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Abstract: In this paper we show that a wide class of compartmental systems with bounded
capacities called generalized ribosome flow models are stable with an entropy-like logarithmic
Lyapunov function known from the theory of nonnegative systems and reaction networks. The
stability proof uses the kinetic representation of the compartmental model and earlier approaches
applied for the input-to-state stability analysis of reaction networks with time-varying reaction
rates. The results are valid not only for mass action type systems but also for models with
more general reaction rates. Illustrative examples are given to show the qualitative dynamical
properties of simple generalized ribosome flow models.
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1. INTRODUCTION

Nonnegative systems are widely used in several application
fields such as chemistry, biology, ecology or transportation,
where the described quantities are naturally positive or
nonnegative (Haddad et al., 2010). The main mathemati-
cal property of such models is that the nonnegative orthant
is invariant with respect to the system dynamics. Com-
partmental models are used to describe the change of the
distribution of objects such as molecules, particles, indi-
viduals or vehicles among different storage compartments
in time (Jacquez and Simon, 1993). Compartments can
be physically distinct subsystems such as interconnected
containers (e.g., different habitats in ecological models,
organs in pharmacokinetics, or road segments in traffic
models), but they can also represent disjoint states of
a process like different stages of diseases in the case of
epidemic models.

The class of kinetic systems (also called reaction networks
or simply CRNs) is also an interesting and important part
of nonnegative models (Feinberg, 2019). The dynamics
of these systems can be formally realized by a set of
(generalized) chemical reactions giving rise naturally to
a directed graph structure called the reaction graph.
Kinetic systems may possess complex dynamical behaviour
including multiple equilibria, oscillations, limit cycles or
even chaos, therefore, they can be considered as universal
descriptors of nonlinear dynamics (Érdi and Tóth, 1989).
On the other hand, their mathematical structure is simple

⋆ The work of Mihály A. Vághy has been supported by the ÚNKP-
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enough to develop efficient computational techniques for
dynamical analysis and control (Lipták et al., 2016).
It is also well-known that majority of compartmental
models can be given in kinetic form. Stability analysis
has been in the focus of reaction network theory for
more than 50 years. In (Horn and Jackson, 1972), a
logarithmic function, called pseudo-Helmholtz function is
proposed for the stability analysis of a class of CRNs.
This function was further generalized, for example in (Lu
et al., 2021) using a Lyapunov function PDE approach, for
some additional classes of CRNs governed by mass-action
kinetics. The well-known deficiency zero theorem was
published in (Feinberg, 1987) which states the existence
of at least locally stable positive equlibria for weakly
reversible CRNs having zero deficiency. The so-called
Global Attractor Conjecture says that this stability is
actually global with respect to the nonnegative orthant
(Craciun, 2015). In (Alonso and Szederkényi, 2016) a new
model parametrization approach was given for the study
of the uniqueness and stability of equilibria in CRNs with
mass action kinetics. In the present paper, we will rely on
the basic ideas and the generalized logarithmic Lyapunov
function proposed in (Chaves, 2005) for the stability
analysis of deficiency zero CRNs with time varying rate
coefficients, although the system class we study is not
deficiency zero.

Ribosome flow models were introduced to support the dy-
namical modeling of the gene translation process using the
simple exclusion principle and mean field approximation
(Reuveni et al., 2011). These models can also be inter-
preted as kinetic systems having mass action type reaction
rates. In (Margaliot and Tuller, 2012) it was shown that
ribosome flow models with a tubular structure have unique
positive equlibria within each stoichiometric compatibility
class, and every trajectory converges to this equilibrium. A
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model parametrization approach was given for the study
of the uniqueness and stability of equilibria in CRNs with
mass action kinetics. In the present paper, we will rely on
the basic ideas and the generalized logarithmic Lyapunov
function proposed in (Chaves, 2005) for the stability
analysis of deficiency zero CRNs with time varying rate
coefficients, although the system class we study is not
deficiency zero.

