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Abstract: This paper proposes a framework that enables the online generation of virtual point clouds
relying only on previous camera and point clouds and current camera measurements. The continuous
usage of the pipeline generating virtual LIDAR measurements makes the temporal up-sampling of
point clouds possible. The only requirement of the system is a camera with a higher frame rate than
the LIDAR equipped to the same vehicle, which is usually provided. The pipeline first utilizes optical
flow estimations from the available camera frames. Next, optical expansion is used to upgrade it
to 3D scene flow. Following that, ground plane fitting is made on the previous LIDAR point cloud.
Finally, the estimated scene flow is applied to the previously measured object points to generate the
new point cloud. The framework’s efficiency is proved as state-of-the-art performance is achieved on
the KITTI dataset.

Keywords: LIDAR; scene flow; sensor fusion; upsampling

1. Introduction

In research related to advanced driver-assistance systems (ADAS), intelligent vehicles
or autonomous driving, passive cameras and LIDARs are usually basic components of the
sensor systems equipped for the given vehicle. In this way, sensor fusion [1] is frequently
applied by utilizing the benefits of both sensors to solve different problems such as road
detection [2] or 3D object detection [3]. In the past two decades, the development of
technologies of point cloud denoising has promoted the rapid development of research in
3D object recognition [4]. The advantages of the two modalities compared to each other
include but are not limited to color imaging, high resolution (millions of pixels) and high
framerate (generally, at least 30 FPS) in case of cameras, and working in the dark or the
possibility of direct depth measurement in case of LIDARs.

LIDARs not only have much lower resolution (a few hundred thousands of mea-
surement points) and measurement frequency (usually 5–20 Hz) than the passive visual
sensors but, in most cases, they suffer the problem of spatial and temporal resolution
also competing with each other. This means increasing the spatial (horizontal) frequency
decreases the temporal one and vice versa. This fact is unfortunate, as both of them being
high can be essential in decision-making systems of intelligent vehicles (e.g., we should
recognize an object accurately and as soon as possible).

In this paper, we propose a system to increase the measurement frequency of LI-
DAR sensors virtually; this enables the maximization of angular resolution. Furthermore,
enhancing temporal resolution beyond the limit is already important in itself to avoid
hazardous scenarios, as dynamic traffic participants can be present with high acceleration,
deceleration, or angular acceleration.
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Our method can be applied in the presence of a LIDAR sensor and a calibrated camera
(intrinsic and extrinsic) with a higher frame rate. If the whole 360◦ field of view of the
LIDAR is covered by cameras, we can generate circular LIDAR frames (Figure 1).

Deep-network-based optical flow estimation is made between the previous and the
current camera frames. After that, we use another deep network to upgrade the optical flow
to scene flow. Next, we estimate the ground points in the last available LIDAR frame in
order to establish a ground model and determine measurements on the ground model in the
next timestamp. Finally, the estimated displacements are applied to the last measurement
points to generate the virtual point cloud to the current timestamp.

While it is widespread to apply cameras to spatially up-sample LIDAR point clouds
and there are various solutions available ([5] or [6]), only a few studies consider relying on
cameras for temporal up-sampling ([7,8] or [9]) or even generating between LIDAR frames
at all ([10,11]) (see Section 2 for details).

The advantages of our proposed pipeline compared to previous approaches are as fol-
lows:

• Point cloud prediction methods—such as [12] or [13]—need five or more preceding
frames to generate a virtual measurement (we need only one).

• The pipeline adapts to the point cloud characteristics and generates virtual clouds
with similar characteristics to the real measurements. The point-level transformation
of the system explains this fact. You can observe that by seeing our result on different
LIDAR sensors (e.g., in Figure 2 and Figure in Section 4.2).

• Ego-motion of the vehicle does not need to be known or estimated as in previous
works ([7,8]).

Camera measurements in time moments when complete LIDAR frames are not avail-
able allow our method to generate virtual point clouds and, in this way, enable the temporal
up-sampling. The problem and result are illustrated in Figures 1 and 2.

P and I denote LIDAR and camera measurements, respectively, v index indicates the
virtually generated point clouds and t is the timestamp. In the remaining part of the paper,
the following notation is used: the data points (with arbitrary dimension) and an array of
data points are indicated with the same letter but, in the latter case, it is bolded (e.g., point
clouds—P ∈ P, images—I ∈ I).

