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ABSTRACT Digital twins of road surfaces support multiple engineering applications. Remote sensing
technologies provide information from the entire surface of the pavement by high accuracy point clouds.
Pavement errors and differences from designed geometry can be detected and assessed using such datasets,
while OpenCRGmodels derived from point clouds support transportation applications. High-resolution CRG
(Curved Regular Grid) models enable analyzing vehicle suspension systems in vehicle dynamics simulation
environments. Furthermore, such models also support creating the digital twins of vehicle suspensions and
improve the development and research of models related to vehicle dynamics. The paper presents how the
suspension digital twin was obtained applying a genetic algorithm and how it was assessed. The quality
of raw data and that of the derived methods are analyzed in the case of multiple mapping technologies
(terrestrial, mobile, and aerial laser scanning). CRG models were created from all datasets, and their
applicability was investigated to support vehicle simulations with high accuracy demand. Other important
vehicle-related use cases are also mentioned in the paper.

INDEX TERMS Road geometry, point clouds, laser scanning, OpenCRG.

I. INTRODUCTION
Digital representation of roads or selected road segments
supports multiple engineering applications. While maps
describe the topology of road networks, road surface models
enable sophisticated analyses. Civil engineers use road
surface models to assess pavement damage and to support
reconstruction design. Vehicle engineers require high density
and accurate surface models to support vehicle dynamics
simulations. As simulation techniques evolve in research and
the vehicle industry, digital twins (highly detailed copies) of
EGO (the vehicle under test) vehicles are required. Scenario-
based development, testing, and validation is an essential
direction for securing automated driving, which involves
novel research projects [1]. Entering the field of vehicle

The associate editor coordinating the review of this manuscript and

approving it for publication was Atif Iqbal .

dynamics requires not only the exact replication of the vehicle
itself but the primary source of excitations to vehicles, the
digital twin of the road surface. Simulation of dynamics
requires the highest accuracy of the road surface to precisely
calculate reaction forces at the tires’ contact and consider
rolling resistances on various surfaces [2]. Winkler et al. [3]
analyzed the road-vehicle interaction with the help of CRG
(Curved Regular Grid) models. Yavvari et al. [4] created a
road surface-aware algorithm for automated driving using
Open CRG. Before the release of CRG, road surface model-
ing was done by mathematical solutions and approximations,
which ruled out the possibility of creating a model from an
exact road surface. Zhang et al. [5] created 3D road surface
models in the time domain with the help of power spectral
density. Oniga et al. [6] combined the quadratic and the
planar road models to support driving assistance systems.
Weifeng et al. [7] created road surface models based on
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white noise filtration. Road surface models can be obtained
multiple ways, but the most accurate ones can be derived by
point-cloud based data acquisition technologies. Currently,
point clouds are the general outputs of camera based systems,
using photogrammetric data processing algorithms. However,
image based solutions highly rely on the texture of the surface
to be surveyed, since the algorithms need to detect common
points (tie points) between image pairs. Road surfaces are
typically homogeneous; pavement survey requires active
remote sensing technologies, such as laser scanning. Laser
scanners can be mounted on moving platforms (usually on
vehicles), such Mobile Mapping Systems (MMS) are capa-
ble of rapidly surveying extensive areas. Chiang et al. [8]
gave an overview of mobile mapping systems, including
sensor fusion, development of carrying platforms, and
in-/outdoor applications. The paper discusses future per-
spectives, e.g. creating HD maps and autonomous mapping.
Kalvoda et al. [9] assessed MMS data using total station and
GNSS surveys as reference. They focused on two data groups;
terrain points and above terrain points. Toschi et al. [10]
presented a methodology to evaluate the accuracy of a Riegl
VMX-450 MMS applying non-parametric statistical models
in order to achieve a robust estimation of error dispersion.
They used TLS and photogrammetry data as references.
Laser scanners can also be integrated into an Unmanned
Aerial System (UAS) ensuring extreme flexibility and data
acquisition speed. Salach et al. [11] investigated the digital
terrain models derived fromUAV (UnmannedAerial Vehicle)
photogrammetry and UAV LiDAR. The test area was covered
by vegetation; they proved how effectively the elevation
model can be derived from laser scanned data sets. They
used GNSS RTK survey, and previous airborne laser scanned
data as reference. Sofonia et al. [12] discussed the effects
of flight parameters on the UAV LiDAR data sets. They
concluded that altitude has the highest effect on accuracy,
while ground sampling distance shows a correlation with
the combination of the Sampling Effort Variable (SEV) and
Effective Density Rate (EDR) defined by the authors. For
some particular applications, the accuracy and point density
(point spacing) provided by MMS is not sufficient (the
movement of the platform has to be continuously measured);
therefore the usage of Terrestrial Laser Scanner (TLS)
is recommended. Commercially available laser scanners
capture point clouds with high density (point spacing is
around 1mm@10m) and high accuracy (around 2 mm for
phase based scanners) [13]. Some top-of-the-line scanners
are even capable of reaching 1 mm ranging accuracy.
In order to effectively create data sets prepared for simulation
applications, pre-processing is needed that involves selecting
the area of interest, noise removal, and classification of road
points. Extracting road surface points from point clouds is
a rather complex procedure. Yadav and Singh [14] showed
potential solutions using MMS point clouds acquired on
rural roads with pavement edges difficult to be identified
(no raised curb). They propose a 2-stage method; first planar
ground surfaces are extracted, then, secondly, they assess