Ribosome flow models were introduced to support the dy-
namical modeling of the gene translation process using the
simple exclusion principle and mean field approximation
(Reuveni et al., 2011). These models can also be inter-
preted as kinetic systems having mass action type reaction
rates. In (Margaliot and Tuller, 2012) it was shown that
ribosome flow models with a tubular structure have unique
positive equlibria within each stoichiometric compatibility
class, and every trajectory converges to this equilibrium. A

Lyapunov stability of generalized ribosome
flows ⋆
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Catholic University, H-1444 Budapest, Hungary

∗∗ Systems and Control Laboratory, Institute for Computer Science and
Control (SZTAKI), H-1111 Budapest, Hungary

Abstract: In this paper we show that a wide class of compartmental systems with bounded
capacities called generalized ribosome flow models are stable with an entropy-like logarithmic
Lyapunov function known from the theory of nonnegative systems and reaction networks. The
stability proof uses the kinetic representation of the compartmental model and earlier approaches
applied for the input-to-state stability analysis of reaction networks with time-varying reaction
rates. The results are valid not only for mass action type systems but also for models with
more general reaction rates. Illustrative examples are given to show the qualitative dynamical
properties of simple generalized ribosome flow models.

Keywords: Lyapunov methods, stability of nonlinear systems, stability of distributed
parameter systems, kinetic modeling

1. INTRODUCTION

Nonnegative systems are widely used in several application
fields such as chemistry, biology, ecology or transportation,
where the described quantities are naturally positive or
nonnegative (Haddad et al., 2010). The main mathemati-
cal property of such models is that the nonnegative orthant
is invariant with respect to the system dynamics. Com-
partmental models are used to describe the change of the
distribution of objects such as molecules, particles, indi-
viduals or vehicles among different storage compartments
in time (Jacquez and Simon, 1993). Compartments can
be physically distinct subsystems such as interconnected
containers (e.g., different habitats in ecological models,
organs in pharmacokinetics, or road segments in traffic
models), but they can also represent disjoint states of
a process like different stages of diseases in the case of
epidemic models.

The class of kinetic systems (also called reaction networks
or simply CRNs) is also an interesting and important part
of nonnegative models (Feinberg, 2019). The dynamics
of these systems can be formally realized by a set of
(generalized) chemical reactions giving rise naturally to
a directed graph structure called the reaction graph.
Kinetic systems may possess complex dynamical behaviour
including multiple equilibria, oscillations, limit cycles or
even chaos, therefore, they can be considered as universal
descriptors of nonlinear dynamics (Érdi and Tóth, 1989).
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model parametrization approach was given for the study
of the uniqueness and stability of equilibria in CRNs with
mass action kinetics. In the present paper, we will rely on
the basic ideas and the generalized logarithmic Lyapunov
function proposed in (Chaves, 2005) for the stability
analysis of deficiency zero CRNs with time varying rate
coefficients, although the system class we study is not
deficiency zero.

Ribosome flow models were introduced to support the dy-
namical modeling of the gene translation process using the
simple exclusion principle and mean field approximation
(Reuveni et al., 2011). These models can also be inter-
preted as kinetic systems having mass action type reaction
rates. In (Margaliot and Tuller, 2012) it was shown that
ribosome flow models with a tubular structure have unique
positive equlibria within each stoichiometric compatibility
class, and every trajectory converges to this equilibrium. A

Lyapunov stability of generalized ribosome
flows ⋆
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⋆ The work of Mihály A. Vághy has been supported by the ÚNKP-
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preted as kinetic systems having mass action type reaction
rates. In (Margaliot and Tuller, 2012) it was shown that
ribosome flow models with a tubular structure have unique
positive equlibria within each stoichiometric compatibility
class, and every trajectory converges to this equilibrium. A
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1. INTRODUCTION

Nonnegative systems are widely used in several application
fields such as chemistry, biology, ecology or transportation,
where the described quantities are naturally positive or
nonnegative (Haddad et al., 2010). The main mathemati-
cal property of such models is that the nonnegative orthant
is invariant with respect to the system dynamics. Com-
partmental models are used to describe the change of the
distribution of objects such as molecules, particles, indi-
viduals or vehicles among different storage compartments
in time (Jacquez and Simon, 1993). Compartments can
be physically distinct subsystems such as interconnected
containers (e.g., different habitats in ecological models,
organs in pharmacokinetics, or road segments in traffic
models), but they can also represent disjoint states of
a process like different stages of diseases in the case of
epidemic models.