1.1. Contribution

The main contributions of the paper are the following:

• We propose a framework, applying optical principles (flow and expansion) to solve
one of the critical problems of autonomous driving researches, namely the balancing
between the spatial and temporal resolution of 3D LIDAR measurements.

• We extend the state of the art with a new optical flow calculation method, enabling a
real-time run of our system and temporal up-sampling of LIDAR measurements.

• The baseline is enhanced by ground estimation, which ensures higher accuracy of
virtual measurement generation.

• Our proposal includes motion vector estimation (point-wise) of surrounding agents
(without the requirement of solving the challenging dynamic object segmentation
problem [14]). This is a significant advantage compared to alternatives.

1.2. Outline of the Paper

The paper is organized as follows: Section 2 studies the related literature. Section 3
introduces the proposed pipeline. Section 4 shows performance measures from our tests,
while Section 5 provides an ablation study and further discussion. Finally, the conclusions
are drawn in Section 6.
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(a)

(b)

Figure 1. Illustration of the up-sampling problem and our solution on the Argoverse dataset [15]. In
the dataset, camera images of (b) (at timestamp t) exist, but the corresponding LIDAR measurement
does not. We generated this (colored) LIDAR point cloud utilizing Pt−1, It−1 and It. (a) Lidar (Pt−1)
and camera (It−1) measurements at timestamp t− 1. (b) Camera measurements (It) at timestamp t
and the generated virtual LIDAR measurement (Pt,v) to the given time moment. Colormap around
the camera images and in the point cloud indicates which image (with a common field of view) was
used to generate the given point cloud part.
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Figure 2. Details of the virtual point cloud generated with inputs visible in Figure 1. Colormap:
Green—Pt−1 (last available measurement), Blue—Pt,v (generated point cloud) and Red—Pt+1 (future
point cloud, only serves illustration purposes). Looking into the enlarged part of the point clouds, it
is visible that both dynamic and static objects occupy intermediate positions (in terms of position and
orientation) in t (the timestamp of the generation) relative to t− 1 and t + 1, as was expected.

2. Related Works

This section is divided into four subsections. First, spatial up-sampling of point clouds
is investigated, as it has mature methods and is similar to our approach in terms of sensor
fusion. Second, future frame prediction literature is introduced, which is a recent research
interest and similar to our approach as it aims for the virtual LIDAR frame generation
but ignores actual information. Third, LIDAR frame interpolation methods are examined,
which have the same purpose as our approach but they can be applied offline, as they
require a ’future’ frame for the generation of in-between frames. Finally, some earlier
approaches for temporal up-sampling are discussed.

2.1. Spatial Up-Sampling

The spatial up-sampling of LIDAR point clouds is usually driven by camera images.
These methods aim to estimate depth for every pixel of a depth image having the same
resolution as a corresponding RGB image with an input very sparse depth image initialized
with projected LIDAR data points. That is why this problem is commonly referred to
as depth completion [16]. As the targeted resolution comes from an image, images help
(with a few exceptions, e.g., [17,18] or [19] for special sensor characteristics) in the process
of pixel-wise depth estimation. There are different approaches to performing this, such
as semantic-based up-sampling [20], but deep-learning-based methods (e.g., [5,6]) are
currently the most successful ones. These methods inspire our solution to the temporal
up-sampling problem in the sense that our approach is also camera-driven, we utilize
richer camera information to do the up-sampling and we expect the output to be the same
(temporal) resolution as the corresponding camera has.
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2.2. Point Cloud Prediction

Point cloud prediction or sequential point cloud forecasting is a hot research topic.
The methods of solving this problem are important to our research. They also generate
virtual point clouds, as our proposal uses previous frame information. In this way, they
can be alternatives to the pipeline we propose. However, they aim differently; they try
to predict the future. That is why they have a different approach, too. They do not use
current (camera) information, which even theoretically limits their accuracy. Furthermore,
these typically neural-network-based methods (such as [12,13,21,22] or [23]) have other
drawbacks too:

• As several previous frames are necessary for the prediction (usually 5), it implies that
the motion model is embedded in the system resulting in a loss of generality.

• End-to-end training of point cloud prediction could result in weak robustness against
different datasets and point cloud characteristics.

• Most of these methods operate only near real time and in close range.