the global road properties, i.e. topology, smoothness, and
the surface’s radiometric response to the laser beam. Boyko
and Funkhouser [15] developed an automatic method to
separate road surfaces in urban environment. Their solution
is based on approximate road network map data, and
enables information extraction from non-structured point
cloud; it requires dense sampling and low noise to detect
curb features. Balado et al. [16] presented a procedure that
segments a road network in MMS data using deep learning
algorithms. Miyazaki et al. [17] proposed a line-based region
growing method to detect planar structures with precise
boundaries, such as road surfaces. They were able to
detect more than 98% of the curb points. The OPENX
standard family of ASAM (Association for Standardization
of Automation and Measuring Systems) incorporates the
standard systems relevant to vehicle simulations; it has
two static contents, OpenDrive and OpenCRG and also
contains OpenSCENARIO for the description of dynamic
content of driving and traffic. OpenCRG is the focus of
the current paper. OpenCRG is a file format and source
code for a detailed description of road surfaces; such
detailed models can support tire/vibration/suspension/driving
simulations. OpenCRG represents the first (Street Layer) of
the PEGASUS 6-Layer Model [18]. CRG stands for Curved
Regular Grid, it describes the road surface in a regular grid
along a reference line, typically the centerline of the road.
The main advantage of the CRG model is the high memory
efficiency and the low computation time that are relevant
factors when using the model in a simulation environment.
Su et al. [19] derived OpenCRG models from MMS data;
their proposed modeling procedure is demonstrated on a real
highway data set. The first step is focusing on extracting
2D geometry. The data is divided by road geometry (straight
or arc), then an irregular grid is defined to all segments
that contains the elevation values. As a next step, a regular
grid is interpolated, finally, the CRG files are created.
Ori et al. [20] showed, by using Matlab OpenCRG tools
and GUI maker, how a spatial road surface with a pothole
can be simulated with variable geometric parameters (road
length and width, location and dimension of pothole).
Schwab and Kolbe [21] investigated system development
and testing challenges of automated driving. They defined
lane-level spatial road model requirements and revealed the
shortcomings of current standards. Barsi et al. [22] derived
the OpenCRG model from a TLS survey of a straight
road segment and emphasized how the TLS technology
enables creating high accuracy, high-resolution elevation
models. The research gap our paper intends to fill is as
follows: different types of point clouds with different levels
of quality (e.g. point spacing, ranging accuracy, noise) can
be the basis of CRGs. Particular vehicle applications, such
as vehicle dynamics simulations, require high density, high
accuracy CRGs, while others have lower demands. Such
requirements have a direct effect on what technology is
to be used and what data acquisitions parameters have
to be applied. Time of data acquisition and processing
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highly depends on the technology and on the raw data set,
reasonable management of resources is necessary to achieve
optimal workflow. Our paper discusses the data acquisition
methods and the resulting datasets, focusing on their further
processing that leads to CRG models. The paper is structured
as follows. Section II describes the method to gather
data for modeling road surfaces with various instruments.
It presents the ZalaZONE Proving Ground’s braking platform
measurements in subsection II-A. The workflow of the
OpenCRG model realization is described in subsection II-B.
Subsection II-C describes the automation of the calculation
for speeding up the procedure. Subsection II-D presents
the results from the different technologies. Section III
demonstrates a use case for the created OpenCRG road
surface models in the automotive industry and mentions
other potential applications. Conclusions are summarized in
section IV.

