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Abstract:
The paper proposes an adaptive cruise control method for connected and automated vehicles
(CAVs) with safety considerations against cyber attacks. A high-level layer is responsible
for the computation of energy optimal speed profiles for the CAVs, considering oncoming
road information such as terrain characteristics and speed limits. Due to the computationally
cumbersome optimization method of the speed profile design, this step is performed in a cloud.
Next, a feasibility analysis is carried out on the vehicle layer regarding safety of the CAVs,
overwriting high-level speed references in case of a collision risk is detected. The aim of the
present paper is to validate the above multi-layer control method with the design of an intelligent
cyber attack using reinforcement learning techniques. Evaluating a multi-agent training with
real data velocity profiles, each automated vehicle has been simulated to be attacked by an
agent aiming to generate collisions in the vehicle string.
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1. INTRODUCTION AND MOTIVATION

One of the most important aspects in automated driving
scenarios is the reduction of energy consumption, which
require the use of vehicle navigation systems, perception
sensors and intelligent design methods, see Sciarretta and
Vahidi (2019). The aim of eco-driving is to enhance energy
efficiency by adapting the speed of the automated vehi-
cle to the environment, taking into consideration terrain
characteristics, speed limits and traffic flow as well as the
behavior of the surrounding vehicles. A predictive robust
and optimal control method has been introduced in Gáspár
and Németh (2019) which is used as the baseline controller
in present paper.

Note, that in the literature several other eco-cruise control
methods have been introduced, with the majority of them
using classical optimization-based solutions, see Padilla
et al. (2018); Passenberg et al. (2009); Hellström et al.
(2009); Saerens et al. (2013). Moreover, recently learning-
based eco-cruise control methods have been presented
using Q-learning algorithms, artificial neural networks
and deep learning-based solutions, see Bougiouklis et al.
(2018); Zhu et al. (2019); Liu et al. (2017); Wu et al.
(2019). Although all of the above listed methods may
give an optimal solution, the big computational effort
required for solving the multi-criteria optimization task
can lead to difficulties for on-board vehicle applications.
� The research was supported by the Ministry of Innovation and
Technology NRDI Office within the framework of the Autonomous
Systems National Laboratory Program. The research was partially
supported by the TKP2021-NKTA-01 NRDIO grant on ”Research
on cooperative production and logistics systems to support a com-
petitive and sustainable economy”.

A solution for this problem can be to separate the control
design into layers based on functionality. The cumbersome
optimization task related to eco-driving can be performed
in a cloud, sending the optimal speed reference for the
CAVs via internet communication. Hence, information
from the cloud must be analyzed before application in the
automated vehicle since in case of a cyber attack these
signals might be corrupted, see Guo et al. (2019).

A comprehensive survey on the latest results for cyber
attacks and defenses for autonomous vehicles has been
presented in Kim et al. (2021). Here, attacks are classified
into the categories of autonomous control and driving sys-
tems, and vehicle-to-everything (V2X) communications. It
has been highlighted, that while earlier attack and defense
strategies have been conducted on the vehicle CAN and
ECU, in recent years attacks on external communications
have been in the focus. A physics-guided machine learn-
ing method for the detection of cyber attacks on electric
vehicle driveline has been introduced in Guo et al. (2021),
which demonstrated high accuracy in a hardware-in-the-
loop (HIL) simulation testbed. The influence of cyber
attacks for CAVs with longitudinal controllers has been
analyzed by Li et al. (2018), while a radar sensor health
monitoring method using observer for CAVs has been
proposed by Jeon et al. (2021). In Dong et al. (2020), the
impact of cyber attacks on CAVs has been analyzed related
to the traffic flow, including the risk of rear-end collision.

To avoid risks of cyber attacks on CAVs, a method of
analyzing vehicle speed has already been introduced ear-
lier in Németh et al. (2021). Here, a cyber attack has
been simulated with randomly selected corrupted refer-
ence velocities. The aim of the present paper is to vali-
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András Mihály ∗ Balázs Németh ∗ Péter Gáspár ∗
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date the multi-layer eco-cruise control method for CAVs
by designing a hostile cyber attack using reinforcement
learning techniques. Hence, a more expert cyber attack is
designed with a systematic attack approach. The training
process of the cyber attack agents have been performed
on several different velocity profiles based on real-world
highway measurement datasets of Next Generation Simu-
lation (NGSIM) with the aim to cause accidents among
the CAVs. The primary safety performance guaranteed
by the vehicle level speed analysis is to avoid rear-end
collision among CAVs, while maintaining a safe following
distance. The performed simulations demonstrate both
the effectiveness of the designed cyber attack without the
guaranteed primary safety performances, as well as the
desired operation of the latter vehicle level speed analysis
layer.