We present a comparison in Section 4 to prove our superiority to these types of
methods in the temporal up-sampling problem.

2.3. Point Cloud Interpolation

Point cloud interpolation methods such as [10,11,24,25] have similar intermediate aims
to ours, namely generating virtual LIDAR frames between two real LIDAR measurements.
However, they have a final goal, offering a solution to the frequency mismatching problem
of LIDAR and cameras, which is very distinct from ours. In this way, these methods cannot
be applied to our problem. They work offline, as they utilize frames from time t + 1,
naturally not available at time moment t, to generate measurements to timestamp t. Still,
we outperform these offline methods in certain performance measures (see Section 4).

These methods may be used as preprocessing to ours if the synchronization of camera
and LIDAR is not solved; in practice, in most cases, using camera frames closest in time
to the LIDAR frame is considered accurate enough. Thus, offline interpolation is optional.
Offline interpolation cannot be an alternative to our proposal in autonomous driving, while
we provide an online substitute for these methods.

2.4. Temporal Up-Sampling

Temporal up-sampling of measurements is not completely unknown to the liter-
ature [26], yet, there are only very few studies available trying to solve the temporal
up-sampling problem of point clouds. Ref. [9] refers to the temporal up-sampling problem
as predicting future Pseudo-LIDAR frames, which could be directly used as an alternative
to our proposal. However, they require three camera frames as input and two previous
LIDAR frames. The only method which only needs two camera frames and one previous
LIDAR frame (as the one proposed here) is published in [7,8]. In [27], a motion-in-depth
estimation network is proposed using two camera frames. This method cannot be directly
applied to the temporal up-sampling problem. However, it should be mentioned here as
we extended this method to be applicable to the given issue. Comparisons to these methods
are presented in Section 4.

3. The Proposed Method

From here, we focus on describing the generation of only one virtual point cloud
measurement. As we can generate virtual measurements to any t time moment (with
camera measurement), the following steps can be repeated as many times as you want,
resulting in a temporally upscaled point cloud stream.

The proposed pipeline has five important steps and these are the following:

1. Estimate optical flow (ũ) between images acquired at t− 1 and t;
2. Estimate optical expansion (s) and motion in depth (τ = 1

s ) from the previously
estimated flow;
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3. Estimate ground model and points on Pt−1;
4. Calculate scene flow, utilizing the estimations and LIDAR measurements from t− 1;
5. Transform the object points with the estimated scene flow to generate the virtual

measurement (Pt,v) at t.

The differences from the baseline [27] are in steps 1 and 3–5; in step 2 we utilize their
network for motion-in-depth estimation. In step 1, utilizing FastFlowNet enables real-time
application. Step 3 and utilizing it in step 4 (also applying the exact formula in step 5)
increases the similarity to real measurements (further details in Table in Section 5.3). One
of the biggest advantage of our pipeline compared to alternatives (e.g., [8]) is that differ-
entiating static and moving object is unnecessary; movement calculation of surrounding
agents is included.

The pipeline is illustrated in Figure 3 for the inputs of Figure 4. Before using it, the
camera intrinsic [28] and camera–LIDAR (extrinsic) [29] calibration should be executed.
The depth images containing Zt−1 values are determined using the LIDAR–camera TL,C
transformation and K intrinsic matrix. For better visualization, the t− 1 LIDAR depth
measurements are converted to disparity image and illustrated here (d = b∗ f

Z with b
baseline and f focal length).

Figure 3. The proposed pipeline of generating virtual point clouds to the intermediate time stamp t
(or ’future pseudo-LIDAR’ frame prediction) for up-sampling.

(a)
Figure 4. Cont.
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(b) (c)

(d)

(e)
Figure 4. Example inputs and intermediate results generated from them. (a) Lidar (Pt−1) mea-
surement (as disparity image). (b) Camera measurement (It−1). (c) Camera measurement (It).
(d) FastFlowNet results optical flow field from the inputs above. (e) Motion-in-depth results with the
network of [27] from the inputs above.

The intermediate results of the pipeline of this given example will be shown enlarged
in the detailed explanation part.

3.1. Optical Flow Estimation

The flow field describes the velocity of image pixels as:

ũ = [u, v]T = pt − pt−1 = [xt, yt]
T − [xt−1, yt−1]

T , (1)

where u and v are the flow components, between pt and pt−1 image points of different time
stamps with x and y as the pixel coordinates.