The class of kinetic systems (also called reaction networks
or simply CRNs) is also an interesting and important part
of nonnegative models (Feinberg, 2019). The dynamics
of these systems can be formally realized by a set of
(generalized) chemical reactions giving rise naturally to
a directed graph structure called the reaction graph.
Kinetic systems may possess complex dynamical behaviour
including multiple equilibria, oscillations, limit cycles or
even chaos, therefore, they can be considered as universal
descriptors of nonlinear dynamics (Érdi and Tóth, 1989).
On the other hand, their mathematical structure is simple
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enough to develop efficient computational techniques for
dynamical analysis and control (Lipták et al., 2016).
It is also well-known that majority of compartmental
models can be given in kinetic form. Stability analysis
has been in the focus of reaction network theory for
more than 50 years. In (Horn and Jackson, 1972), a
logarithmic function, called pseudo-Helmholtz function is
proposed for the stability analysis of a class of CRNs.
This function was further generalized, for example in (Lu
et al., 2021) using a Lyapunov function PDE approach, for
some additional classes of CRNs governed by mass-action
kinetics. The well-known deficiency zero theorem was
published in (Feinberg, 1987) which states the existence
of at least locally stable positive equlibria for weakly
reversible CRNs having zero deficiency. The so-called
Global Attractor Conjecture says that this stability is
actually global with respect to the nonnegative orthant
(Craciun, 2015). In (Alonso and Szederkényi, 2016) a new
model parametrization approach was given for the study
of the uniqueness and stability of equilibria in CRNs with
mass action kinetics. In the present paper, we will rely on
the basic ideas and the generalized logarithmic Lyapunov
function proposed in (Chaves, 2005) for the stability
analysis of deficiency zero CRNs with time varying rate
coefficients, although the system class we study is not
deficiency zero.

Ribosome flow models were introduced to support the dy-
namical modeling of the gene translation process using the
simple exclusion principle and mean field approximation
(Reuveni et al., 2011). These models can also be inter-
preted as kinetic systems having mass action type reaction
rates. In (Margaliot and Tuller, 2012) it was shown that
ribosome flow models with a tubular structure have unique
positive equlibria within each stoichiometric compatibility
class, and every trajectory converges to this equilibrium. A

closed circular ribosome flow model was studied in (Raveh
et al., 2015), and it was proved that the system admits a
continuum of semistable equlibria. However, to the best of
our knowledge, the stability of ribosome flow models has
not been studied using entropy-like Lyapunov functions.

The compartmental model class studied in this paper was
originally motivated by a special finite volume discretiza-
tion of traffic flow models proposed in (Lipták et al., 2021),
where it was shown that the process has a physically
meaningful kinetic interpretation with ‘chemical’ reactions
representing the movement of vehicles between adjacent
road cells. In (Szederkényi et al., 2022) this compartmen-
tal traffic model was generalized both in terms of struc-
ture and kinetics, and the persistence and ℓ1-contraction
property of the dynamics of strongly connected networks
was proved. Since this system class includes ribosome
flow models mentioned above, in (Vághy and Szederkényi,
2022) the term ‘generalized ribosome flow model’ was used,
and a port-Hamiltonian description reflecting the directed
graph structure was given. In the light of the above results,
the aim of this paper is to perform the stability analysis
of generalized ribosome flow models using an entropy-like
Lyapunov function candidate.

2. NOTATIONS AND BACKGROUND

2.1 Compartmental models

The notations and overview in this section are based on
(Szederkényi et al., 2022) and (Vághy and Szederkényi,
2022). Throughout the paper we consider systems con-
taining a set of interconnected compartments and objects
(such as ribosomes, particles, molecules, vehicles etc.)
moving between them. We assume that the rate of transfer
between compartments depends on the amount of objects
in the source compartment as well as on the amount of free
space in the target compartment. This naturally implies
that each compartment has a well-defined finite capacity
that limits the number of items that can be contained in
the given compartment.

For the formal definition, let us consider the set Q =
{q1, q2, . . . , qm} of compartments and the set A ⊂ Q × Q
of transitions, where (qi, qj) ∈ A represents the transition
from compartment qi into qj . Then, the directed graph
D = (Q,A) is called compartmental graph and it describes
the structure of the compartmental model. Loop edges
are not allowed in the model. Similarly, we do not allow
parallel edges between two compartments in the same
direction.

Let Im = {1, 2, . . . ,m}. For each compartment qi we
introduce the sets of donors and receptors, respectively,
as

Di =
{
j ∈ Im

∣∣(qj , qi) ∈ A
}
,

Ri =
{
j ∈ Im

∣∣(qi, qj) ∈ A
}
;

that is, the set of donors of a given compartment are
the compartments where an incoming transition originates
from and the set of receptors are the compartments where
an outgoing transition terminates in.

