⊆ ℝnu . Hence, next to the minimization of the
expectation of (15), we can formulate the satisfaction of state
and input constraints in a probabilistic sense

Pr(x(i+1|k) ∈  ) ≥ px, Pr(u(i|k) ∈  ) ≥ pu, (16)

where px and pu are given probability levels of the credibil-
ity sets.

We assume that the full state vector is available for
measurement without any noise at every control cycle

x(0|k) ∼
(
𝜇x(k), Σx,0

)
, (17)

where 𝜇x(k) = x(k) and the covariance Σx,0 = 0.
The stochastic non-linear model (6) provides distributed

predictions for the future states x(i|k), i ∈ 𝕀
Np

1 . Due to the
recursive construction, the uncertainty of the predicted states
accumulates as the time index goes forward in time. This may
result in large state distributions towards the end of the horizon,
which makes it challenging to find a feasible control strategy. To
avoid this effect, ref. [9] proposes to use an ancillary control pol-
icy that feeds back the uncertainty of the predicted state through
a suitably chosen gain matrix . Formally, this means that the
control input is parameterized in the following form:

u(i|k) = 𝜇u(i|k) −
(
𝜇x(i|k)

) (
x(i|k) − 𝜇x(i|k)

)
. (18)

where 𝜇x(i|k) is the predicted mean of x(i|k) and 𝜇u(i|k) ∈
ℝnu is a deterministic input, corresponding to the optimization
variables �̄�u,k = vec(𝜇u(0|k), … , 𝜇u(Np − 1|k)) in the mini-
mization of 𝔼(Jk ). As (18) indicates,  can be chosen to depend
on 𝜇x(i|k); however, for the sake of simplicity,1 we will use a
constant  in the sequel. More details about the properties and
the selection of the gain matrix can be found in [9]. A particular
case is discussed in Section 5.

1 Including a 𝜇x (i|k) dependence in  would result in a modified version of (20) and
(21) which are rather straightforward to derive, but would increase the complexity of the
resulting optimization problem significantly.

Based on these considerations, the resulting optimal stochas-
tic predictive control problem at time k can be formulated as
follows:

min
�̄�u(k)

𝔼(Jk ) subject to (6), (12), (16), (17), (18). (19)

Note that problem (19) is a highly complex problem, due to
the non-linear propagation of the distribution of w = vec(x, u)
via (6). Using the approximative prediction model derived in
Section 2.4, the optimization problem (19) can be significantly
simplified. Based on (11) and (12), 𝔼(Jk ) can be approximated
as

J GP
k
=

Np∑
i=1

‖r (k+i ) −C𝜇x(i|k)‖2
Q
+

Np−1∑
i=0

‖𝜇u(i|k)‖2
R
+

Np∑
i=1

Tr(Q C Σx(i|k)C⊤ ) +

Np−1∑
i=0

Tr(R Σx(i|k)⊤ ). (20)

The derivation of (20) is given in Appendix A.1. Furthermore,
assume that  and  are polytopes, described by intersections
of nX and nU number of half-spaces:

 =

nX⋂
j=1

{
x | S⊤x, j x ≤ sx, j

}
,  =

nU⋂
j=1

{
u | S⊤u, j u ≤ su, j

}
.

Then, the following deterministic constraints

𝜇x(i|k)∈

t (Σx(i|k))
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞
nX⋂
j=1

{
x | S⊤x, j x≤ sx, j−𝜏x, j

(
Σx(i|k)

)}
(21a)

𝜇u(i|k)∈
nU⋂
j=1

{
u | S⊤u, j u≤ su, j−𝜏u, j

(
Σx(i|k)

)}
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

t (Σx(i|k))

(21b)

with 𝜏x, j (·) = 𝜋
( 1−px

nX
, Sx, j , ·

)
, 𝜏u, j (·) = 𝜋

( 1−pu

nU
,⊤Su, j , ·

)
, and

𝜋(q, S , Σ) = Φ−1(1 − q)
(
S⊤Σ S

) 1

2 imply the state and input
constraints in (16), where Φ denotes the distribution function
of the Gaussian distribution (see [25] for details). Finally, the
deterministic non-linear model predictive control (NMPC) problem
approximating (19) at time k can be formulated as follows:

min
�̄�u,k

J GP
k

subject to (11), (12), (17), (18), (21). (22)

The optimization problem (22) is also often called a GP-MPC
problem, which is still difficult to solve, because (12) is highly
non-linear in the decision variables �̄�u. The complexity is espe-
cially high, when the exact moments (7) approximation is used.
In the next section, we propose an iterative procedure that can
efficiently solve this problem.
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974 POLCZ ET AL.

4 EFFICIENT SOLUTION BY LPV
ITERATIONS

To efficiently solve the optimization problem (22), we follow
the concept of linear parameter-varying (LPV) predictive control of
non-linear systems [23, 24]. First, the dynamic equations of the
prediction model are rewritten in an LPV form by selecting cer-
tain state- and input-dependent terms as scheduling variables.
By considering a given scheduling trajectory, the approximative
prediction model and the GP-MPC problem (22) reduces to a
simple linear time-varying predictive control problem that can
be rapidly solved by quadratic programming (QP). After solving
the QP, the resulting input sequence is then applied to simulate
the approximative non-linear predictive model and based on the
resulting state response, the scheduling is updated and the pre-
vious steps are repeated. The iteration continues as long as the
scheduling updates converge.

4.1 LPV reformulation

To formulate the LPV-MPC problem, we need to rewrite (12)
in an LPV form. We propose the following LPV reformulation
of (12):

𝜇x(i + 1|k) = A
(

p(i|k)
) [
𝜇x(i|k)

𝜇u(i|k)

]
+ c

(
p(i|k)

)
, (23)

where the scheduling vector is defined as

p(i|k) = vec(𝜇x(i|k), 𝜇u(i|k), Σx(i|k)). (24)

Note that (24) expresses the scheduling map, that is, how p relates
to the original variables of (12), while, from the LPV point of
view, it is considered as an independent, external variable. This
particular choice turns (12) into a simple affine form where

(P.1) the non-linear dependency over 𝜇x(i|k), 𝜇u(i|k), Σx(i|k)
is covered by the parameter-varying terms A and c;

(P.2) the variance transition (12b) vanishes as it is fully
expressed by the trajectory p.

