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Abstract: This paper proposes a control design framework with guarantees for systems, which
contains learning-based control elements. The framework is based on a supervisory control
structure, which contains a supervisor, a robust Linear Parameter Varying (LPV) controller and
the learning-based control elements. This paper presents the design of a lateral path following
control for driver assistance systems, which is aided with a learning-based agent. In the paper
the formulation of the supervisor, the design method of the robust LPV controller are provided,
while the learning-based agent via an imitation learning process is considered to be given.
The effectiveness of the method on driver-in-the-loop simulation scenario is demonstrated. It is
shown that the proposed control system is able to provide guarantee on the limitation of the
path following error, and to guarantee transition between the driver steering actuation and the

automated control intervention.
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1. INTRODUCTION AND MOTIVATION

Guaranteeing safe motion of automated vehicles has the
highest priority over all of the control performance re-
quirements. Nevertheless, the control design for complex
systems, which contains learning-based control elements,
e.g., learning-based agents, is a challenging task. Moreover,
in case of automated vehicles, the elements in the control
architectures during the lifetime of the vehicle can vary,
e.g., through an update process. Thus, a further challenge
is to develop control design frameworks, with which guar-
antees on the safety performances against the variation of
some control elements can be achieved.

In case of these challenges, the concept of plug and play
control has indicated a direction for research (Stoustrup
[2009]). In vehicle control context various partial results
have been published. Paper Gangadharan et al. [2016] has
focused on safety features of vehicles, if the vehicle through
different elements based on the consumer’s request is
composed. In Lin et al. [2021] a software architecture is
proposed, in which a hypervisor manages the operating
systems of different vehicle controls. Possibility of plug
and play design in Qazi et al. [2020] from the viewpoint
of transportation is evaluated, and in Li et al. [2021]
the concept is developed for unmanned aerial vehicles.
Although all of these methods are useful for solving special

1 The research was supported by the European Union within the
framework of the National Laboratory for Autonomous Systems
(RRF-2.3.1-21-2022-00002). The paper was partially funded by the
National Research, Development and Innovation Office (NKFIH)
under OTKA Grant Agreement No. K 135512.

control problems, a comprehensive solution on the problem
of providing safety performances guarantees for systems
with varying control elements has not been published.
Nevertheless, an actual problem of automated vehicles is
to guarantee robust performance of the vehicle, even if the
learning-based agent of the vehicle is modified, e.g., it is
retrained or updated during service time.

In this paper a novel control design framework based on
the Linear Parameter Varying (LPV) method is proposed,
with which guarantees on primary, i.e., safety perfor-
mances can be provided. In the proposed concept the con-
trol loop can contain learning-based control elements, and
in the control design a priory knowledge on the internal
structures of the learning-based elements is not used. The
advantage of the proposed design framework is the it uses
only the outputs of the learning-based control elements,
and thus, the modifications of these elements have not
impact on safety performance requirements. The proposed
design framework is based on a supervisory control struc-
ture. The control input of the systems is computed by the
supervisor based on the output signal of the learning-based
control element and the output of a robust LPV control.
This paper focuses on the design of the LPV control
and the supervisor, while the learning-based element is
considered to be given.

Although some preliminary results can be found in Németh
and Gaspar [2021], this paper provides new achievements
on the application of the method for steering control
of automated vehicles. Furthermore, another preliminary
work in the topic of vehicle control with learning-based
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approaches can be found, see Németh [2021]. Nevertheless,
the methodology of that paper is different, i.e., the robust
control is considered to be designed, and that work fo-
cuses on the learning-based designed. This paper provides
solution on the problem, when the learning-based agent
is given, and the problem is the design of the robust
controller.

The paper is organized as follows. The fundamentals of
the framework are presented in Section 2. In Section 3 the
design method is developed for the path following problem.
The effectiveness of the method through simulation exam-
ples is demonstrated in Section 4, and finally, the paper is
concluded in Section 5.

2. ROBUST CONTROL FRAMEWORK WITH
LEARNING-BASED AGENT IN THE CONTROL
LOOP

The aim of the concept is to form the structure of the
robust design framework with which requirements on the
primary, i.e., safety performances can be guaranteed. The
idea behind the framework is that the control input of the
system is equivalent to the output of the learning-based
agent, if the requirements on the primary performances
can be guaranteed. But, if the primary performances are
violated, the output of the learning-based control is over-
ridden by the supervisor. The decision about the violation
of the primary performances is performed through the
comparison of the output of the learning-based agent and
that of the robust LPV controller.