We adapt FastFlowNet [30] to estimate the optical flow field. FastFlowNet is a
lightweight model for fast and accurate prediction with only 1.37 M parameters enabling a
real-time run. It uses a coarse-to-fine paradigm with a head-enhanced pooling pyramid
(HEPP) feature extractor to intensify high-resolution pyramid features while reducing
parameters. In addition, the center dense dilated correlation (CDDC) layer is applied to
compact cost volume that can keep a large search radius with reduced computation time
and a shuffle block decoder (SBD) is implemented into pyramid levels to accelerate the
estimation. Further details can be found in the original paper [30]. Illustration of a resulted
flow field colored according to the Middlebury color code [31] with input images of Figure 4
can be seen in Figure 4d.
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3.2. Motion-in-Depth Estimation

Motion-in-depth, by definition, is:

τ =
Zt(pt−1 + ũ(pt−1))

Zt−1(pt−1)
, (2)

where Zt and Zt−1 are the depth values at time moments t and t− 1, respectively. In this
step, we estimate an ’image’ of depth ratios which will relate our 2D flow estimations to
a 3D motion estimation (as we see later). Optical expansion (in case of not rotating scene
elements and orthographic camera model) is the reciprocal of the motion-in-depth (see
further details in [27]). Thus, if we can estimate the scale change of the scene elements, we
will ascertain how much they moved closer or farther away. This principle is utilized in the
work [27] where local affine transformation was used to estimate scale changes:

(pt − pt,c) = A(pt−1 − pt−1,c), (3)

τ =
1√
|det A|

, (4)

where A is R2×2 matrix describing the local affine transformation and c index indicates a
center pixel of a given coordinate; pt and pt−1, corresponding pixels of images acquired at
different time stamps, are related by Equation (1).

Later on, the estimated scale ratios were used to train a network for the estimation
of depth change. We applied this network to get motion-in-depth estimations. The image
generated from the motion-in-depth estimation is illustrated in Figure 4e.

3.3. Ground Model Estimation

Ground model estimation is applied for the following reason: finding the correspond-
ing locations of points of Pt−1 at time t (estimating 3D scene flow) differs from the problem
of estimating LIDAR measurement at time t. Due to the movements and sensor char-
acteristics, the objects will be hit by the sensor in different parts. This will mean a big
difference between the scene flow estimated points and real measurements in the case of
the ground and far points. (The phenomena can be observed, e.g., in the last column of
Figure in Section 4.2 and the importance of our compensation in Table in Section 5.3). So,
in our solution, we estimate a ground model and, for the ground points, no displacement
is applied. This is based on the assumption that, as we move on the plane and measure,
the sensor characteristics (laser emitting angles) do not change. Thus, we will find points
approximately at the same distances on this plane. (A more complex model could be
applied; however, this simple assumption proved to be useful, accurate and efficient.)

MLESAC [32], a variant of the RANSAC (RANdom SAmple Consensus) robust model-
fitting method, is applied to fit a ground plane to the LIDAR points of Pt−1 with a reference
normal vector of [0 1 0]T in camera coordinate system. A 0.2 m threshold was used to define
inlier points of the given ground plane.

Estimated ground points are illustrated in Figure 5.
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Figure 5. Segmented ground from input of Figure 4. Ground points are colored green and object
points blue.

3.4. Calculate 3D Scene Flow

As in [33] 3D scene flow is defined as the three-dimensional motion of 3D points,
just as optical flow is the 2D motion of points in an image. For further explanation see
[33]. Utilizing the estimated optical flow, the motion-in-depth values and the depths, Zt−1
(projected from the LIDAR), the corresponding depth values, Zt, can be determined by
rearranging the following Equation [27]:

Ũ = Pt − Pt−1 = K−1(Zt pt − Zt−1 pt−1) = Zt−1K−1(τ(ũ + pt−1) + pt), (5)

where Ũ is the 3D scene flow. The displacement (|Ũ|) estimated from the 3D scene flow (Ũ)
is illustrated in Figure 6.

Figure 6. Estimated displacements (for ground points assumed to be 0) corresponding to LIDAR data
points (Pt−1) from the example of Figure 4.