2.2 Chemical reaction networks (kinetic systems)

In this subsection we give a brief introduction of ki-
netic systems based on (Feinberg, 2019; Horn and Jack-
son, 1972). A CRN contains a set of species Σ =
{X1, X2, . . . , XN} and the corresponding species vector is
given by X = [X1 X2 . . . XN ]T. The species of a CRN are
transformed into each other through elementary reaction
steps of the form

Cj
Kj−−→ Cj′ j = 1, 2, . . . , R,

where Cj = yTj X and Cj′ = yTj′X are the source and

product complexes, respectively, the vectors yj , yj′ ∈ NN
0

are stoichiometric coefficient vectors and the continuously

differentiable functions Kj : RN

+ → R+ are the rate

functions with R+ denoting the set of nonnegative real
numbers.

Let x(t) ∈ RN

+ denote the state vector of the species as
a function of time for t ≥ 0. Based on the above, the
dynamics of the CRN is given by

ẋ(t) =
R∑

j=1

Kj(x)[yj′ − yj ]. (1)

We say that k ∈ supp(yj) if [yj ]k > 0. For the rate
functions, we assume the following:

A1
∂Kj(x)
∂xk

≥ 0 if k ∈ supp(yj) and
∂Kj(x)
∂xk

= 0 if

k ̸∈ supp(yj),
A2 Kj

(
x(t)

)
= 0 whenever there exists k ∈ supp(yj) such

that xk(t) = 0.

These assumptions not only guarantee local existence and
uniqueness but the invariance of the nonnegative orthant
(or a part of it) as well. A set of ODEs of the form ẋ = f(x)
is called kinetic if it can be written in the form (1) with
appropriate rate functions and stoichiometric coefficient
vectors.

3. DYNAMICS OF THE STUDIED
COMPARTMENTAL MODELS

3.1 Kinetic description

We construct a CRN corresponding to a compartmental
model D = (Q,A). Let the set of species be Σ =
{N1, N2, . . . , Nm} ∪ {S1, S2, . . . , Sm} where Ni and Si

represent the number of particles and available spaces in
compartment qi, respectively. To each transition (qi, qj) ∈
A we assign a reaction of the form

Ni + Sj
Kij−−→ Nj + Si,

where Kij is the rate function of the transition. Such
a reaction represents that during the transition from
compartment qi to compartment qj the number of items
decreases in qi and increases in qj , while the number of
available spaces increases in qi and decreases in qj . Let
ni and si denote the continuous concentration of particles
and free spaces in qi, respectively. Since the rate of the
transition (qi, qj) ∈ A only depends on the number of items
in compartment qi and the number of available spaces in
compartment qj , for the sake of simpler notations, we will
explicitly write out the arguments as Kij(ni, sj).
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closed circular ribosome flow model was studied in (Raveh
et al., 2015), and it was proved that the system admits a
continuum of semistable equlibria. However, to the best of
our knowledge, the stability of ribosome flow models has
not been studied using entropy-like Lyapunov functions.

The compartmental model class studied in this paper was
originally motivated by a special finite volume discretiza-
tion of traffic flow models proposed in (Lipták et al., 2021),
where it was shown that the process has a physically
meaningful kinetic interpretation with ‘chemical’ reactions
representing the movement of vehicles between adjacent
road cells. In (Szederkényi et al., 2022) this compartmen-
tal traffic model was generalized both in terms of struc-
ture and kinetics, and the persistence and ℓ1-contraction
property of the dynamics of strongly connected networks
was proved. Since this system class includes ribosome
flow models mentioned above, in (Vághy and Szederkényi,
2022) the term ‘generalized ribosome flow model’ was used,
and a port-Hamiltonian description reflecting the directed
graph structure was given. In the light of the above results,
the aim of this paper is to perform the stability analysis
of generalized ribosome flow models using an entropy-like
Lyapunov function candidate.

2. NOTATIONS AND BACKGROUND

2.1 Compartmental models

The notations and overview in this section are based on
(Szederkényi et al., 2022) and (Vághy and Szederkényi,
2022). Throughout the paper we consider systems con-
taining a set of interconnected compartments and objects
(such as ribosomes, particles, molecules, vehicles etc.)
moving between them. We assume that the rate of transfer
between compartments depends on the amount of objects
in the source compartment as well as on the amount of free
space in the target compartment. This naturally implies
that each compartment has a well-defined finite capacity
that limits the number of items that can be contained in
the given compartment.

