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Abstract: This paper deals with parameter fault diagnosis in heat exchange networks (HENS)
with joining and splitting connections where the change in the heat transfer coeflicient is
considered as fault. The fault diagnosis oriented model of the HEN elements was developed based
on the equivalent LTT realization of distributed delay models. The Signed Directed Graph (SDG)
method is used to derive the fault observability conditions. The presence of faults induces bi-
linear fault-input terms into the system model. Thus, a nonlinear adaptive observer was proposed
for fault diagnosis. To verify and validate the proposed method, a case study is presented. The
simulation results show that the observers are successfully detecting and estimating the faults

and unknown system states.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Fault diagnosis; Heat Exchange Networks, Distributed delay, Process systems

1. INTRODUCTION

Heat exchange units form an important class of operating
elements in process systems (see e.g. Hangos and Cameron
[2001]). They are used for dynamic modelling of industrial
heat exchanger networks or household heating systems,
to mention only the most important ones. The dynamic
models of heat exchange units can be derived from first
engineering principles, in particular from energy balances,
and they are in the simplest lumped parameter case
linear or bi-linear state space models depending on the
chosen/available input variables (see Hangos et al. [2004]).

In most cases, heat exchange units are used in multiple
instances forming a heat exchange network (HEN), which
is a networked dynamic system. A recent book of Leitold
et al. [2020] describes network-based methods for analysing
structural properties of dynamic systems in general, and
heat exchanger networks in particular.

Generally, the fault diagnosis design in networks of dy-
namic systems represents a hard problem due to the fault
effect propagation through the network connections. In
particular cases, the specifics of the interconnections and
the subsystems have to be explored to design fault di-
agnosis methods with guaranteed performances (see e.g.
Keliris et al. [2015] or Ferrari et al. [2009]). Some also tried
to use heuristic approaches such as fuzzy neural network
(see Liu et al. [2009]) or machine learning (see Sargolzaei
et al. [2016]) to handle it. A recent study by Li et al.
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[2020] has also proposed a dissipation based distributed
fault diagnosis that can detect and isolate actuator faults
in HENs as the case study.

In this present study, a common fault in heat exchange net-
works which is the change in the heat transfer coefficient
caused by e.g. the deterioration of the heat transfer surface
by ageing (see Weyer et al. [2000]) or by degradation of the
isolation of the heat transferring tubes are considered. As
the heat transfer coefficient is a parameter of the dynamic
model, a parametric fault diagnosis method is proposed
that is built upon a simple specific model of HENs.

2. FAULT DIAGNOSIS ORIENTED MODELING OF
HENS

Heat exchange systems form a well known and well in-
vestigated sub-class in process systems (see Hangos and
Cameron [2001]). They appear in both industrial and
household environments with slightly different properties.
This paper is concerned with domestic heat exchange
networks (HENSs), that form heating systems of buildings,
for example.

In domestic heat exchange systems one can distinguish two
types of basic elements: heating devices and consumers
(e.g. room radiators). These elements are connected by
isolated pipes where the heating fluid (most often water)
circulates. Consider a HEN composed of j = 1... N such
elements and pipes.

The basic heat exchange unit (CL unit) A simple way of
describing a unit (heating devices, consumers and pipes)

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.08.027



40 Wijaya Kurniawan et al. / [FAC PapersOnLine 55-18 (2022) 39—44

of a HEN is applied here. Assume a tube with a heat
transferring wall that contains incompressible liquid phase
in it, that is surrounded by the environment of different
temperatures Tgxr. The tube is well-mixed in its cross-
section and has a spatially distributed temperature along
its length. There is a plug flow along the tube. The inlet
temperature is considered the first input of the system
ugj ). We also consider that there is an irreversible exchange
term to or from the environment. Thus, the second input

uéj) = Tgxr of the model is the temperature of the

environment. The measured output of the system (y7))
is represented by the outlet temperature.

Interconnections in HEN  To construct a realistic net-
work topology, splitting and joining connections are as-
sumed. A joining connection represents a real joining of
tubes while a splitting connection represents a real branch-
ing of tubes. The connections affect the flow rates along
the tubes. Let v be the flow rate in the ith unit.

The input neighbour set (N I(j )) of the jth unit is rep-
resented by such units that are connected to this unit
through a joining connection. The input flow rate can be

written as:
o) = Z v® (1)
ten?

The output neighbour set (./\/'g )) of the jth unit is rep-
resented by such units that are connected to this unit
through a splitting connection:

Z /Bi = 17 (2)

o = B0,
ieNy)

where §; € (0, 1] are positive constant coefficients.