3.5. Generating Virtual Point Cloud

The virtual point cloud to time t is generated from the points of Pt by the following rule:

Pt,v =

{
Pt−1, if Pi

t−1 ∈ Gt

Pt−1 + Ũ, otherwise
, (6)
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where the upper index i indicates the ith point of the point cloud and G represents ground
points in the point cloud P. The above equation means that scene flow is only applied for
non-ground points (as it is visible in the case of Figure 6). As 3D scene flow is estimated for
each point, movement estimation of moving objects is included in the pipeline and we do
not have to consider them separately. All the points of static objects should have the same
scene flow value (the ego-motion vector in opposite direction), and points of a dynamic
object should have some other value (same for the same objects). The resulting point
cloud is illustrated in Figure 7. The appropriate estimation of static and moving objects
can be observed in Figure 7, where approaching vehicle points have about 2 m estimated
displacement. In comparison, static environment points (including parking cars) have a
roughly 1 m estimated displacement.

Figure 7. Estimated virtual measurement (Pt,v) from the inputs of Figure 4.

By repeating all the steps listed here for every t without LIDAR measurement (but
with camera measurement), a temporally up-sampled point cloud sequence is produced.

4. Results

Here, we provide a quantitative and qualitative evaluation of the proposed pipeline.

4.1. Data for Comparison

Ground truth is unavailable for generating point clouds to time stamps without
measurement. That is why we generated point clouds to time stamps with measurements
(as others in similar problems). This means that for a sequence with x (number of frames)
LIDAR frame, we can generate x− 1 point clouds and compare it to the real measurements.
As different competitors used different datasets with different conditions to evaluate their
method, we also used more of them for a fair comparison. Section 4.2 describes the
evaluation procedure and introduces our results in the case of the Odometry dataset with
qualitative examples and Section 4.3 in the case of the Depth Completion dataset. In our
tests, the most commonly applied error metrics for point cloud generation are involved,
namely Chamfer Distance (CD) and Earth Movers Distance (EMD). As the literature used
different EMDs, we define them in the subsections. The formula of CD is as follows:

CD =
1
N ∑

pt,v∈Pt,v

min
Pt∈Pt

‖Pt − Pt,v‖2 +
1
N ∑

Pt∈Pt

min
Pt,v∈Pt,v

‖Pt − Pt,v‖2, (7)

where Pt,v ∈ RNt,v×3 and Pt ∈ RNt×3 are the data points of the predicted (virtual) Pt,v and
ground truth Pt point clouds, respectively. The number of generated points (Nt,v) can differ
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from the number of data points of the ground truth Nt. That is why the denser point cloud
is randomly down-sampled to N for these scenarios, where N = min(Nt,v, Nt).

4.2. Odometry Dataset

Papers have used the KITTI Odometry dataset [34] for evaluation and down-sampled
the LIDAR frames to 16,384 data points. We also did that and, after that, we only considered
data points for which the proposed up-sampling is applied (points seen by camera no. 2).
Sequences 08-10 (altogether 6863 frames) were used for testing. The definition of Earth
Movers Distance is as follows:

EMD =
1
N ∑

Pt∈Pt

‖Pt − φ(Pt,v)‖2, (8)

where φ is bijection, which calculates the point-to-point mapping between two point cloud
Pt and Pt,v.

EMD measures the similarity between point clouds by calculating the cost of the global
matching problem. For EMD, the approximation of [35] is applied, which is used by [36]
and other literature.

The results of our proposed pipeline in the dataset compared to other methods are
shown in Table 1.

Table 1. Quantitative evaluation and comparison of the proposed pipeline on KITTI Odometry
dataset. The values of the best-performing methods in case of different measures are bolded.

Methods Application CD [m2] EMD [m2]

MoNet (LSTM) [13] Forecasting 0.573 91.79
MoNet (GRU) [13] Forecasting 0.554 91.97

SPINet [11] Offline Interpolation 0.465 40.69
PointINet [10] Offline Interpolation 0.457 39.46

Rigid body based
up-sampling [8] Online Interpolation 0.471 33.98

Proposed pipeline Online Interpolation 0.486 28.51

In the case of CD, PointINet [10] performed best; however, it cannot be applied online
as it needs a ’future frame’ for operation. From the alternatives, rigid body-based up-
sampling [8] performed slightly better. We achieved the best performance in the case of
EMD, which describes the similarity of point cloud distributions the best.