The output of the learning-based controller is vector wp,

. T
with n elements as uy, = F(yr) = [r1 Ur2 ... ULn] ,
where y;, vector contains the inputs of the controller with
my, elements. F represents the learning-based controller
itself, e.g., a deep-learning neural network, which is acti-
vated on its input layer. Moreover, the output of a robust
LPV controller is ug with n elements as ux = K(p,y) =
[ug1 vk .. uK,n]T, where K represents the LPV con-
troller and yg is the vector of the measured signals with
my elements. Moreover, p € g vector contains the schedul-
ing variables of the controller, which is considered to have
at least n elements.

The fundamental assumption of the design method is that

the control input signal of the system u = [u; ug ... un]T
can be expressed as a function of ugx in a linear form,
under predefined conditions. The parameters in the linear
formulation are selected to guarantee u = wy if the
requirements on the primary performances are guaranteed
by uy. Thus, the relationship between u,uyx and uy with
the conditions is formed as

u=ur =ug + A7,

if 271 S AL,ia Vi=1...n, (1)

where A} is n x 1 vector as
Ap=[ALa ALy ALY, (2)
and A7 ;, i = 1...n are time-dependent weighting sig-
nals, Ar; = [ALimin; AL,imaz) represent domains with
Li,mins OLimae scalars. The set of the domain is de-

noted by Aj.

If the condition of (1) for A7 ; is guaranteed, the control
input of the system wu is equal to uy. But, if there exists
at least one i € [1;n], where A} ; & Ap;, the variables
A7 ; are limited with the boundaries of Ay, ; during the
computation of the control signal u;. In this case u # up.

The general control rule, which contains both cases is
formed as

U =urg + AL, (3)
where
Ap=[Ap1 ALy ... Apn)”, (4a)
Ap,; = min <max (AL 55 ALimin); AL,i,mam)v
Vi=1...n.  (4b)

The relation (4b) guarantee that Ay, € Ar. The minimum
performance level is determined by the LPV controller in
the entire operation domain of the system, while inside of
the domain A, the performance level is enhanced through
learning-based control. Thus, the advantages of learning-
based control can be achieved, while its drawback, such as
performance degradation in some scenarios is eliminated
through the minimum performance level.
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Fig. 1. Structure of the control architecture

In Figure 1 the structure of the given control architecture
is presented. In the proposed concept the feedback loop
contains the LPV controller, while the learning-based
controller is in an auxiliary loop from the control aspect.
The role of the supervisor block is to select Ay, with
which the difference between u and u;, can be minimized,
but the primary performance is guaranteed. Thus, the
n
optimization task of the supervisor is glin S(up,; — u;)?
Lyij=1
subject to Ar; € Ap; Vi € n and to the primary
performance requirements.

3. APPLICATION OF THE DESIGN FOR
ACHIEVING PATH FOLLOWING FUNCTIONALITY

In this section the design of the robust control and the
supervisor for the specific problem of path following is
proposed.

3.1 Design of the robust control

The control design is based on the lateral model of the
vehicle:
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Jip = Cyly <5 — W) - czzz< — ”yv‘“?) (5a)

v
may, = C (5— TV J:)Wl) +02<— L ;1/}12), (5b)

vy =Y, (5¢)
where v is yaw-rate, v, is lateral velocity, ¢ is front wheel
steering angle, v is longitudinal velocity, a, is lateral
acceleration of the vehicle and y is its lateral position.
Moreover, C,Cs are cornering stiffness on the front and
on the rear axle, l1,ly are distances of the front or rear
axles from the vehicle center of gravity. The dynamics is
reformulated to state-space representation & = A(p)x +

Boyu, where the state vector is z = [v, ¥ y|" and the
control input is u = [0], p = v as scheduling variable is
selected.

The steering control input u from the candidate control
input from the learning-based agent u; and from the
output of the robust controller ux are composed as follows

u=ug +Ar, (6)
see (3). Thus, in this application example n = 1 due to
the single control input of system. The transformation of

the state-space equation through (6) results in the system
representation

The primary, i.e., safety performance of the system is to
guarantee the limitation of the lateral error of the vehicle
from the centerline of the road:

21 = Yref —Y;
where y,s is the reference lateral position for the vehicle.
Moreover, the limitation of the steering angle is requested

to avoid the unwanted effect of actuator saturation, which
leads to the further performance:

21| = man, (8)

29 =0; |22 = min. (9)

The performance vector zx = [21 zQ]T through the state-
space equation (5) can be expressed as

2k = Cox + Da1Yres + Daou, (10)
which can be reformulated through (6), such as
ZK = OQ’JJ‘FDQQU)‘FDQQ’UJK, (11)

where w = [Yref A]T. Similarly, the formulation of mea-
surement yx = Yrey — Y is expressed as