II. ROAD MODELING
Due to technological limitations, there is always a difference
present between the designed and the as-built surface.
These discrepancies are generally not relevant in everyday
practice. Current asphalt finisher machines ensure sub-
centimeter accuracy. However, there are some roads where
a millimeter-level survey is needed, such as in the case of a
test track. We carried out investigations for point clouds from
different sources to demonstrate the OpenCRG modeling
capabilities; the instruments that provided the point clouds are
Surphaser400 TLS, Leica Pegasus 2 MMS, DJI Phantom 4
RTK UAV (imagery), YellowScan Mapper laser scanner
mounted on DJI Matrice 210-v2 UAV (LiDAR). MMS data
was processed in Leica Pegasus:Manager environment. The
5 swaths of UAV Lidar data were processed by OxTS
Navsuite and Scanfly Smart Processing Lidar suites, while
Pix4D was used for UAV imagery processing (78 images;
5472× 3648 pixels each).

A. MEASUREMENT AT ZalaZONE PROVING GROUND
A new automotive proving ground, called ZalaZONE Prov-
ing Ground (https://ZalaZone.hu/en/), was constructed in
Hungary, near the city of Zalaegerszeg. This test track is
specially designed to be capable of serving technological
testing and proving processes of fully or highly automated
vehicles. The more, the mission of ZalaZONE is not limited
to pure commercial use. It is also a major goal to lay the
foundation for research and innovation activities in national
and international cooperation with universities, research
centers, and industrial participants [23]–[25].

The braking platform (Fig. 1) is brand new and one of
the best in Europe. The braking surfaces are separated into
8 different lanes: a chessboard surface, high friction, low
friction, blue basalt, asphalt (µ = 1), polished concrete,
asphalt (µ = 0, 8), and an aquaplaning basin. These
characteristics allow braking maneuvers, needed for both
vehicle dynamic and ADAS/AD tests (Advance Driving
Assisted Safety / Autonomous Driving).

FIGURE 1. Braking platform at ZalaZONE proving ground (source:
www.avlzalazone.com/testing-and-track) (green colored).

FIGURE 2. TLS survey-surphaser 400 laser scanner (aquaplaning basin).

Test tracks, especially special track units, e.g. braking
platforms are to be surveyed with extreme accuracy and
resolution in order to assess their geometry. Laser scanning
of the aquaplaning track has been carried out; the track
starts and ends with a slope, and its basin is a 180 m long
straight and horizontal segment that can be inundated by
water. Surphaser 400 was used for the survey that has 1 mm
ranging accuracy (Fig. 2). Evenly distributed sphere markers
were used as tie points that enabled to join the point clouds
captured from the different scan positions. Since 200 m
long segment was surveyed, selected tie points were used as
ground control points and were continuously measured by the
total station that ensured rigid network geometry and enabled
transforming the point cloud to the local coordinate system
(georeferencing).

Besides creating the CRG model, the longitudinal section
(Fig. 3) and cross-sections in every 5 meters have been
derived. The results show the differences compared to the
‘‘as-designed’’ model. The captured point cloud enables
obtaining a deviation map that shows minor discrepancies
and demonstrates the global quality of the road segment.
(Fig. 4)
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FIGURE 3. TLS-MMS longitudinal section (aquaplaning basin).