In terms of Property P.2, the variance dynamics (12b) are not
included in the LPV prediction model (23), hence

(P.3) the cost terms in (20) can also be dropped as they become
a sequence fixed to a chosen trajectory of p:

J LPV
k

=

Np∑
i=1

‖r (k+i ) −C𝜇x(i|k)‖2
Q
+

Np−1∑
i=0

‖𝜇u(i|k)‖2
R
.

(25)

To complete our LPV reformulation, we can turn the non-
linear state and input chance constraints (21) to

(P.4) a scheduling-dependent constraint set:

𝜇x(i|k) ∈ t(p(i|k)), 𝜇u(i|k) ∈ t(p(i|k)). (26)

Note that this reformulation results in an LPV form with
the least level of complexity, but considerable conservative-
ness as, in the minimization of (25), the resulting state variance
Σx(i|k) does not play any role. Alternatively, it is possible to
factorize c in (12a) in the form of c̆(p(i|k))vec(Σw(i|k)) and
the right-hand side of (12b) in terms of 𝜇 (p(i|k))𝜇w(i|k) +
Σ(p(i|k))vec(Σw(i|k)) based on the approach given in [26] or
in [27, Sec. 7]. This introduces an LPV state propagation for
Σw(i|k), dropping Property P.2 and preserving the variance-
dependent costs in (20), removing Property P.3. While this
decreases conservatives, it increases complexity of the LPV
form and the associated optimization problem.

4.2 The iterative LPV-MPC algorithm

Based on the LPV reformulation discussed in Section 4.1, the
NMPC problem (22) can be rewritten to an LPV-MPC problem
as follows:

min
�̄�u,k

J LPV
k

subject to (17), (23), and (26), (27)

where p(i|k) ∈ vec(ℝnx+nu × 𝕊nx ) with i ∈ 𝕀
Np−1
0 is a given

(arbitrary) scheduling sequence. Note that (27) is a simple QP
that can be solved efficiently.

At time moment k ∈ ℤ, let {𝜇∗u (i|k)}
Np−1
i=0 be the

optimal solution of the GP-MPC problem (22) and let
𝜇∗x (i|k), 𝜇∗u (i|k), Σ∗x (i|k) be the corresponding optimal
state trajectory. Then, under the scheduling trajectory
p∗(i|k) = vec(𝜇∗x (i|k), 𝜇∗u (i|k), Σ∗x (i|k)), the optimal solu-
tion of the GP-MPC problem (22) is a feasible solution of
problem (27). For any other scheduling trajectory, (27) qualifies
as an approximation of (22): if the solution of (27) corresponds
to the given scheduling trajectory, then it is a solution of the
GP-MPC problem (22) as well. Hence, to obtain the optimal
solution of (22), the LPV-MPC problem (27) is solved iteratively

with {p(i|k)}
Np−1
k=0 initialized by the trajectory from step k − 1

or at k = 0 is determined by a specific initialization scheme. In
every iteration, (27) recast as a simple QP and solved by any
standard software, then, based on the resulting input sequence,
the scheduling is re-computed according to the non-linear state
recursion (12). The resulting iterative MPC scheme is outlined
in Algorithm 1. The specific steps are detailed in the sequel.
Initialization: When the predictive controller is started at k =

0 the scheduling sequence {p(i|0)}
Np−1
i=0 is required to be

determined to start solving the first QP (27). The following
initialization scheme is proposed (Line 1):

p(i|0) = vec(𝜇x(0), 01×nu
, Σx,0), ∀i ∈ 𝕀

Np−1
0 , (28)

where 𝜇x(0) = x(0) is the first measured state with a point
distribution (Σx,0 = 0).

 17518652, 2023, 8, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12430 by M

T
A

 Institute for C
om

puter, W
iley O

nline L
ibrary on [17/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



POLCZ ET AL. 975

ALGORITHM 1 Iterated LPV-MPC solution of GP-MPC.

1: initialization: set k ← 0, measure x(0) and set 𝜇x(0) = x(0) and

Σx,0 = 0, and set p(i|0) with i ∈ 𝕀
Np−1
0 via (28)

2: loop

3: repeat

4: solve (27) to obtain 𝜇u(i|k)

5: simulate (12) with 𝜇u(i|k) to obtain 𝜇x(i+1|k), Σx(i+1|k)

6: update p(i|k) using 𝜇u(i|k), 𝜇x(i|k), Σx(i|k) according to (31)

7: until p(i|k) has converged or nloop iterations reached

8: apply u(k) = 𝜇u(0|k)

9: k ← k+1

10: measure the actual state x(k) according to (1)

11: update p(i|k) by (24) and set 𝜇x(k) = x(k)

12: end loop

Solving the LPV-MPC problem: The LPV-MPC problem (27)
along the fixed scheduling trajectory p(i|k) provides a fixed
sequence of variation of the coefficient matrices A(p(i|k))
and c (p(i|k)) of (23) and the scheduling-dependent polytopes
t(p(i|k)) and t(p(i|k)) in (26). Along this variation, the
problem is recast and solved as a standard QP problem. (Line 4)
Simulation of the NL prediction model: The non-linear approximative
model (12) driven by the control policy (18) is used to compute
the resulting state variation in terms of 𝜇x(i|k) and Σx(i|k) for
the found optimal inputs 𝜇u(i|k) in the previous step of the
LPV-MPC scheme. (Line 5)
Updating the scheduling sequence: p(i|k) is updated with the com-
puted inputs 𝜇u(i|k) and the simulated states 𝜇x(i|k), Σx(i|k)
according to (24) in Line 6.
Measure of convergence: The iterative optimization of the LPV-
MPC problem (27) is continued until the computed scheduling
trajectory (24) converges. The convergence can be expressed in
any norm of the corresponding vectors. Here, we propose to
use an 𝓁∞ norm–based convergence condition:

max
i∈𝕀

Np−1

0

‖ p(i|k)−vec(𝜇x(i|k), 𝜇u(i|k), Σx(i|k))‖∞<𝜀p, (29)

where 𝜀p > 0 is a small threshold value. If convergence does
not happen in nloop ∈ ℤ+ number of iterations, then the exe-
cution is stopped to limit the computational budget of the
LPV-MPC scheme.
Applying the input: After the LPV-MPC computations are ter-
minated, the first value of the computed mean input sequence
𝜇u(0, k) is applied to the system according to the receding hori-
zon principle. Note that  does effect this input as, due to the
used measurement model (17), x(0|k) ∼ (x(k), 0). In fact, 
plays a role in shaping the GP-MPC control performance as
it influences the actual future planning of the input sequence
in view of the uncertainty of the state predictions, that is, it
realizes a default feedback action on the entire state distribu-
tion. Hence, an aggressive  results in an MPC law that tries
to suppress deviations from the predicted mean at the expanse

of more input power while a low gain  allows state uncertainty
where mainly the mean is governed by the input actions. (Line 8)
Measuring the new state response: When the response of the sys-
tem to the implemented control action is measured, it is
assumed that the measurement is exact, allowing to set x(0|k) ∼
 (x(k), 0) for the next control cycle.
Propagation of the scheduling sequence: When a new control cycle
starts by advancing the time k, initialization of the scheduling
sequence p(i|k) is required to be accomplished for starting the
LPV-MPC iterations. The previously converged input sequence
𝜇u(0|k − 1), from step k − 1, is used to initialize the initial
scheduling sequence for starting the LPV-MPC iterations:

𝜇u(i|k) = 𝜇u(i + 1|k − 1), ∀i ∈ 𝕀
Np−2
1 . (30a)

Note that 𝜇u(Np|k − 1) has not been computed in the previous
step, hence to support recursive feasibility

𝜇u(Np − 1|k) = 𝜇u(Np − 2|k) (30b)

is taken. Additionally, due to the current state measurement
x(k), more accurate information on 𝜇x(0|k) is available than
the predicted sequence of state variation in step k − 1. Hence
using x(0|k) ∼ (x(k), 0) and the propagated input sequence
𝜇u(i|k), the non-linear approximative model (12) is used to
compute a new initial state variation in terms of 𝜇x(i|k) and
Σx(i|k). Then, the initial p(i|k) is computed according to (24).

Remark 1. Convergence of the LPV-MPC scheme can be accel-
erated if in early iterations the scheduling sequence p(i|k) is
updated with the state mean sequence �̂�x(i|k) computed in the
solution of the LPV-MPC problem (27) in Line 4 rather than
the simulated state mean sequence 𝜇x(i|k) obtained in Line 5,
namely,

p(i|k) = vec(�̂�x(i|k), 𝜇u(i|k), Σx(i|k)). (31)

While the simulated mean 𝜇x corresponds to the true predicted
state variation for the optimized input sequence, �̂�x provides
an LPV conversion of the next optimization problem along the
solution of the previous one, often providing better conver-
gence rate when p(i|k) is far from the optimal solution of the
GP-MPC problem. This update is suggested till the LPV-MPC
solution drastically changes between iterations, that is, �̂�x and
𝜇x have significant differences. A proposed way to test this is in
terms of

‖𝜇x − �̂�x‖2
𝓁∞
= max

i∈𝕀
Np
1

‖𝜇x(i|k) − �̂�x(i|k)‖2
2 < 𝜀acc, (32)

where ‖⋅‖2 denotes the Euclidean norm and 𝜀acc is a suffi-
ciently large threshold value, typically 10−3. Note that as the
main computational load comes from iterating the LPV-MPC
solution, especially in terms of simulation of the non-linear pre-
diction model, faster convergence has a direct influence on the
achievable control cycle time with GP-MPC. The maximum
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976 POLCZ ET AL.

number of acceleration steps can be also maximized in terms
of nacc ∈ [5, 10] with nacc ≤ nloop.

Remark 2. A further possible acceleration of the proposed
scheme is to skip the iterations in the LPV-MPC problem,
that is, to set nloop = 1 for Line 7. In this way, the receding-
horizon principle is used to converge to the set point and to
the optimal scheduling sequence p∗(i|k) simultaneously. While
there is little knowledge about the convergence conditions of
the overall scheme, a similar concept has been used successfully
in applications of deterministic LPV predictive control [23].

Remark 3. In this paper, our objective is to develop an efficient
solution of the GP-MPC problem (22). Ensuring recursive fea-
sibility and overall stability of the original GP-MPC scheme, for
example, by the choice of  in (18) and terminal ingredients,
are rather important for a safe operation of such controllers,
but from the authors’ knowledge these are open problems and
are out of the scope of the current work.

5 EXAMPLES

5.1 Robotic arm simulation example

As an illustrative example, we consider motion control of the
simulation model of the 4DOF QArm robotic arm by Quanser.
The actual robotic arm and its skeleton model is illustrated in
Figure 1.

5.1.1 Dynamic motion model

Under ideal conditions, the equations of motion of the
arm can be expressed in the form of a continuous-time
Euler–Lagrangian model:

H (q) q̈ + h(q, q̇) = 𝜏, (33)

FIGURE 1 4DoF QArm robotic arm by Quanser: actual system (left
panel) and its skeleton model (right panel).

where q ∶ ℝ → ℝnq represents the four joint angles (nq = 4),
namely, base yaw, shoulder pitch, elbow pitch, and wrist yaw,
while 𝜏(t ) ∈ ℝnq denotes the corresponding torques provided
by servo motors at these joints at time moment t ∈ ℝ. In (33),
H (q) denotes the inertia matrix, whereas h(q, q̇) comprises the
Coriolis, centrifugal, and gravitational terms.