In the following, we illustrate our method’s state-of-the-art performance through
qualitative examples. These can be seen in Figures 8–10.

The first columns of the example figures show the generated point clouds from a
distance and the columns afterward contain zoomed parts. The following can be observed
in Figure 8: the point clouds of the vehicles are less accurate in the case of [8] and about
the same accuracy in the case of [27] and our proposal (last row). However, regarding the
accuracy of ground points, our recommendation is the best (last column). In Figure 9, the
static scene (second column) is estimated with the most considerable precision with [8]
(using ego-motion estimation) but ours are almost as good; Ref. [27] is the worst of the
three. The dynamic points of far vehicles (third column) are the most precise in the case of
our proposal.



Remote Sens. 2023, 15, 2487 12 of 19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Example 1. Illustration of generated clouds with different methods together with the
ground truth (blue—virtual measurement, red—ground truth measurement). (a) Example cloud
with baseline [27]; (b) enlarged details 1 [27]; (c) enlarged details 2 [27]; (d) example cloud with [8];
(e) enlarged details 1 with [8]; (f) enlarged details 2 with [8]; (g) example cloud with the proposal;
(h) enlarged details 1—proposed; (i) enlarged details 2—proposed.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Example 2. Illustration of generated clouds with different methods together with the
ground truth (blue—virtual measurement, red—ground truth measurement). (a) Example cloud
with baseline [27]; (b) enlarged details 1 [27]; (c) enlarged details 2 [27]; (d) example cloud with [8];
(e) enlarged details 1 with [8]; (f) enlarged details 2 with [8]; (g) example cloud with the proposal;
(h) enlarged details 1—proposed; (i) enlarged details 2—proposed.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Example 3. Illustration of generated clouds with different methods together with the
ground truth (blue—virtual measurement, red—ground truth measurement). (a) Example cloud
with baseline [27];(b) enlarged details 1 [27]; (c) enlarged details 2 [27]; (d) example cloud with [8];
(e) enlarged details 1 with [8]; (f) enlarged details 2 with [8]; (g) example cloud with the proposal;
(h) enlarged details 1—proposed; (i) enlarged details 2—proposed



Remote Sens. 2023, 15, 2487 15 of 19

Figure 10 illustrates a further example where the limitation of the proposal can be seen
(ground model fitting limits the precision of generated ground points). However, dynamic
object parts are still the most accurate with our proposal.

4.3. Depth Completion Dataset

As other competitors used the Depth Completion Dataset [16] for evaluation, we tested
our proposal on this, too, on the validation subset containing 1000 frames. The performance
measuring procedure (used by [9] and others) does not include down-sampling. (Down-
sampling is usually used for faster calculation of the measures.) However, in this case, only
points considered in the field of view of the camera image are cropped to 1216 × 256 pixel
resolution (leaving out distant points). The Earth Movers definition applied by [9] is the
following (without squared norm):

EMD =
1
N ∑

Pt∈Pt

‖Pt − φ(Pt,v)‖, (9)

Our results compared to other methods are in Table 2.

Table 2. Quantitative evaluation and comparison of the proposed pipeline on KITTI depth completion
dataset. The values of the best-performing methods in case of different measures are bolded.

Methods Application CD [m2] EMD [m]

Prediction [22] Forecasting 0.202 11.498

PLIN [24] Offline Interpolation 0.21 -
PLIN+ [25] Offline Interpolation 0.12 -

Future
pseudo-LIDAR [9] Online Interpolation 0.157 3.303

Proposed pipeline Online Interpolation 0.141 0.806

One can see that, in the case of CD, Ref. [25] performed the best; however, this method
cannot be applied to our problem in practice, as it needs a future point cloud. Apart from
that, our proposed pipeline has the best performance in both measures.

5. Discussion

This section contains further discussion beyond our test results provided in the previ-
ous section. First, the computation efficiency discussion; next, a separate evaluation for
dynamic objects is presented, and, finally, an ablation study is presented.

5.1. Computation Efficiency

Real-time running is essential as our goal is to temporally up-sample point clouds. (As
a matter of fact, the run time should be less than the time elapsed between measurements
with a given frequency we aim to up-sample.) The running time of the pipeline components
is listed in Table 3 with the following configuration: Intel Core i7-4790K @ 4.00 GHz
processor, 32 GB RAM, Nvidia GTX 1080 GPU, Windows 10 64 bit. For the tests, KITTI-
sized images were used (about 1200 × 350 resolution).