FIGURE 4. TLS-Designed deviation map [mm] section
0+010.00–0+190.00 km (aquaplaning basin).

B. DERIVING OpenCRG - WORKFLOW
Prior to OpenCRG modeling, the main task is to derive
the axis of the particular road or lane segment. This can
be stored in OpenDrive. The structured elevation data of
OpenCRG are in a coordinate system perpendicular to the
axis. Automatic extraction of lane information can be carried
out considering certain constraints, e.g. by border signs of the
lanes. This was not available in the discussed case, but, since
the source point clouds were georeferenced and the designed
geometry was known, the track geometry had been derived.
Knowing the length and width of the area of interest, the
point cloud segment to be investigated can be extracted. The
method of CRG modeling depends on the horizontal track
geometry; different calculations are needed for straight and
curved segments.

In the case of straight road segments, the procedure of
creating the CRG model is as follows. Since curvature is
0 in this case, the start and endpoint coordinates and road
width are the only required parameters of the particular
road segment. Additionally, two parameters defining the grid
spacing are needed, the default OpenCRG values are: uinc =
0.01m, vinc = 0.01m. Therefore the grid is defined parallel to
the road axis with ‘‘uinc’’ distance, and perpendicular to the
road axis with ‘‘vinc’’ distance for the entire road segment.
The steps are as follows: let ‘‘x’’ be a row vector that goes
from 0 to the end of the road axis with an increment ‘‘uinc’’,
and let ‘‘y’’ be a column vector that goes from negative half
of the road width to the positive half of the road width with
an increment of ‘‘vinc’’ (Eq. 1).

x = [0, uinc, 2 uinc, . . . , i uinc], i =
|u|
uinc

,

y = [−
v
2
,−

v
2
+ vinc,−

v
2
+ 2 vinc, . . . , j vinc], j =

|v|
vinc

.

(1)

Two matrices, ‘‘X’’ and ‘‘Y’’ are composed by the vectors;
rows of ‘‘X’’ are the ‘‘x’’ vectors, while columns of ‘‘Y’’ are
the ‘‘y’’ vectors. In order to make the grid’s ‘‘x’’ rows parallel
to the road axis, rotation is to be applied. The rotation angle
is the angle between the ‘‘u’’ vector and the x axis. The origin
of the vector is the starting point of the road axis. Finally, the
array is translated by the origin of the road axis (Eq. 2).

α = atan2(y1 − y0, x1 − x0)

X ′ = X cosα−Y sinα

Y ′ = X sinα + Y cosα (2)

where:
x0, y0 = axis start
x1, y1 = axis end

Elevation values have been interpolated to the grid points
applying the road surface model; options are available for
linear, nearest neighbor, or cubic interpolations. Elevations
have been computed by linear barycentric interpolation.
Elevation can be interpolated in one triangle of the mesh
model by the center of gravity coordinates (Eq. 3).

w1 =
(y2 − y3)(xp − x3)+ (x3 − x2)(yp − y3)
(y2 − y3)(x1 − x3)+ (x3 − x2)(y1 − y3)

,

w2 =
(y3 − y1)(xp − x3)+ (x1 − x3)(yp − y3)
(y2 − y3)(x1 − x3)+ (x3 − x2)(y1 − y3)

,

w3 = 1− w1 − w2,

z = z1w1 + z2w2 + z3w3. (3)

where:
w1, w2, w3 = weight values

C. AUTOMATION OF THE CALCULATION
This work phase has been automated in order to speed up
the interpolation procedure. Our software routine needs only
the parameters as follows: road surface model location, start
point, endpoint, road width, file saving route, and the default
values of uinc = 0.01 m, vinc = 0.01 m. Road curvature and
arc centerpoint are known; to create the curved grid, the angle
between the start and endpoint is to be calculated (Eq. 4).
Grid definition is based on polar coordinates; origin is set to
the origin of arc, then the angle of ‘‘φ’’ is to be defined that
results in ‘‘uinc’’ arc length along the road axis (Eq. 5).