With respect to the real robot arm, the model (33) only
expresses the ideal motion dynamics while the actual arm can
experience further dynamic effects such as friction, unbalanced
construction, further loads at the end effector, and so on.
Assume that the actual dynamics can be described in the form
of

Ho(q) q̈ + ho(q, q̇) = 𝜏, (34)

where Ho and ho are considered to be unknown.
In practice, torque-controlled robotic arms are often regu-

lated by using the concept of computed torque control, that is, based
on the assumed model (33), 𝜏 is chosen as

𝜏 = H (q) u + h(q, q̇), (35)

where u ∶ ℝ → ℝnq corresponds to virtual inputs. When (35)
is applied to the actual system (34), the dynamics of motion
become

q̈ = u +H−1
o (q)

((
H (q)−Ho(q)

)
u+h(q, q̇)−ho(q, q̇)

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

gd(x,u)

, (36)

where x = vec(q, q̇), which can be rewritten as

ẋ =

[
0 I

0 0

]
⏟⎴⏟⎴⏟

A

x +

[
0

I

]
⏟⏟⏟

B

(
u + gd(x, u)

)
. (37)

If the assumed ideal model (33) matches the actual dynam-
ics (34), that is, gd(x, u) = 0, (37) reduces to four decoupled
second-order integrators that are easy to control. However, this
almost never happens in practice and the presence of gd(x, u)
deteriorates the control performance.

For the application of our methodology to estimate gd and
compensate its effect by GP-MPC, (37) is written in discrete
time:

x+ = Φ x + Γ
(
u + gd(x, u)

)
, (38)

with

[
Φ Γ
0 I

]
= exp

(
Ts

[
A B

0 0

])
corresponding to complete

zero-order hold (ZOH) discretization with sampling period Ts =
0.1 (s) applied to the integrator model ẋ = Ax + Bu.

In this simulation study, the actual dynamics (34) and the
assumed model (33) are considered to differ in the moments
of inertia, the mass of each link, the position of the centre of
gravity of each link, and the mass of the payload at the end effec-
tor. To quantify how much H and h differ from Ho and ho, the
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POLCZ ET AL. 977

following relative distances are computed:

max
q

‖H (q) −Ho(q)‖F‖H (q)‖F

≈ 0.2249, (39a)

max
q,q̇

‖h(q, q̇) − ho(q, q̇)‖2‖h(q, q̇)‖2
≈ 0.2584, (39b)

where ‖⋅‖F denotes the Frobenius norm. As seen above, the
worst-case difference between the functions is about 22–25%.

As the inverse dynamics is not perfectly known, the term
gd(x, u) is relevant and affects directly the velocity dynamics.
However, we assume that the additive model error corre-
sponding to the wrist yaw dynamics (last coordinate of vector
gd(x, u) ∈ ℝ4) is negligible in this case study. Moreover, func-
tions H and h of the hypothetical model (33) are independent of
the base yaw (q1) and the wrist yaw (q4), therefore, the unknown
term gd(x, u) is modelled by three GPs:

gd(x, u) ≈  (w) = vec(r(w̃), 0), (40)

with r ∶ ℝ
10 → ℝ3, where the essential arguments of the

GPs are w̃ = vec(q2, q3, q̇, u).
As proposed in [6], a GP-based MPC controller is applied to

(37), which employs the following prediction model:

x̂+ = Φ x + Γ
(
u +  (w)

)
=
[
Φ Γ

]
w + Γ (w), (41)

where the unknown term gd(x, u) is replaced by a GP as
described in (40). Although the controller is designed and oper-
ated in discrete time, the computed input is applied to the
deterministic CT model (36) with zero-order hold during the
sampling period of length Ts.

5.1.2 Data generation

To capture the unknown dynamics and the discretization error,
the measurement data is collected during a continuous-time
simulation of (34), such that the state is measured at sampling
rate Ts and the input is applied through a synchronized zero-
order hold. When the inverse dynamics is not precisely known,
the feedback linearization-based control does not work effi-
ciently. Therefore, to provide a rough trajectory tracking for the
partly known system model (34) in the joint space, we applied
the feed-forward non-linear control approach presented in [28,
Sec. III.A], which is based on (35) computed along the refer-
ence instead of q. Then, the inverse of the linearizing feedback
(35) allows us to compute the acceleration input u, which would
have produced the same torque via (35) as the applied control
scheme. Finally, the measured reduced GP outputs are prepared
as follows: z̃ ( j ) = Γ†g (x+( j ) − Φ x( j ) − Γ u( j )), where j = 𝕀N1

and Γ†g is the left inverse of Γg = Γ ⋅

[
I3×3

0

]
∈ ℝ8×3. Additional

noise is not considered in this study, as the main focus of the
paper is to solve GP-MPC problems efficiently rather than to
analyze the robustness of the GP-MPC scheme against noise.

0.5

0

qy

0

-0.4

0.2

qx

-0.2

q z

-0.5

0.4

0

0.6

0.2 0.4

0.8

0.6

FIGURE 2 Reference motion trajectory in the world space followed by
the end-effector of the simulated arm during collection of the training data.
The black dots illustrate the place where a training point was recorded with
sampling time Ts.

For data generation, the reference trajectory has been
designed as a spline connecting 121 distinct points in the joint
space. The trajectory with a length 500 (s) has been optimized
such that the joint positions, velocities, and accelerations meet
the limitations prescribed by the manufacturer. The trajectory
followed by the simulated plant and the N = 5000 recorded
training points are illustrated in the world space in Figure 2. Let
N denote the set of all collected training points available for
GP estimation.

5.1.3 GP estimation

Using N , the three GPs in r (labelled by i = 1, 2, 3) have
been estimated independently in two steps. First, the hyperpa-
rameters 𝜃i have been optimized by maximizing the marginal
likelihood of z̃i under 𝜃i and the observed N [2, Sec. 5.4.1].
Then, inspired by [7], a reduced, sparse data dictionary Ns,i

⊂
N of Ns,i samples are formulated, to decrease the dimension-
ality of the GP regression. The dictionary entries are selected
iteratively, from the original data set N based on the max-
imum predictive variance of the samples conditioned on the
actual dictionary. The collection of entries to the dictionary is
terminated, when appending further training points would not
reduce the predictive variance significantly. In this way, the three
(independent) dictionaries are filled with Ns,1 = 200, Ns,2 = 30,
and Ns,3 = 100 samples, respectively.