The paper is organized as follows. The hierarchical multi-
layer structure is proposed in Section 2, describing the
velocity optimization method and design of the safety layer
on the vehicle level. Section 3 introduces the reinforcement
learning method of the cyber attack. In Section 4 real
data simulations are performed for CAVs under cyber
attack both with and without applying the safety layer
on the vehicle level. Finally, contributions of the paper are
summarized in Section 5.

2. MULTI-LAYER DESIGN FOR THE ECO-CRUISE
CONTROL

The eco-cruise control for the CAVs contains three layers,
as depicted in Figure 1. The high-level is responsible for
the optimization of the vehicle velocity vhigh, by which
the secondary performances as energy efficiency and trav-
eling time can be met. This cumbersome calculation is
practically computed in a cloud, and the speed reference
signal is transmitted to the vehicle through internet com-
munication. In the vehicle level, a speed analysis layer
is responsible to guarantee the primary safety related
performances based on the measurements of the onboard
sensors. In case the primary performances are not violated
by applying the high level velocity for the vehicle, it is
forwarded to the vehicle control layer as vveh = vhigh.
On the other hand, in case the safety performances can
not be guaranteed with vhigh, it is necessary to compute
a modified vveh reference signal for the vehicle control.
Finally, the third layer contains the local speed controller
of the vehicle, responsible for tracking vveh by applying
adequate driveline actuation.

speed analysis layer

local control layer

layer on the high level

vhigh

vveh

ε

ξ̇

Fig. 1. Architecture of the eco-cruise control

2.1 Velocity design considering secondary performances

As the look-ahead control method for velocity design
has already been detailed in Gáspár and Németh (2019);
Németh and Gáspár (2017), here only a brief summary is
given. It is assumed, that the road ahead of the vehicle
is divided into n number of segments with corresponding
reference velocities vref,i, i ∈ {1, .., n}, which are the speed
limits. Next, prediction weights Q, γi, i ∈ {1, .., n} are
given for the road segments defining their importance in
the speed design. Note, that while Q defines the tracking
of the actual reference speed vref,0, γi weights stands for
the consideration of further road slopes and speed limits.

The speed given by the look-ahead optimization algorithm
guarantees an optimal balance between energy consump-
tion and traveling time, as the oncoming road slopes and
speed limits are considered in the design. Road slopes
given by αi are incorporated in the longitudinal force
resistances Fdi,r, while speed limits vi are also given for the
look-ahead road sections. With the former considerations,
the following formula is derived for the optimal velocity:

vhigh =
√
ϑ− 2s1(1−Q)(ξ̈0 + gsinα), where ξ̈0 is the

vehicle acceleration, s1 is the distance of the actual road
section, α is the actual road slope and ϑ contains the look-
ahead information:

ϑ = Qv2ref,0 +

n∑
i=1

γiv
2
ref,i +

2

m

n∑
i=1

siFdi,r

n∑
j=i

γj . (1)

To ensure an optimal velocity for the vehicle, the longitudi-
nal control force and the traveling time must be minimized
at the same time. For the former criterion F 2

l1 → min, a
quadratic optimization is solved by selecting weights:

F̄ 2
l1 = (β0(Q̄) + β1(Q̄)γ̄1 + . . .+ βn(Q̄)γ̄n)

2 → min (2)

with constraints 0 ≤ Q̄, γ̄i ≤ 1 and Q̄ +
∑

γ̄i = 1. The
traveling time criteria requires to minimize the difference
between the actual velocity and the speed limit, which
leads to the optimization problem |vref,0 − ξ̇0| → min,

whose solution is achieved by choosing the weights Q̆ = 1
and γ̆i = 0, i ∈ [1, n].

The balance between the minimization of longitudinal
force and traveling time is given by prediction weights as
follows:

Q = R1Q̄+R2Q̆ = 1−R1(1− Q̄) (3a)

γi = R1γ̄i +R2γ̆i = R1γ̄i, i ∈ {1, .., n} (3b)

where Q̄, γ̄i are the energy-optimal, while Q̆, γ̆i are the
time-optimal weights.