YK = Cix + Dj1w + Disugk. (12)

The control-oriented state-space representation of the sys-
tem from the dynamics, performances, measurements on
the system is composed, such as

sz(p)—FBQAL +BguK, (13&)
yr = Ciz + D11w + Digug, (13b)
2z = Cyx + Dosw + Dogu. (130)

The system (2) is parameter-dependent with disturbance
vector w, whose impact on the performance vector z must
be minimized. Therefore, the robust LPV design method
the control synthesis is selected, which is able to provide
the stability of the closed loop system together with
disturbance attenuation (Bokor and Balas [2005]). Scaling

of disturbances and performances is requested for the
robust LPV design, and thus, the plant (13) is augmented
with weighting functions, see Figure 2. The system (13)

S

P

Fig. 2. Illustration of the augmented plant

is represented as G(p) and the controller is K(p). The
reference signal y,.s is scaled with the function W,y =
mﬁ It represents that for steady-state scenario the
maximum of the reference signal is Y e f,maz, and moreover,
its variation can have a dynamics with 7}..r time constant.
Performance z; is also scaled with a transfer function to
represent the allowed dynamics of the tracking error. In

. 1 .
the function of W,, = T/e;f:f, €maz TEPresents maximum
.

lateral error in steady-state and T, represents the time
constant of the tracking error dynamics. Moreover, in the
augmented plant the further weights are selected to be
scalar values. Wa = A,,q0 is related to the bound of A,
W, is the weighting function of the sensor noise. Finally,
W,, = F— scales the control input, whose maximum is
allowed to be 0,,42-

The goal of the design method of the LPV control is
to provide the quadratically stability of the closed-loop
system and the induced L5 norm from the disturbance
vector w to z is less than the scalar v > 0. The existence of
a controller that solves the quadratic LPV v-performance
problem can be expressed as the feasibility of a set of
LMIs, which can be solved numerically. The constraints
set by the LMIs are not finite. The infiniteness of the
constraints is relieved by a finite, sufficiently fine grid.
To specify the grid of the performance weights for the
LPV design the scheduling variables are defined through
lookup-tables. Gridding reflects the qualitative changes in
the performance weights. The stability and the perfor-
mance level of the closed-loop system are guaranteed by
the design procedure (Wu et al. [1996]). The quadratic
LPV performance problem is to choose the parameter-
varying controller IC(p,y) in such a way that the resulting
closed-loop system is quadratically stable and the induced
L norm from the disturbance and the performances is less
than the value 7. The minimization task is the following:

inf sup sup I . (14)
K(p.w) pee |w), # 0, l[wll
w € Lo

The existence of a controller that solves the quadratic LPV
~y-performance problem can be expressed as the feasibility
of a set of LMIs, which can be solved numerically. Finally,
the state-space representation of the LPV control K(p, y) is
constructed, see Wu et al. [1996], Sename et al. [2013]. The
optimization problem (14) is solved offline and the resulted
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controller is K(p,y) implemented for online control input
computation. It leads to the control input ug, which is
incorporated in the computation of u (3) together with
the selection of A;. The control rule results in that the
minimum performance level of the closed-loop system is
determined by KC(p,y).

A challenge of the control design is the relationship be-
tween the design of K(p,y) and the selection of Ay. The
scaling of the performance level through the design of
K(p,y) requires the preliminary selection of Ay. Similarly,
the scaling of the performance level through the selection
of A, requires the preliminary design of K(p, y). A possible
solution to the problem is to create an iterative design
process in which the control design, the selection of Aj,
and the optimization in the supervisor are ordered and
performed in an iterative method.

The goal of the iteration is to minimize the difference
between u, u; and to minimize the path following error
Yref — Y. The minimization of ur — u leads to increased
AL mag, because uy, can significantly differ from wug, i.e.,
due to the increased robustness requirement a more con-
servative controller K(p,y) is achieved. The minimization
of the path following error can lead to reduced Ay, because
in this case u is close to ug and thus, high value for
AL maz is unnecessary. The minimization of the differences
is achieved through an iterative process, in which a balance
between the differences is also achieved. The following
optimization task is formed
N

min: 3 (Dhua () = )] + ey 1) (0] ) (15)
AL maz k=0
where NN reflects to the horizon, on which the solution
of the minimization problem is searched. E notes path
tracking error. Moreover, D > 0 scalar is design parameter.
The role of D parameter is to scale |ur, — u| and to
guarantee a balance between the two terms of the cost.
Since high Ap ez can result in increased robustness
requirement, it can result in problem in the feasibility of
the LMIs in the design of the LPV control. Therefore, it
is necessary to limit D.