For the formal definition, let us consider the set Q =
{q1, q2, . . . , qm} of compartments and the set A ⊂ Q × Q
of transitions, where (qi, qj) ∈ A represents the transition
from compartment qi into qj . Then, the directed graph
D = (Q,A) is called compartmental graph and it describes
the structure of the compartmental model. Loop edges
are not allowed in the model. Similarly, we do not allow
parallel edges between two compartments in the same
direction.

Let Im = {1, 2, . . . ,m}. For each compartment qi we
introduce the sets of donors and receptors, respectively,
as

Di =
{
j ∈ Im

∣∣(qj , qi) ∈ A
}
,

Ri =
{
j ∈ Im

∣∣(qi, qj) ∈ A
}
;

that is, the set of donors of a given compartment are
the compartments where an incoming transition originates
from and the set of receptors are the compartments where
an outgoing transition terminates in.

2.2 Chemical reaction networks (kinetic systems)

In this subsection we give a brief introduction of ki-
netic systems based on (Feinberg, 2019; Horn and Jack-
son, 1972). A CRN contains a set of species Σ =
{X1, X2, . . . , XN} and the corresponding species vector is
given by X = [X1 X2 . . . XN ]T. The species of a CRN are
transformed into each other through elementary reaction
steps of the form

Cj
Kj−−→ Cj′ j = 1, 2, . . . , R,

where Cj = yTj X and Cj′ = yTj′X are the source and

product complexes, respectively, the vectors yj , yj′ ∈ NN
0

are stoichiometric coefficient vectors and the continuously

differentiable functions Kj : RN

+ → R+ are the rate

functions with R+ denoting the set of nonnegative real
numbers.

Let x(t) ∈ RN

+ denote the state vector of the species as
a function of time for t ≥ 0. Based on the above, the
dynamics of the CRN is given by

ẋ(t) =
R∑

j=1

Kj(x)[yj′ − yj ]. (1)

We say that k ∈ supp(yj) if [yj ]k > 0. For the rate
functions, we assume the following:

A1
∂Kj(x)
∂xk

≥ 0 if k ∈ supp(yj) and
∂Kj(x)
∂xk

= 0 if

k ̸∈ supp(yj),
A2 Kj

(
x(t)

)
= 0 whenever there exists k ∈ supp(yj) such

that xk(t) = 0.

These assumptions not only guarantee local existence and
uniqueness but the invariance of the nonnegative orthant
(or a part of it) as well. A set of ODEs of the form ẋ = f(x)
is called kinetic if it can be written in the form (1) with
appropriate rate functions and stoichiometric coefficient
vectors.

3. DYNAMICS OF THE STUDIED
COMPARTMENTAL MODELS

3.1 Kinetic description

We construct a CRN corresponding to a compartmental
model D = (Q,A). Let the set of species be Σ =
{N1, N2, . . . , Nm} ∪ {S1, S2, . . . , Sm} where Ni and Si

represent the number of particles and available spaces in
compartment qi, respectively. To each transition (qi, qj) ∈
A we assign a reaction of the form

Ni + Sj
Kij−−→ Nj + Si,

where Kij is the rate function of the transition. Such
a reaction represents that during the transition from
compartment qi to compartment qj the number of items
decreases in qi and increases in qj , while the number of
available spaces increases in qi and decreases in qj . Let
ni and si denote the continuous concentration of particles
and free spaces in qi, respectively. Since the rate of the
transition (qi, qj) ∈ A only depends on the number of items
in compartment qi and the number of available spaces in
compartment qj , for the sake of simpler notations, we will
explicitly write out the arguments as Kij(ni, sj).
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Based on (1) the dynamics of the system is given by

ṅi =
∑
j∈Di

Kji(nj , si)−
∑
j∈Ri

Kij(ni, sj),

ṡi = −
∑
j∈Di

Kji(nj , si) +
∑
j∈Ri

Kij(ni, sj).
(2)

It is easy to check that the model class in Eq. (2)
contains ribosome flow models described in (Margaliot and
Tuller, 2012) or (Bar-Shalom et al., 2020), and extends
them in two ways: firstly, the reaction rate function K is
not necessarily mass action type but more general, and
secondly, the compartmental graph of the system can be
arbitrary (i.e., there can be particle transition between any
two compartments). Therefore, we call (2) a generalized
ribosome flow model.