Note, that weight R1 ∈ [0; 1] in (3) is responsible for
creating the balance between the defined criteria, with
R1 = 1 leading to low energy consumption and more
varying speed profile, whereas with R1 = 0 the values of
the speed limit are selected for the vehicle to follow.

TheR1 selection method is founded on the performances of
the eco-cruise control problem, such as the performance of
speed variation between limitations and the performance
of energy consumption minimization. It is determined by
the bounds of the reference speed variation as

vref,0 +∆l,min ≤ vhigh ≤ vref,0 +∆l,max, (4)
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date the multi-layer eco-cruise control method for CAVs
by designing a hostile cyber attack using reinforcement
learning techniques. Hence, a more expert cyber attack is
designed with a systematic attack approach. The training
process of the cyber attack agents have been performed
on several different velocity profiles based on real-world
highway measurement datasets of Next Generation Simu-
lation (NGSIM) with the aim to cause accidents among
the CAVs. The primary safety performance guaranteed
by the vehicle level speed analysis is to avoid rear-end
collision among CAVs, while maintaining a safe following
distance. The performed simulations demonstrate both
the effectiveness of the designed cyber attack without the
guaranteed primary safety performances, as well as the
desired operation of the latter vehicle level speed analysis
layer.

The paper is organized as follows. The hierarchical multi-
layer structure is proposed in Section 2, describing the
velocity optimization method and design of the safety layer
on the vehicle level. Section 3 introduces the reinforcement
learning method of the cyber attack. In Section 4 real
data simulations are performed for CAVs under cyber
attack both with and without applying the safety layer
on the vehicle level. Finally, contributions of the paper are
summarized in Section 5.

2. MULTI-LAYER DESIGN FOR THE ECO-CRUISE
CONTROL

The eco-cruise control for the CAVs contains three layers,
as depicted in Figure 1. The high-level is responsible for
the optimization of the vehicle velocity vhigh, by which
the secondary performances as energy efficiency and trav-
eling time can be met. This cumbersome calculation is
practically computed in a cloud, and the speed reference
signal is transmitted to the vehicle through internet com-
munication. In the vehicle level, a speed analysis layer
is responsible to guarantee the primary safety related
performances based on the measurements of the onboard
sensors. In case the primary performances are not violated
by applying the high level velocity for the vehicle, it is
forwarded to the vehicle control layer as vveh = vhigh.
On the other hand, in case the safety performances can
not be guaranteed with vhigh, it is necessary to compute
a modified vveh reference signal for the vehicle control.
Finally, the third layer contains the local speed controller
of the vehicle, responsible for tracking vveh by applying
adequate driveline actuation.

speed analysis layer

local control layer

layer on the high level

vhigh

vveh

ε

ξ̇

Fig. 1. Architecture of the eco-cruise control

2.1 Velocity design considering secondary performances

As the look-ahead control method for velocity design
has already been detailed in Gáspár and Németh (2019);
Németh and Gáspár (2017), here only a brief summary is
given. It is assumed, that the road ahead of the vehicle
is divided into n number of segments with corresponding
reference velocities vref,i, i ∈ {1, .., n}, which are the speed
limits. Next, prediction weights Q, γi, i ∈ {1, .., n} are
given for the road segments defining their importance in
the speed design. Note, that while Q defines the tracking
of the actual reference speed vref,0, γi weights stands for
the consideration of further road slopes and speed limits.

The speed given by the look-ahead optimization algorithm
guarantees an optimal balance between energy consump-
tion and traveling time, as the oncoming road slopes and
speed limits are considered in the design. Road slopes
given by αi are incorporated in the longitudinal force
resistances Fdi,r, while speed limits vi are also given for the
look-ahead road sections. With the former considerations,
the following formula is derived for the optimal velocity:

vhigh =
√
ϑ− 2s1(1−Q)(ξ̈0 + gsinα), where ξ̈0 is the

vehicle acceleration, s1 is the distance of the actual road
section, α is the actual road slope and ϑ contains the look-
ahead information:

ϑ = Qv2ref,0 +

n∑
i=1

γiv
2
ref,i +

2

m

n∑
i=1

siFdi,r

n∑
j=i

γj . (1)