The solution of the optimization problem (15) begins with
domains with high ranges, which are reduced through the
following iteration process.

(1) The domain Ay, = [—AL maz; AL,maz] 1s selected high
in the first step. Initially, Af mas is selected high,
which results in a conservative LPV control. The
goal of the iterative design process is to reduce the
conservativeness through the appropriate selection of
the boundaries.

(2) The LPV control with the selected domains is de-
signed using (14).

(3) The closed-loop system with the incorporation of
the designed K(p,y) and the domain Ay, is analyzed
through various scenarios. It yields the signals uy, and
UK .

(4) Due to the results of the scenarios the boundaries
are modified to reduce the cost function of the opti-
mization problem (15). The new value of Ajp 40 is
selected by the optimization algorithm, e.g., through

simplex search or trust-region-reflective methods (La-
garias et al. [1998], Coleman and Li [1996]).

(5) The LPV design, the scenarios and the evaluation
(steps 2-4) are performed until the minimum of (15)
is reached. If the minimum performance level of the
designed control is not suitable, or the range of the
domain results in frequent control intervention on the
bounds, the parameter D must be modified (step 1)
and the iteration must be performed again.

The results of the iteration process are the robust LPV
controller and the domain Ay,

3.2 Formulation of the supervisory optimization

The objective of the optimization is to minimize (u—ur)?,
ie., (0x + Ar — 6)? using (6). The constraint of the
optimization reflects to the primary performance criteria,
i.e., predicted lateral error through a predefined e, gz
scalar value must be limited. The prediction of the lateral
error at preview time 7}, is formed through the motion
prediction of the vehicle:

Wk -+ 1) = (k) + o) 220E (16a)
X(k+1)=X(k)+v(k)cos(v(k + 1))}, (16b)
Yk +1) = Y (k) + v(k) sin((k + 1))T}, (16¢)

where k reflects to the actual signals and k£ + 1 to the pre-
dicted vehicle states, such as X, Y position. In practice, the
predicted lateral error e(k + 1) can be calculated through
a search method, where the goal is to find minimum
difference between X (k+1),Y (k+ 1) and the coordinates
of the set of forthcoming waypoints:

e(k+1) = min VX (E+1) = X3)2+ (Y(k+1) - V)2,
(17)
where I, represents the set of candidate waypoints. The

predicted lateral error depends on d(k), i.e., on pdx + Ay
through X(k+1),Y(k+1).

The optimization problem of the supervisor is formed as
rgin((SK + A —01)%, (18a)
L

sit. e(k+1) < emaz, AL € ApL. (18b)

The solution of (18) requires the solution of two opti-
mization process, which are in a hierarchical structure. In
the outer optimization loop the task is to minimize the
objective (u — ur)?, and in the inner optimization loop,
for all candidate Ay, the minimization task (17) must be
solved.

4. SIMULATION RESULTS

In the example the steering inputs of the neural network
and the driver are combined. The contribution of the
simulation examples is that the limitation of the lateral
error (em,mqx = 4m) through the proposed design framework
under various configurations can be guaranteed.

4.1 Driver-in-the-loop simulation environment

In this simulation input wy is provided by a neural net-
work. The goal of the neural network is to imitate driver
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steering characteristics, which has been learned from mea-
sured data. In some papers the problem of imitation learn-
ing for autonomous vehicles have already been studied.
The advantage of imitation learning is to use neural net-
works, which which the characteristics of the driver can
be achieved. Through the fitting of neural networks it is
possible to handle control problems, in which nonlineari-
ties have high impacts. For example, an end-to-end learn-
ing method in Codevilla et al. [2018] has been proposed,
where a vision-based steering control through conditional
imitation learning has been achieved. Paper Kebria et al.
[2020] has proposed a general framework for the selection
of convolutional neural network parameters in case of deep
imitation learning problems. Moreover, in Pan et al. [2020)
imitation learning has been applied for agile autonomous
driving, which provides special challenges under extreme
driving situations.

In this simulation example a medium-size passenger ve-
hicle in CarMaker is selected. The driving of the vehicle
through the driver model of CarMaker has been per-
formed, and thus, data on the vehicle motion and on the
steering intervention has been collected. For the fitting
of the neural network, the following input signals on the
neural network have been used:

e actual lateral error of the vehicle,

e actual longitudinal velocity of the vehicle,

e actual and forthcoming curvature of the road in 1s
horizon with 0.1s consecutive steps.