Distributed delay in the connections Between the inlet
temperature and outlet temperature of a connecting pipe,
a delay will occur that can be described using a kernel
function g in the general case (see Smith [2011]). This
general case is called distributed delay and the model of
the connection with distributed delay is in the form of:
0 0

00 = [ gt ds [ geis=1 6
where g; : [-7,0] — [0, 00) is the distributed delay kernel
or distribution function. However, networked system with
distributed delayed connections can be described by delay
differential equations (DDEs). As DDEs are difficult to
handle, one can associate an equivalent ordinary differ-
ential equation (ODE) model to a DDE in special cases
using the well known linear chain trick (see Krasznai
et al. [2010]) in the simplest case. This equivalent ODE
model can be used for dynamic model analysis (stability
or observability, for example) or for observer design.

In our earlier work (see Liptédk et al. [2019]), it was shown
that the lumped model of convective and/or diffusive
transport coupled with transfer through the environment
results in a distributed time delay of the connection
with an appropriate kernel function. So, one can realize
a distributed time delay connection using a simple LTI
model.

This means, that the basic heat exchange units can
be equivalently represented as simple distributed
delayed connections or a dynamic unit in the
network, depending on our purpose.

Basic heat exchange unit model — Generally, the complete
dynamic model of a heat exchange unit can be built
from the energy conservation equations (see Hangos and
Cameron [2001]) in their lumped model form.

In this study, to obtain the model of a heat exchange unit
(the CL unit), we considered a plug flow convection model
with flow-rate v(9) extended with a heat transfer term
k Ej (TexT— xE] )) where T x 7 is the external temperature

and kzg) > 0 is the heat transfer coefficient. The resulting
two input one output (2ISO) model of a heat exchange
unit has the form of:

(1) — A() () (3) ,(3)
C’Lj:{w =AYV + BYy

y) = Cz\)
[—o@ — k(D 0 0
@ @) _ )
v —v —k 0
j E
AD = 0 vt 0 (4)
0 0
0 =) - kg)
BU) — W@ o ... o 1F o
= |60 LW RO =foo0o0 .. 1]

where ul9) = [ugj) Tex7)? and the state vector z) e R
contains the temperatures x; along the tube of the jth
subsystem where ¢ = 1...n represents the position of a
flow element in the tube. The measured output of the

system is the last state variable xSZ), ie yW(t) = x;j)(t).

Note that in the case of heating devices, Tpx 1 represents
the temperature of an external heat source in which heat
is transferred to the HENS.

3. THE FAULT DIAGNOSIS PROBLEM

The heaters and consumers of HENs could be connected
by such transmitting elements (pipes) that can hardly be
monitored e.g. due to the unfavourable spatial placements
or excessive lengths. In these cases, it is important to
estimate the internal states and operating conditions of
these elements based only on measurements performed at
their terminals.

The fault model A critical parameter in the elements
of a heat exchange network is represented by the heat
transfer coefficient kg). Its decrease leads to heat loss and
consequently to the performance degradation of the HEN.
The slackening of the heat transfer coefficient is treated as
a fault event in the network. The fault is modelled as a

multiplicative parameter uncertainty in the system:
k)= (1= )k (5)

is the modified heat transfer parameter and
f; € [0,1) is a piece-wise continuous fault signal with
sparse changes.

where kg}

The fault signal can be incorporated into the state space
model (4) as follows:
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20 = A0z  BOu®) 4 £a0 (@) | O = 0z (6)

where the ith entry of b € R" is hY) = k% (2 — Ty x1).

7

The fault diagnosis problem  Design a dynamic system
which generates the estimates of the internal states of the
system (6) and the fault as

fi= O;j) {u(j)7y(j),fj7§(j)}
20 = oW {um’y(j), J?j@u)}

such that the estimated state vector Z and the estimated
fault f; satisfy:

; o — : =0) _ L0 —
Jim |f;~ £/ =0 and Jim 89 20 =0

(7)

(®)

Special case: Faulty model with splitting connection — Con-
sider two interconnected CL type connections where the
first (j) is before the split while the second (k) is one of
the split elements after the split. The state vector of this
system is Uk = [T 2WT|T ¢ R2" Assume that the
fault can only happen either before or after the split so
that it will not affect all of the states.

The fault diagnosis oriented model (6) in this case can be
extended by adding a fault distribution matrix FU-*) to
the last term of the model:

UK AGR) Gk | BUK) (k) | (k) k) (a;<j~k>)9
YR — Ok k) (

where

F(j’k) = |:fJOI 8] if the fault happen before the split
10
Gk — |0 O 1y : 1o
FY% = 1) ka if the fault happen after the split

Here, I € R™*™ is the identity matrix and O € R™"*" is
the zero matrix.