5.1.4 Predictive control designs

To evaluate the performance of the proposed approach four
control schemes are compared:
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978 POLCZ ET AL.

LTI-Oracle MPC: When the inverse dynamics of the actual
system (34) are perfectly known, the non-linear components
can be completely eliminated from the feedback linearized loop
behaviour. The remaining integrator dynamics ẋ = Ax + Bu in
discrete time can be controlled by a simple LTI-MPC as follows:

min
u(0|k)

Jk subject to x(0|k) = x(k), (42a)

x(i + 1|k) = Φ x(i|k) + Γ u(i|k), (42b)

u(i|k) ∈  . (42c)

The resulting u(0|k) is then applied on (38) which is consid-
ered to be the simulation model describing the robot dynamics
in discrete time. We call the (42)-based predictive controller an
LTI-Oracle design as it is based on an LTI prediction model and
perfect computed torque control 𝜏 = Ho(q) u + ho(q, q̇) corre-
sponding to gd = 0 in (38). Note that the LTI-Oracle controller
is not a realistic approach as it presumes the perfect knowledge
of the partly unknown system model (34) and it represents the
best achievable performance by any predictive scheme under the
considered J cost function.

LTI-MPC: The same LTI-MPC (42) is applied to (38), when
the inverse dynamics are not perfectly known, that is, gd ≠ 0.
NL-Taylor MPC: Based on the obtained GP model of gd, the
GP-MPC approach as proposed by [25] is applied to control
(38). In each sampling period, we solve the non-linear MPC
problem (22), where the moments of the GP in the predic-
tion model (12) are approximated using a first-order Taylor
approximation as presented in (13a). In the NMPC computa-
tions, the control input policy is determined in the feedback
form (18), where the constant feedback gain  is computed
for the ideal integrator model using a classical LQR design with
weight matrices:

QLQR = diag(1, 10, 100, 0.1, 1, 1, 1, 1),

RLQR = I4. (43)

The weights in QLQR balance the predicted uncertainties of the
four joint positions and angular velocities.
LPV-EM MPC: Finally, we apply the proposed GP-MPC
approach to (38) using a prediction model (12) where the
moments of the GP are computed analytically according to
(14a). In the feedback input policy (18), we considered the
same gain matrix K , obtained for the NL-Taylor approach.
The iterated control computations were processed as detailed
in Algorithm 1, such that the convergence threshold in (29) has
been set to 𝜀p = 10−3, while the maximum number of QP iter-
ations has been nloop = 20. Algorithm 1 has been executed with
the acceleration approach described in Remark 1 with nacc = 10
and 𝜀acc = 10−3.

Cost function. In the four MPC approaches, three different cost
functions appear. The LTI approaches consider Jk introduced in
(15) in the deterministic sense as there is no uncertain stochastic

0

0.2

0.4

0.6

z

0.8

0.2

y

0

-0.2

x

-0.4 0.40.20

0

0.2

0.4

0.6

z

0.8

0.2

y

0

-0.2

x

-0.4 0.40.20

FIGURE 3 Reference and output trajectories in the world space of the
QArm system controlled by the NL-Taylor (NMPC (22) with Taylor
approximated moments (13a)) (left), and the LPV-EM (sequential LPV-MPC
design (Algorithm 1) with analytical moment calculations) (right) GP-MPC
methods. The dashed line illustrates the periodic reference trajectory of the end
effector, whereas, the solid line is the actual trajectory of the effector with the
initial position illustrated by a solid dot.

element in the prediction model. The NL-Taylor method con-
siders the expected cost J GP

k
in (20), while the LPV-EM works

with the simplified form J LPV
k

of this costs function in terms
of (25). In all MPC approaches, the same weight matrices have
been used:

Q = 10 I4×4, R = 10−2I4×4. (44)

Input constraints. The feasible domain for the input u ∈ 

is fixed as  = [−10, 10]4. This domain ensures the com-
puted torque (35) to meet the manufacturer’s recommended
limitations at each admissible state. In the NL-Taylor and LPV-
EM approaches, the tightened input constraints in (21) and
(26), respectively, are enforced with a pu = 95.45% probability
level. In this illustrative example, state constraints are not pre-
scribed, as the reference tracking ensures a feasible solution in
itself.

Further common parameters. In each case, the controller execu-
tion was simulated for 17.5 seconds (k ∈ {0, … , 174}) with a
periodic reference trajectory. The prediction horizon of the four
predictive controllers has been set to Np = 50.

Simulation environment. The four control approaches are
applied to the continuous-time system (36) with ZOH actuation
and synchronized sampling with Ts. The initial state in each run
is considered to be in a fixed rest position, displayed in Figure 3.

The computations have been performed in MATLAB on a
desktop PC with Intel Core i5-4590 CPU at 3.3 GHz and 32 GB
of RAM. For algorithmic differentiation, we used CasADi [29].
To solve non-linear optimization problems, we used IPOPT
[30], an interior point line search algorithm, with the MUlti-
frontal Massively Parallel sparse direct Solver (MUMPS) [31,
32]. To solve quadratic problems, we used MOSEK [33].
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POLCZ ET AL. 979

TABLE 1 Performance comparison of the proposed approach.

LTI-Oracle LTI NL-Taylor LPV-EM

LPV-EM

(accelerated)

1. Tracking error||y − r||𝓁∞ 0.0033 0.3229 0.0931 0.0226 0.0226

2. Offline model construction (s) 3 3 245 3 3

3. Avg. solver time (s) − − 5.1 0.0142 0.0124

4. Avg. simulation time with EMM (s) − − − 0.7760 0.7028

5. Avg. number of iterations in a control cycle − − 1 11 6

6. Avg. control cycle time (s) 0.04 0.04 5.1 8.6777 4.29

FIGURE 4 Scheduling difference during the LPV-MPC iterations with the acceleration option (Remark 1) and convergence threshold 𝜖p = 10−3.

5.1.5 Results and discussion

With the discussed MPC schemes, (36) has been simulated
in a closed loop w.r.t. the joint equivalent of the reference
trajectory depicted in (3). The obtained responses have been
analyzed based on the indicators listed below and the results are
summarized in Table 1.