Moreover, the output of the neural network is the gener-
ated steering angle of the driver, which must be fitted to
the steering angle of the measured dataset. In this example
2 hidden layers with 20 neurons in each layers have been
selected. The learning process has been performed through
Levenberg-Marquardt algorithm, see Demut et al. [1997],
Xu and Chen [2008].
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Fig. 3. Result on steering wheel fitting error

In the simulation setup the neural network and the driver
intervention are simultaneously involved. The goal of this
setup is to handle the driving situations, when the driver’s
hands on the steering wheel are not hold. Thus, the vehicle
control provides steering angle, but this steering angle
through the driver can be modified. The advantage of
this control solution compared to the previous setup is
that the driver has the ability to modify the trajectory of
the vehicle, if the driver is not satisfied with its motion.
Moreover, the functionality of driving transfer between the
driver and the automated system through this setup can be
tested, which is an important aspect of automated driving
Kaustubh et al. [2016], Molnar et al. [2018].

The structure of the simulation setup is illustrated in
Figure 4. The steering angle of the front wheels depends
on the rotation angle of the steering wheel. Thus, in this
setup 4 is not realized on the front wheels of the vehicle
directly, but the electric motor of the steering wheel is
rotated to achieve § on the wheels. Nevertheless, if the
driver can decide to modify the angle of steering wheel, and
thus, the driving is transferred. Torque T for the steering
wheel actuator through a PID control from the difference
of steering wheel angle and § is computed.

Actuator
control

Vehicle
control

7777777777777777777777777777777777777777777

Driver

Fig. 4. Scheme of driver-in-the-loop with neural network
simulation setup

visual information

4.2 Results of the iteration

In Figure 5 the results of the iteration in the control
design process are shown. The value of the cost, together
with its components are illustrated in Figure 5(a). The
initial value of Ap ;mqee is 10, which is a high value, as
it is recommended in Section 3. During the iteration, in
one iteration step the vehicle performs a 1km long road
section with varying velocity and with various curves. In
the simulation example D scalar parameter is selected as 1.
It can be seen that the cost decreases during the iteration
process, until the minimum value is achieved. Similarly,
the variation of Ap ,qs is also reduced, see Figure 5(b),
where the achieved value is 0.15rad.
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(a) Iteration results of the cost (b) Iteration results of Ap, paz

Fig. 5. Results of the iteration

4.8 Results of the simulation

Some results of the simulation are found in Figure 6. The
path of the vehicle during the Race Track is illustrated in
Figure 6(a) The velocity selection of the driver through
the pedals of the simulator is illustrated in Figure 6(b).
The steering angle values § and d4,. are shown in Figure
6(c). The shaded parts of the figure reflects to the sections
of the vehicle path, where 4. = 4, i.e., the hands of the
driver have not been on the steering wheel. On the further
road sections the driver modifies the turning of the steering
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angle, and thus, § differs from d4,. The normalized value of
the steering torque on the steering wheel T is illustrated in
Figure 6(d). The characteristics of T' is close to d, because
the goal of T is to realize 6 on the steering wheel. The
lateral error during the vehicle motion is illustrated in
Figure 6(e). It can be seen that the lateral error is under
emaz, independently from holding the hand of the driver
on the steering wheel or not. The value of the cost function
of the supervisor is illustrated in Figure 6(f). The results
show that the cost, i.e., the difference between ¢ and dy,
is small; if the driver steering intervention is close to dp,
(e.g., between 1100m . ..1400m), or if the driver does not
actuate steering (e.g., between 450m . ..650m).

r0ad edge
vehicle

Y (m)

200 -100 0 100 200 300 400 ] 500 1000 1500 2000 2400
X (m) Station (m)

(a) Path of the vehicle

(b) Velocity

Steering angle (deg)
o & B N o N & O ®

500 1000 1500 2000 2400

Station (m) 0 500 1000 1500 2000 2400

Station (m)

(c) Steering angle (d) Normalized steering torque

Lateral error (m)

0 500 1000 1500 2000 2400 0 500 1000 1500 2000 2400
Station (m) Station (m)

(e) Lateral error (f) Cost value

Fig. 6. Simulation results with driver intervention

5. CONCLUSIONS

In the paper the design method and the operation of the
proposed control framework have been presented. Through
simulation examples with learning-based agent and with
driver-in-the-loop scenarios the effectiveness of the control
has been demonstrated, i.e., the limitation of the lateral
error in each scenarios is guaranteed.

The future challenge of the research is to develop the
integration of steering control and cruise control within
the proposed framework. It can provide to utilize the
relationships between longitudinal and lateral dynamices,
with which the safety level of the automated vehicle can
be improved.
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