To ensure an optimal velocity for the vehicle, the longitudi-
nal control force and the traveling time must be minimized
at the same time. For the former criterion F 2

l1 → min, a
quadratic optimization is solved by selecting weights:

F̄ 2
l1 = (β0(Q̄) + β1(Q̄)γ̄1 + . . .+ βn(Q̄)γ̄n)

2 → min (2)

with constraints 0 ≤ Q̄, γ̄i ≤ 1 and Q̄ +
∑

γ̄i = 1. The
traveling time criteria requires to minimize the difference
between the actual velocity and the speed limit, which
leads to the optimization problem |vref,0 − ξ̇0| → min,

whose solution is achieved by choosing the weights Q̆ = 1
and γ̆i = 0, i ∈ [1, n].

The balance between the minimization of longitudinal
force and traveling time is given by prediction weights as
follows:

Q = R1Q̄+R2Q̆ = 1−R1(1− Q̄) (3a)

γi = R1γ̄i +R2γ̆i = R1γ̄i, i ∈ {1, .., n} (3b)

where Q̄, γ̄i are the energy-optimal, while Q̆, γ̆i are the
time-optimal weights.

Note, that weight R1 ∈ [0; 1] in (3) is responsible for
creating the balance between the defined criteria, with
R1 = 1 leading to low energy consumption and more
varying speed profile, whereas with R1 = 0 the values of
the speed limit are selected for the vehicle to follow.

TheR1 selection method is founded on the performances of
the eco-cruise control problem, such as the performance of
speed variation between limitations and the performance
of energy consumption minimization. It is determined by
the bounds of the reference speed variation as

vref,0 +∆l,min ≤ vhigh ≤ vref,0 +∆l,max, (4)

where ∆l,max,∆l,min are predefined scalars defining the
bounds of the reference speed variation. Hence, to ensure
constraint (4), the following optimization problem is for-
mulated:

maxR1 (5a)

subject to

vref,0 +∆l,min ≤ vhigh ≤ vref,0 +∆l,max. (5b)

Finally, the computation of vhigh is given as follows: with
vref,i, αi the weights Q̄, γ̄i are calculated applying the
quadratic optimization (2). Next, R1 value must be found,
which ensures the predefined constraint given in (5).

2.2 Safety performances in the cruise control design

The speed analysis guaranteeing the primary performances
has already been detailed in Németh et al. (2021), thus
here a brief summary of the method is given. The goal of
the speed analysis is to calculate a reference velocity vveh
for the local controller, by which the safety performances
can be ensured. The calculation of vveh is founded on the
analysis of vhigh, which is sent by the high level layer via
internet communication.

The analysis is designed to check, whether the following
conditions hold:

(1) The CAVs must maintain a safe distance dsafe from
the preceding vehicle. This condition results in a
maximum reference speed.

(2) The CAVs must maintain a safe distance dsafe from
the follower vehicle. This condition results in a mini-
mum reference speed.

(3) In case their is no other vehicle present in the environ-
ment, the velocity must be set between vref,0+∆l,min

and vref,0 +∆l,max.

The analysis of these conditions requires the prediction of
the forthcoming distances from the preceding and follower
vehicles. Guaranteeing safety performance requirement
dprec(T ) ≤ dsafe yields the following relation:

dsafe ≤
η̈p(0)T 2

2
− ξ̈(0)T 2

2
+ η̇p(0)T − ξ̇(0)T + dprec(0),

(6)

where 0 represents the actual time, T is the prediction
time horizon, dprec is the forthcoming distance between
the preceding vehicle and the ego vehicle, dpprec(0) is the
actual distance, while η̈p(0) is the acceleration, η̇p(0) is the
speed of the preceding vehicle.

While η̇p(0), dprec(0) can be measured easily using camera
or radar, the measurement of η̈p(0) may contain significant
noise, thus it is over-approximated by a constant value
amin ≤ η̈p(0) representing maximum braking. Thus, (6)
can be reformulated as follows:

dsafe ≤
aminT

2

2
− ξ̈(0)T 2

2
+ η̇p(0)T − ξ̇(0)T + dprec(0)

(7)

and thus, the acceleration of the vehicle must be limited
as

ξ̈(0) ≤ amin +
2η̇p(0)

T
− 2ξ̇(0)

T
+ 2

dprec(0)− dsafe
T 2

. (8)