4. STRUCTURAL OBSERVABILITY ANALYSIS

In this section, we investigate the sensors placement prob-
lem in joining and splitting connections by using observ-
ability analysis from a graph theoretic approach. To do
this, a Signed Directed Graph (SDG) is drawn from the
structural state-space of the related system (see Bhushan
and Rengaswamy [2000] or Varga et al. [1995]). The ob-
servability analysis is done by checking the fulfilment of
the following two conditions (see Reinschke [1988]):

(1) There is at least one path from every state vertices to
at least one of the outputs vertices.

(2) There is at least one cycle family which touches every
state vertices.

A "cycle family" means a set of vertices with disjoint cycles.
If both of those conditions are satisfied, then it is called
"structurally observable" or "s-observable".

In the CL type connection (see Eq. (4)), each state
affects its successive state. The last state is measured by
a sensor so that it is directly connected to the output
€))
E

vertex. The fault representing the change in ky’ parameter

is influencing all of the states. Thus, we can make a
condensed graph where all of the states are represented
by just one vertex except the fault because we want
to investigate whether that fault is observable or not
concerning the sensors placement. Moreover, it implies
that the first condition is already satisfied so we only need
to check the fulfilment of the second condition.

As an example, consider three CL type connections CLy,
CLs, and C'L3 which are joined into one CL type connec-
tion C'L and then it is split into three CL type connections
CL,, CLy, and CL, as shown in Fig 1. The y vertices
are representing the possibility of sensors placement in the
joining and splitting connections.

© @) @
O @O g0

T

Fig. 1. SDG of Joining and Splitting CL Type Connections

For joining connection, it is seen that (f1,CL1,CL,y, f1)
is not in a disjoint cycle family with (f2, CLa, CL,y, f2)
because it has 2 common vertices C'L and y. This is also
valid for the other cycles (fs,CLs,CL,y, f3), and so on.
Thus, with only one sensor put at the end of the CL type
connection after the join, a single observer to isolate all
the faults can not be constructed because the second ob-
servability condition is not fulfilled. However, a bank of 0b-
servers can be built by which each observer is constructed
specifically just to detect a single specific fault. For each
observer, we treat the output of the remaining CL type
connections as an additional disturbance. The drawback
of this approach is that a disturbance decoupling must
be designed to compensate for the additional disturbances
from the remaining CL type connections other than the
one that we build a specific observer to estimate the fault
happening there.

One other way to make the joining connection be s-
observable for the whole fault vertices is by adding a sensor
at each CL type connection output in addition to the one
at the joining connection output. With this treatment, it
will have exactly one cycle family for each fault vertex
in the interconnected subsystems which are (f,CL,y, f),
(f1,CL1,y1, 1), (f2, CLa2, Y2, f2), (f3,CLs,ys, f3), and so

Oo1.

For splitting connection, it can be seen that each output
vertex has 2 cycle families. One cycle touches the fault and
state vertices of the CL type connection before it is split,
while the other one touches the fault and states vertices
of its related CL type connection after the split. Thus,
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with just one sensor put at the output of a specific CL
type connection after the split, an observer can always be
constructed to estimate a fault happening at the CL type
connection before the split. Moreover, based on that same
sensor, another observer to estimate a specific fault that
occurs in the related CL type connection after a split
can also be constructed. It should also be remarked that
for this splitting connection, only some of the states are
affected by the fault depending on whether it happened
before or after the splits (see Eq (9) and Eq (10)).

5. OBSERVER FOR FAULT ESTIMATION

A critical issue in the formulated fault diagnosis problem
is that there are unmeasurable states in the system. Jiang
and Chowdhury [2005] has developed a fault observer
based method where a nonlinear fault distribution function
depends not only on the inputs and outputs but also
on estimated states. By taking the basic idea from this
previous research, we modified it to suit our case.

The dynamics of the CL type connections with fault is as
shown in the Eq (6). Define the estimation errors as:

e = 2@ — 50 | ) = @) — g = Ce
) =1 -7

where f; is the estimated fault.

(11)

Consider an observer for faulty case as follows:

a;:(j) — AW 50) + By 4 fjh(j)(fz(j)) JrKéj)e?(Jj)
Q(j) o7 A6))
along with the following parameter adaptation equation:

fj _ K}j)h(j)(ﬁﬁ(j))ez(/j) (13)

(12)

Here Kéj ),K}j )T € R"™ are the observer and adaptation
gain vectors.

