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1 Introduction

We consider a combination of two classic problems of operations research: the joint
replenishment problem (JRP) and single machine scheduling with release dates.
In this problem, each job requires some resources and it can be processed on the
machine after the required resources are replenished. One has to decide both about
the replenishments and the schedule of the machine. The rst subproblem is a well-
known variant of the joint replenishment problem, while the second one belongs
to the class of single machine scheduling problems with release dates, where the
release dates are determined by the replenishment times of the required resources.

In the joint replenishment problem, the goal is to fulll a set of demands
(jobs) emerging over the time horizon. A demand can be fullled by ordering its
required items (resources) not sooner than the arrival time of the demand. Orders
of dierent demands can be combined, and the cost of simultaneously ordering a
subset of item types incurs a joint ordering cost and an additional item ordering
cost for each item type in the order. None of these costs depends on the number
of units ordered. One of the main variants of this problem is the so-called JRP-
W , where the objective is to minimize the sum of the ordering costs and the cost
incurred by delaying the fulllment of the jobs. Our problem is an extension of
this variant: each demand (job) has to be processed on a single machine after the
required items (resources) are replenished. The objective is to minimize the total
ordering cost plus a scheduling criterion. We provide several complexity results
for the oine problem, and competitive analysis for online variants with min-sum
and min-max criteria, respectively.

Formally, we have a set J of n jobs that have to be scheduled on a single
machine. Each job j has a processing time pj > 0, a release date rj ≥ 0, and
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Research Network.

‡tamasi.timea@sztaki.hu. Institute for Computer Science and Control, Eötvös Loránd Re-
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Figure 1: Two feasible solutions. The arrows below the time axis indicate the
replenishment time points.

possibly a weight wj > 0 (in case of min-sum type objective functions). In addition,
there is a set of resources R = {R1, ..., Rs}, and each job j ∈ J requires a non-
empty subset R(j) of R. A job j can only be started if all the resources in R(j) are
replenished after rj . Each time some resource Ri is replenished, a xed cost Ki is
incurred on top of a xed costK0, which must be paid each time any replenishment
occurs. These costs are independent of the replenished amount.

A solution of the problem is a pair (S,Q), where S is a schedule specifying a
starting time for each job j ∈ J , and Q = {(R1, t1), . . . , (Rq, tq)} is a replenish-
ment structure, which species time moments t along with subsets of resources
R ⊆ R such that t1 < . . . < tq. We say that job j is ready to be started at time
moment t with respect to replenishment structure Q, if each resource R ∈ R(j) is
replenished at some time moment in [rj , t], i.e., R(j) ⊆ ∪t∈[rj ,t]R. The solution
is feasible if (i) the jobs do not overlap in time, i.e., Sj + pj ≤ Sk or Sk + pk ≤ Sj

for each j = k, and (ii) each job j ∈ J is ready to be started at Sj w.r.t. Q.

The cost of a solution is the sum of the scheduling cost cS , and the replen-
ishment cost cQ. The former can be any optimization criteria know in scheduling
theory (e.g., the total weighted completion time


wjCj , the total ow time


Fj ,

or the maximum ow time Fmax). The replenishment cost is calculated as follows:

cQ :=
|Q|

=1(K0 +


Ri∈R
Ki).

Example 1 Suppose there are 3 jobs, p1 = 4, p2 = p3 = 1, r1 = 0, r2 = 3,
and r3 = 7, and the objective is to minimize


Cj. The replenishment costs

are K0 and K1, and we deliberately do not specify numerical values for these
parameters. If there are 3 replenishments from a single resource R, i.e., Q =
(({R}, 0), ({R}, 3), ({R}, 7)), and the starting times of the jobs are S1 = 0, S2 = 4,
and S3 = 7, then (S,Q) is a feasible solution with total replenishment cost of
3(K0 +K1) and total completion time 17 (Figure 1 left).

However, if there are only two replenishments in Q′ at t1 = 3 and t2 = 7,
then we have to start the jobs later, e.g., if S′

1 = 3, S′
2 = 7, and S′

3 = 8, then
(S′,Q′) is feasible. Observe that in the second solution we have saved the cost of
a replenishment (K0 + K1), however, the total completion time of the jobs has
increased from 17 to 24 (see Figure 1 right).

As to whether (S,Q) is better than (S′,Q′) or not depends on the value of
K0 +K1.
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Table 1: Results of the paper.
Problem Result

1|jrp, s = 1, rj |


Cj + cQ NP-hard
1|jrp, pj = 1, rj |


Cj + cQ NP-hard

1|jrp, s = 2, rj |Fmax + cQ NP-hard

1|jrp, s = const, pj = 1, rj |


wjCj + cQ polynomial alg.
1|jrp, s = const, pj = p, rj |


Cj + cQ polynomial alg.

1|jrp, s = 1, rj |Fmax + cQ polynomial alg.
1|jrp, s = const, pj = p, rj |Fmax + cQ polynomial alg.

1|jrp, s = 1, pj = 1, rj |


Cj + cQ 2-competitive alg.

1|jrp, s = 1, pj = 1, rj |


Cj + cQ no

3
2 − ε


-competitive alg.

1|jrp, s = 1, pj = 1, rj |


wjCj + cQ no
√

5+1
2 − ε


-competitive alg.

1|jrp, s = 1, pj = 1, rj |


Fj + cQ 2-competitive alg.

1|jrp, s = 1, pj = 1, rj |


Fj + cQ no

3
2 − ε


-competitive alg.

1|jrp, s = 1, pj = 1, regular rj |Fmax + cQ
√
2-competitive alg.

1|jrp, s = 1, pj = 1, regular rj |Fmax + cQ no

4
3 − ε


-competitive alg.

1|jrp, s = 1, pj = 1, rj |Fmax + cQ no
√

5+1
2 − ε


-competitive alg.

∗ jrp indicates the joint replenishment extension, s = 1 limits the number of resources to 1, and
cQ is the total replenishment cost.

2 Results

The main results of the paper fall in 3 categories: (i) NP-hardness proofs, (ii)
polynomial time algorithms, and (iii) competitive analysis of online variants of the
problem, see Table 1 for an overview. We provide an almost complete complexity
classication for the oine problems with both of the


wjCj and Fmax objectives.

Notice that the former results imply analogous ones for the


wjFj criterion.
While most of our polynomial time algorithms work only with unit-time jobs, a
notable exception is the case with a single resource and the Fmax objective, where
the job processing times are arbitrary positive integer numbers. We have devised
online algorithms for some special cases of the problem for both min-sum and
min-max criteria. In all variants for which we present an online algorithm with
constant competitive ratio, we have to assume unit-time jobs. While we have a
2-competitive algorithm with unit time jobs for min-sum criteria, for the online
problem with the Fmax objective we also have to assume that the input is regular,
i.e., in every time unit a new job arrives, but in this case the competitive ratio is√
2. The technical details can be found in [1].
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