1. The tracking error is quantified in the 𝓁∞ sense:

‖r −Cx‖𝓁∞ = max
k≥k0

‖rk −Cxk‖2. (45)

As the reference trajectory starts from a different position
than the initial pose of the arm, the tracking error in the first
few steps k ≤ k0 = 20 (in the first 2 seconds) is a few orders
of magnitude higher than the overall cumulative error after
the transient behaviour. To avoid that this part dominates
the quantification of the tracking error, the error measures
are only computed for k ≥ k0.

2. We recorded the time required for offline construction of
the optimization model. Note that this is only required to be
done once before the control cycles start.

3. The average solver time (Step 4 in Algorithm 1) in each
iteration over the 175 time steps of the entire simulation
is reported in Table 1. Note that in one control cycle,
the calculation of the-to-be applied input uk to the system
takes different number of iterations with the proposed LPV
schemes.

4. The average simulation and scheduling calculation time
(Steps 5 and 6 in Algorithm 1) in each iteration over the
entire simulation is also provided for the introduced LPV
schemes with EM-based propagation model.

5. The average number of iterations is also provided for each
input calculation cycle (Steps 3–11 in Algorithm 1).

6. Finally, the average total time needed for each input
calculation cycle is also reported in Table 1.

In Figure 3, the resulting end effector trajectories in the world
space are depicted when the arm is controlled by the NL-Taylor
and the LPV-EM predictive controllers. The predicted state
and input trajectories computed at time k = 0 are illustrated in
Figure 5 for both GP-based approaches.

In Figure 4, we present the time evolution of the log10 of the
scheduling difference (29) during the iterative control compu-
tations of the LPV-EM method. The vertical grid lines, which
bound the intervals [k, k+1], k ∈ 𝕀30

0 illustrate the end of each
sequence of iterations, after which the first input value is applied
to the system at time k. The numbers at the top of the axes
constitute the number of LPV-MPC iterations required in the
corresponding sampling period. The red horizontal line high-
lights the scheduling convergence threshold 𝜖p. The orange and
blue bars illustrate the difference in scheduling after a single
MPC computation. The orange bars highlight the case when the
previous simulated mean 𝜇x was used to update the scheduling,
whereas, the blue bars correspond to the iterations, when the
previous solution �̂�x of the LPV-MPC was used (31).

Relevance of the GP
The tracking error of the LTI approach, when the inverse
dynamics is not perfectly known, is two orders of magni-
tude higher compared to the LTI-Oracle controller, where the
inverse dynamics is presumed available. This fact allows us to
conclude that the unknown dynamic component gd(x, u) in (38)
is relevant and its impact to the overall dynamics is not negligi-
ble. Therefore, the augmentation of the prediction model (41)
with an additive Gaussian process model is reasonable.
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980 POLCZ ET AL.

(a) (b)

FIGURE 5 State and input predictions at time k = 0 made by NL-Taylor in panel (A) and LPV-EM after the 7th iteration in panel (B). The dashed red line is
the reference output r to track, the dashed black lines visualize the input constraints, the blue lines illustrate the computed states �̂�x and inputs 𝜇u, the orange lines
are the simulated state expectations 𝜇x, the shaded orange areas illustrate the uncertainty of the simulated trajectories 𝜇x and the computed inputs 𝜇u. The shaded
areas constitute the 95.45% confidence intervals of the marginal distributions of the corresponding random variables.

Initialization
The complexity of the non-linear optimization model built for
NL-Taylor method is significantly higher compared to a QP
required for the LPV-EM controller. Therefore, the model
construction requires more time and hardware resources.

Precision
In this simulation example, the proposed LPV strategy with EM
achieved a lower tracking error compared to the state-of-the-art
approach (NL-Taylor). This can be explained by the fact that
the analytically calculated moments (14a) provide a more accu-
rate prediction with model (12) than the Taylor approximated
moments (13a). Moreover, the time evolution of the scheduling
error (Figure 4) suggests that the iterated solutions show a good
convergence to an exact solution of the non-linear problem
(22) equipped with exact moments. It is worth remarking that
the iterated LPV-EM is potentially more conservative (overly
cautious) compared to the NMPC with EM, since the variance
cost terms of (20) are not considered during the QP iterations.
However, the obtained predictions in Figure 5 suggest that the
iterated LPV-EM approach is conservative to an acceptable
degree compared to the NL-Taylor method. Namely, the uncer-
tainty of the predictions is not significantly higher compared to
non-linear method.

Computational efficiency
The computational time indicators in Table 1 show that the
moment calculations in the LPV approach accounted for the
bulk of the processing time during the control execution. How-
ever, the overall processing time is lower than the cumulative
solver time of the NL-Taylor approach. Note that this is a sig-
nificant achievement in itself, as even if NL-EM MPC is less
conservative in its prediction model, it has been reported to
have much higher computational cost than the NL-Taylor vari-

ant. The fact that the LPV-based solution makes the EM option
faster than the NL-Taylor, brings higher accuracy reachable
with even lower computational time compared to the existing
state-of-the-art. This highlights the overall magnitude of the
contributions of this paper.

Due to computational limitations, the comparison of the
proposed approach with the NMPC (22) using analytically
computed moments (NL-EM MPC) was not possible for this
example. Therefore, in the following subsection, we consider an
academic example to perform a relevant comparison.

5.2 Academic example

Consider the forced Van der Pol oscillator with an additive non-
linear term as follows:

ẋ1 = x2, (46a)

ẋ2 =
(
1 − x2

1

)
x2 − x1 + u + gd(x2), (46b)

where x1 is the position, x2 is the velocity of the oscillator,
and u is an external force input. The output is the position
x1, which is meant to follow a reference trajectory. In (46),
function gd represents a non-linear friction phenomenon, which
depends only on the velocity of the system. The friction func-
tion is illustrated in Figure 6 (solid black line). In Figure 8, the
limit cycle of (46) is displayed with and without the friction
term.