Assuming constant acceleration ξ̈(0) = ξ̇(T )−ξ̇(0)
T on the

prediction horizon, the required speed of the vehicle in T
is computed as ξ̇(T ) = ξ̇(0)+ ξ̈(0)T . Hence, the maximum
of the reference speed is given as follows:

vveh ≤ aminT + 2η̇p(0)− ξ̇(0) +2
dprec(0)− dsafe

T
. (9)

Similarly, the predicted distance among the ego vehicle
and the follower vehicle dfoll can be calculated from
the second derivative of the distance between them as
d̈foll = ξ̈ − η̈f . Applying a maximum acceleration amax

for the follower vehicle with expression amax ≥ η̈f (0), the
minimum reference speed is given as follows:

vveh ≥ ξ̇(0)− amaxT + 2η̇f (0) +2
dsafe − dfoll(0)

T
.

(10)

The design of the reference speed value vveh for the vehicle
is thus given as follows. In case vveh = vhigh satisfies the
inequalities (9) and (10), vhigh can be transmitted directly
to the local speed controller.

The third primary performance requirement is to keep
vehicle speed in a limited range of vref,0. This informa-
tion can be extracted from camera-based sign recognition
system Bangquan and Xiao Xiong (2019), a digital map
Liu et al. (2020), or the fusion of the two systems. As the
high level layer ensures that vhigh is inside of the requested
velocity range, in case of vveh = vhigh the third primary
performance requirement is guaranteed.

While the value of vhigh can be given for vveh, in some cases
one of the inequalities (9)-(10) is violated. In these instants
an appropriate value for vveh must be selected close as
possible to vhigh, such that the primary performances are
ensured at the same time. Hence, if vhigh fails to meet the
inequalities (9)-(10) the following optimization algorithm
is performed:

min
vveh

|vveh − vhigh| (11a)

subject to

vveh ≤ aminT + 2η̇p(0)− ξ̇(0)

+ 2
dprec(0)− dsafe

T
, (11b)

vveh ≥ ξ̇(0)− amaxT + 2η̇f (0)

+ 2
dsafe − dprec(0)

T
, (11c)

vref,0 +∆l,min ≤ vveh ≤ vref,0 +∆l,max. (11d)

3. DESIGN OF CYBER ATTACK WITH
REINFORCEMENT LEARNING

As detailed earlier, the main goal of the proposed hier-
archical structure for CAVs is to handle a hostile cyber
attack by preserving safe motion of vehicles, moreover
guaranteeing collision avoidance. In order to validate the
effectiveness of the proposed method detailed in Section
2.2, a cyber attack has been designed and applied on the
CAVs as shown in Figure 2.

In this scheme, it is assumed that each vehicle obtains an
optimal velocity vhigh calculated in the cloud based on
available road data, which they have to follow to meet the
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Fig. 2. Scheme of the proposed multi-layer controller
considering cyber attacks

requirements of the eco-driving features. However, since
the prescribed target velocity for the autonomous vehicles
are sent through communication channels which can be
vulnerable to cyber attacks, the values of vhigh can be
corrupted. The aim of the cyber attack design is to select
a velocity vhigh for each CAV in a manner, by which
the possibility of collisions can be maximized. Hence,
for this purpose reinforcement learning procedure has
been developed based on the dynamic model of a vehicle
platoon, where the vehicle agents have been trained to
select a high-level velocity reference for each CAV to follow
in order to maximize the probability of a collision. Multiple
deep deterministic policy gradient (DDPG) agents have
been trained during simulation for three ego vehicles
following the lead vehicle, as depicted in Figure 3. Agents
have been trained to achieve collision with the speed
analysis layer built in the simulation for a more effective
protection for the vehicle platoon.

Fig. 3. Cyber attack reinforcement learning procedure with
speed analysis

The lead vehicle follows a predefined velocity profile given
by the eco-cruise control system or based on real mea-
surement data of the Federal Highway Administration
Research and Technology, U.S. Department of Transporta-
tion. For the latter the NGSIM computer program col-
lected detailed, high-quality traffic datasets on the road
southbound US 101, also known as the Hollywood Freeway,
in Los Angeles. The three agents have been trained to
control the velocity of the vehicles in a manner to generate
catch-up collision in the vehicle string, which the speed
analysis layer is designed to prevent. The training models
for the ego vehicles has been set as follows:

• The velocity action signal from the agent to the
environment (vehicle) is from 0 to 50 m/s.