θmin = cos−1
yP1 − yPo

R
, θmax = cos−1

yP2 − yPo
R

. (4)

where:
Po = arc origin

P1, P2 = start point, endpoint

θmin, θmax = min. and max. angle

ϕ =
uinc
R

(5)

where: ‘‘ϕ’’ angle, ‘‘R’’ radius ‘‘uinc’’ arc length
With ‘‘φ’’ angle value and its multiplication, the road

segments in ‘‘uinc’’ distance can be defined. Then the
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segments parallel to the road axis are to be derived that are in
‘‘vinc’’ distance (and its multiplication) along ‘‘s’’ road width.
Polar coordinates of points stored in matrix ‘‘A’’:

r = [R−
s
2
,R−

s
2
+vinc,R−

s
2
+ 2 vinc, . . . ,R−

s
2
+ivinc],

i =
|v|
vinc

,

θ = [θmin, θmin + ϕ, θmin + 2ϕ, . . . , θmin + jϕ],

j =
θmax − θmin

ϕ
,

A =

r11, θ11 . . . ri1, θi1
...

. . .
...

r1j, θij . . . rij, θij

 (6)

if ‘‘r’’ is evenly divisible by ‘‘vinc’’, and, if ‘‘θ ’’ is evenly
divisible by ‘‘φ’’.
Polar coordinates then can be transformed to cartesian

coordinates:

x = r cos θ, y = r sin θ,

A =

x11, y11 . . . xi1, yi1
...

. . .
...

x1j, yij . . . xij, yij.

 (7)

From here, the interpolation is the same as explained
previously; ‘‘z’’ elevation values at ‘‘x’’ and ‘‘y’’ coordinates
can be calculated on the mesh model by linear barycentric
interpolation. Inputs of the interpolation routine are: road
surface model location, start point, endpoint, arc origin, road
width, file saving route, and the default values of uinc =
0.01 m, vinc = 0.01 m.

D. ASSESSING THE DERIVED MODELS
Such OpenCRG models represent both the potential and
the risk factors of the different technologies. TLS provides
high density and high accuracy point clouds (Fig. 5), but
acquiring and processing data is rather time-consuming;
it cannot be considered as an effective technology for
surveying long road segments. On the other hand, MMS and
UAV capture the geometry of huge areas rapidly, but with
lower accuracy; the application requirements define which
technology is the appropriate one in the particular case. The
point density/spacing of the investigated MMS dataset does
not meet the accuracy requirements of the vehicle dynamics
simulations of which objective is to derive the digital twin of
the vehicle’s suspension system (Fig. 6). UAV laser scanned
point cloud and that of derived from UAV imagery has about
1 cm noise which is expected but post-processing is needed
(e.g. smoothing) to obtain surface models adequate to vehicle
simulations with less accuracy demands (Fig. 7, Fig. 8).

III. USE CASE EXAMPLE FOR AUTOMOTIVE INDUSTRY
The automotive industry relies more and more on sophis-
ticated testing and validation methods like Vehicle-In-the-
Loop (VIL) [26] and Scenario-In-the-Loop (SCIL) [27],
where the line between reality (real hardware and test

FIGURE 5. TLS point cloud detail.

FIGURE 6. OpenCRG from TLS and MMS point cloud (aquaplaning basin).

FIGURE 7. OpenCRG from UAV point cloud (Székesfehérvár).

FIGURE 8. OpenCRG from UAV laser scanned point cloud (M0 highway).

vehicle) and virtuality (multiple co-simulation) is blurred
during the development of highly automated vehicles. These
techniques require so-called digital twins, which are the
virtual representations of the targeted object in a test scenario.
As these tests are commonly aimed at complex systems, not
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only the main object (the tested vehicle) is required to have a
digital twin, but the whole environment must be represented
with an appropriate level of details regarding the primary
goal of the test. The need for a high detail environment
is especially true in vehicle dynamics or in tests where
vehicle dynamics significantly impact test results. Creating
these environments and the creation of realistic traffic needs
sophisticatedmeasuring solutions like the use ofUAVs [28] to
realize digital twins of the vehicles and the environment for
co-simulations [29]. With the proposed method of creating
OpenCRG of a chosen road, a high-quality digital twin can
be realized of any particular road surface.