In this simulation study, the non-linear friction gd is con-
sidered to be unknown and hence approximated by a GP.

To construct a training set N =
{

(x2( j ), z ( j ))
}N

j=1
, we have

generated a few, not identically distributed test points x2( j ).
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POLCZ ET AL. 981

FIGURE 6 Non-linear friction characteristics and its Gaussian Process
model for the forced Van der Pol oscillator.

Then, the corresponding training outputs x( j ) = gd(x2( j )) +
v( j ) have been polluted by an additive noise v with variance
𝜎2

v = 0.36. The hyperparameters have been tuned by maximiz-
ing the marginal likelihood of z under the training samples N .
The data points are visible in Figure 6 by the black dots. The
mean and variance of the estimated r(x2) are displayed in
Figure 6 with a 95% confidence bound.

A discrete-time prediction model for (46) is determined using
the explicit Euler discretization method:

x̂+ = f (w) + Ts (w), (47)

with sampling period Ts = 0.02 (s) and w = vec(x, u). In (47),
the nominal model is

f (w) =

[
x1 + Ts x2

x2 + Ts (1 − x2
1 ) x2 − Ts x1 + Ts u

]
, (48)

whereas the unknown term gd(x2) in (47) is simply replaced by
the estimated  (w) = r(x2).

A deterministic approximation (12) for (47) is derived accord-
ing to Sections 2.3 and 2.4 using exact moment matching (14a).
We consider two control approaches.

NL-EM MPC: Corresponding to (46) controlled by the NL
GP-MPC approach (22) with analytic moment calculations.
LPV-EM MPC: When the proposed iterated LPV approach
described in Algorithm 1 is applied on (46). The convergence
threshold in (29) is set to 𝜀p = 10−3, and the maximum number
of LPV-MPC iterations is nloop = 10. Algorithm 1 is executed
with the acceleration approach described in Remark 1 with
nacc = 5 and 𝜀acc = 10−3.

In both MPCs, we considered the same weight matrices Q =
104I2×2, R = 0.1 in the cost functions. The prediction horizon
in both cases was Np = 50, whereas the simulation horizon was

T = 14 (s) (i.e., k ∈ {0, … , 699}). For simplicity, the input was
optimized with K ≡ 0 in (18), and no input and state constraints
have been considered in this example. The inputs computed for
the stochastic DT model (47) have been applied to the deter-
ministic CT model (46) under ZOH actuation and synchronized
output sampling.

The resulting position and velocity trajectories in comparison
with the reference and the applied inputs are shown in Figure 7
for both GP-MPC approaches. The state trajectory achieved by
the NL GP-MPC approach is illustrated in the phase plot in
Figure 8 by the yellow dotted line.

The maximal error (0.68) between the achieved position
output and the reference is practically the same for the two
controllers. Their relative difference is within 0.3%. In this
simulation example, the proposed approach shows a good con-
vergence to the non-linear problem and requires in average
4 ± 1 iterations . The average processing time of a single input
calculation required by the LPV approach is 0.115 (s), whereas
an input calculation during the non-linear MPC required
an order of magnitude higher (1.12 (s)) average processing
time.

The implementations are available in the public repository
[34].

6 CONCLUSION

In this paper, a novel LPV approach is proposed for a rapid
solution of GP-MPC problems for discrete-time non-linear
state-space models augmented with GPs. The core idea is that
by converting the mean and covariance prediction model both
under Taylor and exact moment (EM) matching-based approx-
imation to an LPV form, the GP-MPC problem reduces to
a quadratic program. By refining the scheduling via succes-
sive solutions of the QP, rapid convergence to an optimum
of the GP-MPC problem can be observed, although there are
no analytic convergence guarantees. Compared to the major-
ity of the sequential convexification techniques, the presented
approach has two main advantages. First, it does not require
to compute or approximate the gradient of the dynamic equa-
tion, but only simulate the non-linear dynamics over the control
horizon. This makes it possible to perform MPC computa-
tions with a more difficult prediction models, in particular,
with exact GP moments. Secondly, the predicted state evolution
is provided using simulations of the non-linear mean-variance
prediction model.

Through illustrative examples, it has been demonstrated the
proposed LPV approach is capable to outperform sequential
convexification–based solution of the GP-MPC problem in
terms of realizing EM based GP-MPC, when the non-linear
solution is non-computable, and execute it with lower computa-
tional time than the much cheaper Taylor approximation based
non-linear MPC solution without any performance loss. Fur-
ther research is aimed at improving analytic computation of the
moments which currently contribute the largest to the overall
solution time of the proposed method.
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982 POLCZ ET AL.

FIGURE 7 State and input trajectories (blue lines) achieved by LPV-EM (top) and NL-EM (bottom) GP-MPC methods compared to the reference trajectory
(dashed red line). The vertical dashed lines at time k = 200 correspond to the end of the applied input sequence, from which the predictions and their uncertainty
are illustrated by the orange lines and the shaded orange area.

FIGURE 8 Phase diagram. The blue line illustrates the limit cycle of the
Van der Pol system, whereas, the red cycle is obtained when the system is
disturbed by the non-linear friction. The yellow curve illustrates the resulting
state trajectory when the system is controlled by the proposed GP-MPC
scheme.

AUTHOR CONTRIBUTIONS

Peter Polcz: Software, validation, writing - original draft. Tamas
Péni: Conceptualization, methodology, supervision, writing -
review and editing. Roland Tóth: Conceptualization, method-
ology, supervision, validation, writing - review and editing.

ACKNOWLEDGEMENTS

The research was supported by the European Union within
the framework of the National Laboratory for Autonomous
Systems (RRF-2.3.1-21-2022-00002) and by the Eötvös Loránd
Research Network (grant. number: SA-77/2021).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in
the supplementary material of this article.