By assuming piece-wise constant fault signal, we can derive
the state and fault estimation error as follows:

W) — AW 4 FihD) (@) = fRD) (30D — KW celd) w
. ) _ . 14
—fj =K' n@")cey)

() _
ef] =
As ;@ @@) = ;R (3Y) = ¢,h@ (@D) + £,k e,
the state estimation error yields as
) = (AU KD CYeld) +ePhD (@) + fik ) (15)
Hence, the state and fault estimation error dynamics in
the faulty case is:

F(j)
.(9)
er

AD — KD+ ;D1 h(j)(i(j)):| l:e;j)

. . . ; 16
—K}J)h(])(:f?(J))C 0 6;]):| ( )

Ae

According to Gershgorin’s Circle Theorem, if A k¥
is stable, then AY) — Kzg;])CJr fi kg)f is also stable as long

as kg)fj > 0 has small norm (f; € [0,1)). Furthermore,

the estimation error e’ and egcj ) will converge to zero if A,

is stable for all #) and f;. This stability can be checked
online during the adaptation process. Thus, an observer
described by Eq (12) along with its adaptation as in Eq
(13) can be used to estimate the fault and it is called a
fault estimator.

Special case: Fault detector and fault estimator for splitting
connection ~ As concluded in the previous section, for
splitting connection, we can put the sensors only at the
end of each element after the split. With this configuration,
there will be one specific sensor that is used as an input
to two observers for fault estimation either before or after
the split. However, by assuming no simultaneous fault, the
difference in fault distribution matrix (see Eq (10)) causes
the need of a fault detector to determine where the fault
is happened before fault estimation can be carried out.

Consider a bank of linear observers:

FDy := {0

_ AGE) 2(5:k) k) (G.k j ke
= A(J. )& J' + BUKR)I4 U )+Kz61(11(1)7)
— k) 56K

where eéj’k) = yUk) — 40Uk and FDy is a fault detector
based on the measurement at the end of the kth split
elements (elements after the split).

If K, is chosen such that AUK — K, CUF is stable,

then lim;_, egzj’k) = 0 and lim;_, el(,j’k) = 0 for non-

faulty condition. It is also easily inferred that when a fault
occurs before the split, it will propagate to all of the split
elements. Thus, the following algorithm can be used to
determine where the fault is happening in the splitting
connection (fault isolation logic):

=0V FDj, no fault
e(yj’k) #0VY FDy, afault has occured before the split
7§ 04 FDk, a fault has occured at the kth split element

(18)

Then, after a fault has been detected, a specific nonlinear
observer is activated to estimate the related fault. For this
purpose, a bank of nonlinear observers is constructed as
follows:

3UR _ AGR) 5GR) 1 Bk 4, (k)
+ETRRGR) (2GR 4 K, e{F)
FE; := y(j»k) = 00k 5G:R)
Gk _ |10
J O O
. (19)
300 AGK) 36K 1 B 4Gk
+F}§jak)h(j,k)(j(j,k)) +Kze;j’k)
FE := ¢ g0k = cU:R) g0k
N 0 o
A
O fil
with the following adaptation equations:
P b Gk p (k) 4k) LGk
fi=fr=K§ hU )(m(ﬂ ))6?(/] ) (20)

Here, F'E; is a fault estimator based on the measurement
at the end of any of the split elements to estimate the
fault that happened before the split, and FE} is a fault
estimator based on the measurement at the end of the kth
split elements to estimate the fault happened there.
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In the same manner as before (see Eq (16)), with
|F@R)|| € [0,1), the same conclusion can be drawn for
either FE; or FE, as long as the fault and kg have small
norm. Thus, a bank of linear observers described by Eq
(17) along with the algorithm described by Eq (18) is
used as fault detectors. Meanwhile, a bank of nonlinear
observers described by Eq (19) along with its adaptation
described by Eq (20) is used as fault estimators.

6. CASE STUDY

To verify and validate the proposed fault detection and
estimation observer based method, a simulation model of
a HEN connecting a heater to two consumers is used. In
this case study, the energy output of a heater is distributed
to the consumers via a hot pipe (H) which is then split into
hot pipe 1 (H1) and hot pipe 2 (H2). The fluid from the
consumers is fed back to the heater via cold pipe 1 (C1)
and cold pipe 2 (C2) which are then joined into a cold
pipe (C). It is assumed that the dynamics of each pipe
can be represented as CL type connection with n = 5,
U:UH:’UCZQ,ade}EZk'H:kJHl:k'HQZ
ke = kc1 = ko2 = 1. The splitting coefficients from H
to H1 and H2 are 81 = B2 = 0.5. The diagram of this case
study is shown in Fig 2. In this figure, the fault diagnostic
blocks contain either a fault estimator (joining connection
case) or both a fault detector and fault estimator (splitting
connection case).