One use-case of the created OpenCRG can be to realize
a decent digital twin of a particular vehicle’s suspension.
Creating a digital twin of a vehicle suspension to represent an
actual vehicle’s dynamics in the virtual world is challenging
without disassembling the suspension itself for measurement
purposes. As car manufacturers do not provide suspension
characteristics and these characteristics are changing with
the wear of parts, a method was designed [30] to discover
these characteristic parameters with the help of a genetic
algorithm running in Matlab interfaced with an industrial
level automotive software IPG CarMaker [31].

The method is as follows: First, an actual measurement
needs to be done, where the vehicle’s vertical accelerations
are measured with high frequency while the vehicle drives on
a bad quality surface or goes through something with a decent
excitation for the suspension (e.g. a speed bump or a pothole).
The recorded vertical acceleration must be processed to filter
out measurement noises. This processed data is the reference
signal for the genetic algorithm, which will run a CarMaker
simulation in every iteration, where the virtual environment
contains the same excitation as it was present in the real
measurement. The characteristic points, tuned by the genetic
algorithm, were constrained with specific values of forces
to maintain reality and avoid crashing the simulation. The
genetic algorithm can be run and fine-tuned until the required
level of accuracy is reached. The genetic algorithm’s cost
function was the Euclidean distance of the measured and the
simulation result signal. Fig. 9 presents the operation of the
genetic algorithm with IPG CarMaker.

The vehicle used for the method was a Ford Mondeo
MkIV (2012) estate (facelift). It has a Macpershon type front
suspension and a multi-link rear suspension. For optimal
accuracy, the virtual vehicle in CarMaker was set up just
like the actual vehicle, using its parameters, summarized in
Table 1, even considering the weights of the driver and the
passenger. The tire size of the simulated vehicle was also
chosen to be identical to the EGO vehicle (205/60-16).

The created digital twin of the road can be used for
the genetic algorithm to represent the real measurement’s
excitation to the vehicle with a high level of detail. It is
also an inevitable component for validating the resulting
suspension characteristics. Fig. 10 depicts the simulation
results where the suspension characteristics were discovered
with the method (the tuning was done on a speed bump and

FIGURE 9. Loop of the genetic algorithm.

TABLE 1. Physical parameters of the vehicle.

FIGURE 10. Measured and simulated vertical accelerations on a CRG road
model.

not on the CRG), and the simulationwas run on theOpenCRG
road. A measurement was done on the same road where the
OpenCRG was created for validation.

As results show, the method created a decent suspension
characteristic (see Fig. 11 and 12), and the high-quality
OpenCRG provides an excellent validation to compare the
real-life measurement with the simulation. The genetic
algorithm could be fine-tuned more to get even more
accuracy.

Another test was done on two separate CRGs to create
a comparison between two technologies for point cloud
creation. The tuned vehicle’s suspension was tested on an
MMS-based CRG and on a TLS based one. Simulations
were done again in CarMaker with the same settings for
both CRGs, and the maneuvers and route were identical. The

VOLUME 10, 2022 42695



T. Lovas et al.: OpenCRG Models From Different Data Sources to Support Vehicle Simulations

FIGURE 11. Spring characteristics generated by the genetic algorithm.

FIGURE 12. Damper characteristics generated by the genetic algorithm.

FIGURE 13. MMS and TLS based CRG simulations.

resulting accelerations from the road excitations are depicted
in Fig. 13.

Results clearly show that the MMS CRG produces higher
accelerations in cases where the excitation is easily identified.
It also produces more oscillations on surfaces, where the TLS
produced much lower values. The result is not surprising,
as the TLS CRG has a higher resolution and lower noise.
Such a difference can significantly impact simulation results
as results prooved it, especially in cases where the road
surface has an even more significant impact on the output
(e.g. vibration simulations). The difference between the two
CRGs is even more conspicuous if the results are analyzed in
the frequency domain. The power spectral density shows the
difference clearly in Fig. 14.