ORCID

Tamás Péni https://orcid.org/0000-0002-1440-4263

REFERENCES

1. Nguyen-Tuong, D., Peters, J.: Model learning for robot control: A survey.
Cogn. Process. 12(4), 319–340 (2011). https://doi.org/10.1007/s10339-
011-0404-1

2. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning), MIT Press,
Cambridge, MA (2006)

3. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull.
Am. Math. Soc. 39(1), 1–49 (2001). https://doi.org/10.1090/s0273-0979-
01-00923-5

4. Klenske, E.D., Zeilinger, M.N., Schölkopf, B., Hennig, P.: Gaussian
process-based predictive control for periodic error correction. IEEE
Trans. Control Syst. Technol. 24(1), 110–121 (2016). https://doi.org/10.
1109/TCST.2015.2420629

5. Grancharova, A., Kocijan, J., Johansen, T.A.: Explicit stochastic predictive
control of combustion plants based on Gaussian process models. Auto-
matica 44(6), 1621–1631 (2008). https://doi.org/10.1016/j.automatica.
2008.04.002

6. Carron, A., Arcari, E., Wermelinger, M., Hewing, L., Hutter, M., Zeilinger,
M.N.: Data-driven model predictive control for trajectory tracking with a
robotic arm. IEEE Rob. Autom. Lett. 4(4), 3758–3765 (2019). https://doi.
org/10.1109/LRA.2019.2929987

7. Nguyen-Tuong, D., Peters, J.: Incremental online sparsification for model
learning in real-time robot control. Neurocomputing 74(11), 1859–1867
(2011). https://doi.org/10.1016/j.neucom.2010.06.033

8. Maiworm, M., Limon, D., Findeisen, R.: Online learning-based model pre-
dictive control with Gaussian process models and stability guarantees. Int.
J. Robust Nonlinear Control 31(18), 8785–8812 (2021). https://doi.org/
10.1002/rnc.5361

 17518652, 2023, 8, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12430 by M

T
A

 Institute for C
om

puter, W
iley O

nline L
ibrary on [17/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-1440-4263
https://orcid.org/0000-0002-1440-4263
https://doi.org/10.1007/s10339-011-0404-1
https://doi.org/10.1007/s10339-011-0404-1
https://doi.org/10.1090/s0273-0979-01-00923-5
https://doi.org/10.1090/s0273-0979-01-00923-5
https://doi.org/10.1109/TCST.2015.2420629
https://doi.org/10.1109/TCST.2015.2420629
https://doi.org/10.1016/j.automatica.2008.04.002
https://doi.org/10.1016/j.automatica.2008.04.002
https://doi.org/10.1109/LRA.2019.2929987
https://doi.org/10.1109/LRA.2019.2929987
https://doi.org/10.1016/j.neucom.2010.06.033
https://doi.org/10.1002/rnc.5361
https://doi.org/10.1002/rnc.5361


POLCZ ET AL. 983

9. Hewing, L., Kabzan, J., Zeilinger, M.N.: Cautious model predictive
control using Gaussian process regression. IEEE Trans. Control Syst.
Technol. 28(6), 2736–2743 (2020). https://doi.org/10.1109/TCST.2019.
2949757

10. Ostafew, C.J., Schoellig, A.P., Barfoot, T.D.: Conservative to confident:
Treating uncertainty robustly within learning-based control. In: 2015
IEEE International Conference on Robotics and Automation (ICRA),
Seattle, WA, USA, pp. 421–427. (2015). https://doi.org/10.1109/ICRA.
2015.7139033

11. Candela, J.Q., Girard, A., Rasmussen, C.E.: Prediction at an uncertain
input for Gaussian processes and relevance vector machines application to
multiple-step ahead time-series forecasting. Tech. Report IMM-2003-18,
Technical University of Denmark (2003)

12. Deisenroth, M.P., Huber, M.F., Hanebeck, U.D.: Analytic moment-
based Gaussian process filtering. In: Proceedings of the 26th Annual
International Conference on Machine Learning – ICML’09, pp. 225–
232, ACM Press, New York (2009). https://doi.org/10.1145/1553374.
1553403

13. Deisenroth, M.P.: Efficient reinforcement learning using Gaussian pro-
cesses – Revised version, Ph.D. thesis. Faculty of Informatics Institute for
Anthropomatics Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
(2017)

14. Nghiem, T.X.: Gaussian process derivative at uncertain input for SE ker-
nel. Tech. report, School of Informatics, Computing, and Cyber Systems
Northern Arizona University (2019). URL http://openknowledge.nau.
edu/id/eprint/5501

15. Hewing, L., Liniger, A., Zeilinger, M.N.: Cautious NMPC with Gaussian
process dynamics for autonomous miniature race cars. In: 2018 European
Control Conference (ECC), pp. 1341–1348, IEEE, Piscataway, NJ (2018).
https://doi.org/10.23919/ECC.2018.8550162
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APPENDIX

A.1 Derivation of (20)

The derivation for (20) can be given in multiple steps, but it is
essentially based on a simple observation, which allows express-
ing the expectation of the squared weighted norm of a random
variable x as

𝔼
(‖x‖2

Q

)
= ‖𝜇x‖2

Q
+ Tr(Q Σx). (A.1)

To prove (A.1), first, consider the following chain of identities:

Q Σx = QVar(x ) = Cov(Q x, x ) = 𝔼(Q x x⊤ ) − Q 𝜇x (𝜇x)⊤.
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Then, we take the trace of the expression above to obtain:

Tr(Q Σx) = 𝔼(x⊤Q x ) − (𝜇x)⊤Q 𝜇x. (A.2)

Equality (A.1) is a direct consequence of (A.2). Accordingly,
the squared weighted norm of the output error at time k+i

predicted at time k can be expressed as follows:

‖Cx(i|k) − r (k+i )‖2
Q
= ‖C𝜇x(i|k) − r (k+i )‖2

Q

+ Tr
(
Q C Σx(i|k)C⊤

)
. (A.3)

Secondly, the input cost is expressed as follows:

𝔼
(‖u(i|k)‖2

R

)
= 𝔼

(‖𝜇u(i|k) − K
(
x(i|k) − 𝜇x(i|k)

)‖2
R

)
= ‖𝜇u(i|k)‖2

R
+ Tr(R Σx(i|k)⊤ ). (A.4)

The same expression for the expectation have been reported in
the literature, for example, in [25] although without the provided
explanation given above.
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