FAULT
. DIAGNOSTIC H1 H
.
H
.

h
H
H H
: o [HOT PIPE 1 M
H (H1)
. @
H
H
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H
Y ' (HOT PIPE 2 =
H
H
H

(H2)

H

H

H FAULT
DIAGNOSTIC H2

" FAULT "
" biaenosTic c1
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. FAULT . H
+"® birenostice [*1 H
H H
H
H
H
H

'
I
"
I
'
<+

@ G

.‘

|
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DIAGNOSTIC €2

Fig. 2. Energy Network Case Study

To be able to detect and estimate the fault in each
pipe, the sensors placement is done based on the previous
structural observability analysis. For splitting connection
in the hot pipe, it is enough to put the sensors at H for
input measurement and the end of H1 and H2 for output
measurements. Meanwhile, for joining connection in the
cold pipe, we use the multiple sensors approach. Thus,
the sensors are put at the beginning of C1, C2, and C
for input measurements and the end of C1, C2, and C for
output measurements. The fault estimator for each pipe
is constructed using those measurements. For hot pipes,
fault detectors are also constructed. The fault estimator for
hot pipe H is a special case because it can be constructed

based on either the sensor measurement at the end of H1
or H2. Eq (17) is used to construct the fault detectors
for the splitting connection. As fault isolation logic, Eq
(18) is applied (k = 1,2). Meanwhile, because we used
multiple sensors approach for the joining connection, only
fault estimators are constructed to estimate specific faults
for each cold pipe. To construct the fault estimators, we
use Eq (19) for splitting connection and Eq (12) for joining
connection.

After the fault detectors and fault estimators are con-
structed, the related measurements are fed into each of
those observers. Then, when a fault is happening in the
splitting connection, the fault isolation logic will activate
a specific fault estimator based on the error signals from
the fault detectors. It should be remarked that this config-
uration works on assumption that no simultaneous faults
happen in the splitting connection. To be able to detect and
estimate simultaneous faults in the splitting connection,
we must use the same multiple sensors approach as in the
joining connection.

In this simulation, the fault detector gain K, is chosen
using the pole placement method while the fault estimator
gain Ky is chosen so that the settling time is small enough
without oscillation. First, a fault at the 15th second with
an amplitude of 0.5 is introduced into the system. Fig 3a
shows the error signals from the fault detector H1 and H2
when this fault is happening in the hot pipe H before the
split. It can be seen that both the error signals epm; and
eme have the same non-zero value indicating that a fault
has occurred at the hot pipe H. The estimated fault from
the fault estimator for this hot pipe H is shown in Fig
3b which displays that the fault is successfully estimated.
Furthermore, this fault estimator can also estimate the
unmeasurable states which are shown in Fig 3c.

In the second simulation, the fault is simulated to be
happening at the hot pipe H2 after the split. Fig 4a shows
the error signals from the fault detector H1 and H2. It is
seen that only the error signal epgs has a non-zero value
indicating that a fault is happening in the hot pipe H2.
The estimated fault from the fault estimator for hot pipe
H2 is shown in Fig 4b which reveals that it also successfully
estimated the fault. Meanwhile, the state estimation from
this fault estimator is shown in Fig 4c.

7. CONCLUSIONS

In this paper, contributions are presented to handle the
parameter fault identification problem in HENs with dis-
tributed time delay. The change in the heat transfer coef-
ficient kg, that is a parameter of the state space model is
considered as fault. The network contains realistic connec-
tions in the form of joining and splitting elements. Thus, an
investigation of the sensors placement problem was done
to identify every possible fault around the branching ele-
ments. An analysis of observability conditions using SDG
is done to handle this. In the case of splitting connection,
it is enough to put the sensors only at the end of the
elements after the split to detect and estimate the fault
that occurred either before or after the split. However, in
the case of joining connection, a sensor at the end of the
joining elements before the connection is necessary.
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Fig. 4. Fault diagnostic signals with fault at H2

With the the change of heat transfer coefficient being the
model parameter, the presence of faults in HEN yields
bilinear fault-input terms into the model. To handle it,
a fault diagnosis method was developed that is based on a
nonlinear observer.

In the case study, a HEN simulation model was devel-
oped that includes both splitting and joining connections.
Faults either before or after the split are simulated to test
the performance of the fault detector and fault estimator
observers. The simulation results show that the observers
successfully detect and estimate the faults. Moreover, the
fault estimators can also correctly estimate the unmeasur-
able states of the system affected by the fault.
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