Another advantage of the CRG is that multiple automo-
tive software supports it by default (e.g. IPG CarMaker,
Vires [32]), making it easy to import and just run the
simulation. It is also possible to create a 3D object from the
surface, allowing game engines like Unity 3D [33] or Unreal
Engine [34] to apply the CRG, which is also more and more

FIGURE 14. Spectral density of the MMS and TLS based CRG simulations.

widely used by the automotive industry for simulation and
visualization purposes.

Many other use cases can benefit from the usage of CRGs,
as there are situations where the most negligible oscillations
caused by the road surface can have an impact on results
(e.g. virtual image sensors on trucks, where the cabin has its
own suspension and its dynamics are highly affecting sensor
results, simulation of noises and vibrations).

The use cases are not limited strictly to testing and
validation. Researching and developing new models can
benefit from the high-quality road models created with
OpenCRG. With the help of the designed road surface,
engineers can further analyze and develop tire or suspension
models [35] without using real hardware, relying only on
highly detailed simulations.

It is also possible to extend the measurement of a road
surface with artificial potholes or any additions to the road
surface. Having precise models in a virtual environment
can support testing algorithms responsible for road surface
irregularity detection [36] without expensive hardware.
By manipulating these OpenCRG models, engineers can
further analyze any road irregularities affecting passenger
comfort, suspension optimization, and ensuring optimal
vehicle handling and safety. The created digital twin of
proving grounds and other real-world roads can be also
shared in various databases like SafetyPool [37] to provide
high detailed models for scenario-based testing for engineers
around the world.

IV. CONCLUSION
The investigations proved that cutting-edge data acquisition
methods are capable of providing accurate, high-resolution
point clouds that support vehicle dynamics simulations. Such
simulation environments require CRG models as input that
can be derived from point clouds. Point clouds are primary
data outputs ofmultiple data acquisition technologies; current
paper discusses terrestrial, mobile, and UAV laser scanning.
All of these have different strengths and shortcomings, the
application requirements determine which one is recom-
mended to be used. Having a CRG available for vehicle
simulations requires a complex workflow of which stages
can be fully or partly automatized that enable achieving
the required models rapidly with the highest accuracy. The
created high-accuracy models can have a high impact on
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many use cases. Such models can effectively support creating
the digital twin of a vehicle suspension. The paper presented
a method for digital twin realization of vehicle suspension
characteristics relying on a genetic algorithm embedded
in vehicle dynamics simulation and the validation with an
OpenCRG model as a use case. The complex surface of
the road can significantly affect the excitation of vehicle
dynamics, and as a result, it can influence the results of a
parameter tuning or validation. Comparing the MMS and
the TLS based CRG roads showed that the higher resolution
of the point cloud and the derived CRG road surface is
highly beneficial for vehicle dynamics simulations. The
lower resolution creates more noise than the higher, and the
critical excitations lose power, while additional oscillations
appear on smoother surfaces, which is significant in vehicle
dynamics.

Due to remarkable interest from the vehicle testing experts,
we intend to continue our research in this area. Regarding
the road surface geometry, the future research is twofold:
creating high accuracy point clouds fromUAVmeasurements
and increasing the level of automation of the point cloud pro-
cessing. There is reasonable potential in enhancing geometric
accuracy and reduce noise in point clouds acquired by UAV
LiDAR systems; applying multiple ground control points,
capturing overlapping LiDAR swaths. Point cloud processing
development includes automated segmentation of road sur-
faces, selection of road axis, and deriving the CRG models.

The presented use case showed how important it is to have
a high-resolution CRG for vehicle dynamics simulations or
methods based on simulations, where the road surface is
required. Future work on the use case can be an improved
measurement, using sensors attached to each wheel. With
such a sophisticated measurement, the genetic algorithms
reference signal is much closer to the reality excited by the
actual road surface, and the simulation will benefit more from
the high-resolution of the created CRG.

As an important future task, the presented methods in this
paper will be compared with other algorithms in the scope of
performance, time- and space complexity with the analysis of
the resulting accuracy.
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