Table 3. Average running time of the different pipeline components.

Component Average Running Time [ms]

Optical flow estimation 14
Motion-in-depth estimation 29

Ground estimation 8
Frame generation (scene flow +

transformation) ≈0

Total 51
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As the total running time of the system is 51 ms, we can generate virtual point clouds
with almost 20 Hz, meaning we can up-sample 5 and 10 Hz LIDAR measurements with the
current limited research configuration. In Table 4, our method is compared to alternatives
that can run in real time and have similar inputs and the same goal as us, namely up-
sampling point cloud measurements.

Table 4. Running time of different methods with the type of the GPU on which it is measured. The
running time value of the best-performing method is bolded.

Methods GPU Average Running Time [ms]

Future pseudo-LIDAR [9] Nvidia RTX 2080Ti 52
Rigid body based
up-sampling [8] Nvidia GTX 1080 62

Proposed method Nvidia GTX 1080 51

As shown in Table 4, we outperform the alternatives in terms of running time (even
without considering our GPU disadvantage).

5.2. Dynamic Objects

We made an evaluation separately only for dynamic objects as in [8]. There are two
main reasons why this is important to investigate:

• The ego-motion can be determined with different localization sensors (such as in [37])
or by methods (such as [38]), and the motion of static scene elements can be calculated
based on that. However, for dynamic objects, we cannot do that.

• Dynamic objects generally pose a greater threat as they change their position and they
also can change their state variables (angular and linear velocity, acceleration).

For the evaluation, we used the annotations of the Semantic KITTI dataset [39] to
select vehicles as dynamic object candidates on the sequences of 08-10. The evaluation
results can be observed in Table 5.

Table 5. Quantitative evaluation and comparison of the proposed pipeline on KITTI Odometry
dataset (just vehicles). The values of the best-performance methods in case of different measures
are bolded.

Methods CD [m2] EMD [m2]

Point based [12] 2.37 211.47
Range map based [12] 0.92 128.81

Rigid body based
up-sampling [8] 0.63 31.03

Proposed pipeline 0.26 17.50

As Table 5 shows, we provide the best performance in the case of generating point
clouds of dynamic objects.

5.3. Ablation Study

Here, we provide an ablation study to prove the significance of our contributions. It
can be seen in table form in Table 6. The extensions to the baselines are enhanced error
metrics or running time of the algorithm, or both.
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Table 6. Ablation study on KITTI Odometry dataset. The values of the best-performance are bolded.

Components CD [m2] EMD [m2] Runtime [ms]

Proposed pipeline 0.486 28.51 51
Without ground estimation 0.508 34.50 43
Without FastFlowNet 0.508 34.40 95
Baseline (appr.) [27] 0.547 34.39 270

In Table 6, Baseline (appr.) stands for the demonstration code provided by the authors
of [27]. Appr. abbreviates approximation as the authors in their demo code used the ap-
proximation of Zt(pt−1) = τZt−1(pt−1) ignoring ũ in position (see Equation (2)). ’Without
FastFlowNet’ means our development where the exact equation is used (reducing errors)
and, also, the runtime is decreased as we optimized the code handed out by taking a grid
generation step out of the network. This run time is more closely reported by [27]. ’Without
ground estimation’ indicates our extension using FastFlowNet instead of the Volumetric
Correspondence Networks (VCN) [40]; it is a very significant reduction in the runtime,
making the up-sampling possible. Our proposed pipeline is the one described in this paper,
using both the optical flow estimation and the ground model estimation. Adding the
ground estimation step somewhat increased the runtime; however, there was a significant
improvement in the error metrics.

6. Conclusions

We introduced a methodology to solve the problem of temporally up-sampling LIDAR
point clouds utilizing a mono camera. We extended the state of the art to be able to do this
in real time. The proposed pipeline has several advantages compared to alternatives; it
is not designed for specific point cloud characteristics and it does not require ego-motion
estimation. Our evaluation of the KITTI dataset shows that our framework has state-of-the-
art accuracy in terms of similarity to real measurements. In the future, we intend to further
extend our tests, e.g., with panoramic images, and apply a more sophisticated sensor model
to calculate more accurately the point locations of the generated virtual point clouds.
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