• The observations from the environment are the fol-
lowing:

· Ego vehicle actual velocity: ξ̇(t)

· Velocity error from preceding vehicle: η̇p(t)− ξ̇(t)
· Integral of the velocity error from preceding ve-
hicle:

∫
(η̇p(t)− ξ̇(t))dt

· Velocity error from following vehicle: ξ̇(t)− η̇f (t)
· Integral of the velocity error from following vehi-

cle:
∫
(ξ̇(t)− η̇f (t))dt

· Following vehicle actual velocity: η̇f (t)

The reward rt provided at every time step t, is rt =

min (dprel, d
f
rel), where dprel is the relative distance from

the preceding vehicle, while dfrel is the relative distance
from the following vehicle. Note, that the episode reward
considered during training is the cumulative value of rt.
An example of the training process shown in Figure 3
regarding episode rewards for the three agents are depicted
in Figure 4.

(a) RL Agent 1

(b) RL Agent 2

(c) RL Agent 3

Fig. 4. Episode rewards of reinforcement learning agents

Initial positions and velocities have been defined for the ve-
hicles along with physical limitations of the vehicle dynam-
ics, while the sample time of the simulation has been set
to Ts = 0.1 s. DDPG agents have been created separately
for the three follower vehicle using specified deterministic
policy actor and Q-value function critic representation
and agent options. The training for the three agents has
been set by the maximum episode number and a stopping
condition regarding the episode reward value. Note, by
separating each vehicle agents, the designed attack can
be more specific for the location of the vehicle in the
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surement data of the Federal Highway Administration
Research and Technology, U.S. Department of Transporta-
tion. For the latter the NGSIM computer program col-
lected detailed, high-quality traffic datasets on the road
southbound US 101, also known as the Hollywood Freeway,
in Los Angeles. The three agents have been trained to
control the velocity of the vehicles in a manner to generate
catch-up collision in the vehicle string, which the speed
analysis layer is designed to prevent. The training models
for the ego vehicles has been set as follows:

• The velocity action signal from the agent to the
environment (vehicle) is from 0 to 50 m/s.

• The observations from the environment are the fol-
lowing:

· Ego vehicle actual velocity: ξ̇(t)

· Velocity error from preceding vehicle: η̇p(t)− ξ̇(t)
· Integral of the velocity error from preceding ve-
hicle:

∫
(η̇p(t)− ξ̇(t))dt

· Velocity error from following vehicle: ξ̇(t)− η̇f (t)
· Integral of the velocity error from following vehi-

cle:
∫
(ξ̇(t)− η̇f (t))dt

· Following vehicle actual velocity: η̇f (t)

The reward rt provided at every time step t, is rt =

min (dprel, d
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rel), where dprel is the relative distance from

the preceding vehicle, while dfrel is the relative distance
from the following vehicle. Note, that the episode reward
considered during training is the cumulative value of rt.
An example of the training process shown in Figure 3
regarding episode rewards for the three agents are depicted
in Figure 4.

(a) RL Agent 1

(b) RL Agent 2

(c) RL Agent 3

Fig. 4. Episode rewards of reinforcement learning agents

Initial positions and velocities have been defined for the ve-
hicles along with physical limitations of the vehicle dynam-
ics, while the sample time of the simulation has been set
to Ts = 0.1 s. DDPG agents have been created separately
for the three follower vehicle using specified deterministic
policy actor and Q-value function critic representation
and agent options. The training for the three agents has
been set by the maximum episode number and a stopping
condition regarding the episode reward value. Note, by
separating each vehicle agents, the designed attack can
be more specific for the location of the vehicle in the

string, i.e. an agent is trained for the follower of the leader,
for the vehicle in between CAVs, and for the last vehicle
in the string without follower. During training, a DDPG
agent updates the actor and critic properties at each time
step and stores past experiences using a circular experi-
ence buffer, while action is chosen by the policy using a
stochastic noise model at each training step. Note, that
the trainings are terminated when the relative distance
between CAVs become less than 0.

4. SIMULATION RESULTS

In the first case the simulation contains four vehicles which
travel on a highway section. The leader vehicle follows
a velocity profile given by the eco-cruise control system,
while the following vehicles high-level velocity profiles are
under a cyber attack from the beginning of the journey.
Note, that the three agents have been previously trained
as depicted in Figure 3 for more than 1600 episodes. Next,
simulations have been evaluated without and with the low-
level speed analysis detailed in Section 2.2 using amin =
−3 m/s2, amax = 2 m/s2 and T = 0.5 s as parameters
of the algorithm. Note, that in the presented method safe
spacing among vehicles are calculated as a function of the
actual vehicle velocities as dsafe = max(dmin, ξ̇·tsafe) with
using tsafe = 2 s and dmin = 3 m in the simulation. It is
well demonstrated in Figure 5 (a), that under the cyber
attack without guaranteed performances, the velocities of
the autonomous vehicles increase significantly due to the
hostile reference high-level speed signals depicted in Figure
5 (b). Hence, the second autonomous vehicle collide with
the leader vehicle under less than 10 seconds by catching
up, as demonstrated in Figure 5 (c) and Figure 5 (d).

(a) Velocity (b) High-level reference velocity

(c) Distance (d) Spacing

Fig. 5. Cyber attack results without guaranteed perfor-
mances

Next, simulation was performed with the same initial
conditions and trained cyber attack agents applying the
low-level speed analysis layer for the autonomous vehicles.
It is well demonstrated in Figure 6 (a), that velocity of
the autonomous vehicle string adapts to the leader vehicle
speed, despite the corrupted high-level velocity signals
given by the agents depicted in Figure 6 (b). Hence,

collision of vehicles are successfully avoided, as shown
in Figure 6 (c). Note, that with lower velocities spacing
among autonomous vehicles becomes smaller, as shown in
Figure 6 (d).

(a) Velocity (b) High-level reference velocity

(c) Distance (d) Spacing

Fig. 6. Cyber attack results with guaranteed performances

In the second case, several simulations have been per-
formed on the real datasets provided by the U.S. Depart-
ment of Transportation, based on the collected data of a
1 km section of the Hollywood Freeway in Los Angeles.
Thus, the similar four vehicle simulation has been per-
formed with the leader vehicle following velocity profiles
collected by the NGSIM computer. Note, that for the more
uneven velocity profiles the low-level speed analysis has
been re-calibrated using amin = −10 m/s2, amax = 10
m/s2, while the discrete time PID cruise controller has
also been tuned to deal with the bigger accelerations and
lower speeds of the leader vehicle. The three agents for the
cyber attack have been trained as depicted in Figure 3 for
1000 episodes.

In Figure 7 the results of the cyber attack are depicted
without the low-level speed analysis for one of the low
speed leader velocity profile. It can be seen in Figure 7
(a) and Figure 7 (b), that without the proposed control
layer the first and third autonomous vehicle abruptly in-
crease their velocity, while the second autonomous vehicle
decreases its speed. Thus, in less than five seconds one
collision occurs between the leader vehicle and the first
autonomous vehicle as shown in Figure 7 (c) and Figure 7
(d), while the third and fourth autonomous vehicle would
also collide if the simulation had not stopped.

By applying the proposed low-level controller, the refer-
ence velocity given by the cyber attack in Figure 8 (b)
is overridden as shown in Figure 8 (a). Hence, the second
and the third autonomous vehicles comes to a stop around
10 seconds with the 3 meters safety distance preserved, as
demonstrated in Figure 8 (c) and Figure 8 (d). Note, that
the first autonomous vehicle continues to follow the leader
vehicle also preserving the calculated safety distance.
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(a) Velocity (b) High-level reference velocity

(c) Distance (d) Spacing

Fig. 7. Cyber attack results without guaranteed perfor-
mances

(a) Velocity (b) High-level reference velocity

(c) Distance (d) Spacing

Fig. 8. Cyber attack results with guaranteed performances

5. CONCLUSIONS

The paper showed a strategy for the design of a fault-
tolerant cruise control system for CAVs, which is able
to handle both faults in the high-level controller or a
cyber attack against the communication system of the
vehicles. The design has been evaluated in a hierarchical
framework with layers related to the cloud computation
and the vehicle level. Next, an intelligent cyber attack
has been designed with reinforcement learning techniques
to corrupt the reference high-level velocity signals in a
manner to provoke accidents among the string of CAVs as
soon as possible. Several real-data simulations have been
performed for a string of CAVs, showing that although
the cyber attack design has been successful in causing
accidents without the speed analysis layer, the presented
eco-cruise control could guarantee safety for the CAVs
even in case of a more sophisticated cyber attack.
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