3.2 Linear conservation laws

System (2) exhibits conservation in several senses. First of
all, we have that

m∑
i=1

(
ṅi + ṡi

)
= 0,

thus the function H : R2m → R, given by

H(x) =

2m∑
i=1

xi,

for x ∈ R2m is a first integral and is constant along
the trajectories of (2). Our next observation is that ṅi +
ṡi = 0 holds for each compartment, thus ci := ni + si
is the constant capacity of compartment qi. Substituting
si = ci − ni we can rewrite (2) in a reduced state space as

ṅi =
∑
j∈Di

Kji(nj , ci − ni)−
∑
j∈Ri

Kij(ni, cj − nj) (3)

or after an analogous substitution, as

ṡi = −
∑
j∈Di

Kji(cj − sj , si) +
∑
j∈Ri

Kij(ci − si, sj). (4)

As a consequence of the preceding observations, the func-
tion H̃ : Rm → R, given by

H̃(x) =

m∑
i=1

xi

for x ∈ Rm is a first integral for (3) and (4) with x = n
and x = s, respectively. This shows that while the state
space of the decomposed systems is C̃ := [0, c1]× [0, c2]×
· · · × [0, cm], for a given initial condition x(0) ∈ Rm

the trajectories are contained in the (m − 1)-dimensional
manifold (hyperplane) defined by{

x ∈ C̃
∣∣H̃(x)− H̃

(
x(0)

)
= 0

}
.

Similarly, in the original state space C := C̃ × C̃, for a
given initial condition x(0) ∈ C the trajectory is contained
in the (m− 1)-dimensional manifold (hyperplane) defined
by {

x ∈ C
∣∣ci − (xi + xm+i) = 0 for i = 1, 2, . . . ,m;

H(x)−H
(
x(0)

)
= 0

}
,

where the local coordinates x1, . . . , xm and xm+1, . . . , x2m

correspond to the variables n1, . . . , nm and s1, . . . , sm,
respectively.

3.3 Qualitative dynamical properties

We recall the following theorem about the qualitative
behaviour of the studied compartmental models.

Theorem 1. (Szederkényi et al. (2022)). For a strongly con-
nected compartmental graph the corresponding CRN
given in (2) has the following properties:

(i) Its dynamics is persistent; that is, for each x(0) ∈
int(C) we have that ω

(
x(0)

)
∩ ∂C = ∅.

(ii) For each x(0) ∈ C the orbit enters int(C) after an
arbitrarily short time and never leaves it.

(iii) Each level set of the first integral H has exactly one
equilibrium that attracts the whole level set.

In this paper we assume that the reaction rate of the tran-
sition (qi, qj) is of the form Kij(ni, sj) = kijθi(ni)νj(sj),
where kij > 0 and θi, νj ∈ C1(R) are nondecreasing, have

θi(0) = νj(0) = 0 and satisfy
∫ 1

0
| log θi(r)| dr < ∞ and∫ 1

0
| log νj(r)| dr < ∞. It is easy to see that the assump-

tions A1 and A2 on the reaction rates given in subsection
2.2 are satisfied in this case, and thus Theorem 1 holds.

4. STABILITY ANALYSIS

We rewrite the state-space model (2) as a system of ODEs
of the form of (1). In order to do so, let x ∈ R2m be such
that xi = ni and xm+i = si for i = 1, 2, . . . ,m. Define
the functions γi = θi and γm+i = νi for i = 1, 2, . . . ,m.
Denote the number of complexes in the assigned CRN with
M and let yi be the stoichiometric coefficient vector of
complex Ci for i = 1, 2, . . . ,M . For the sake of brevity, let
γyi(x) =

∏2m
l=1 γ

yi,l

l (xl). Equilibrium points in the state
space are denoted by x. Finally, let kij = 0 if (qi, qj) ̸∈ A.
Using these notations rewrite (2) as follows:

ẋ =
M∑
i=1

M∑
j=1

kijγ
yi(x)(yj − yi). (5)

We consider the following entropy-like function (Chaves,
2005; Feinberg, 2019; Sontag, 2001):

V (x, x) =

2m∑
i=1

∫ xi

xi

(
log γi(s)− log γi(xi)

)
ds

and proceed by showing that it is a Lyapunov function
for (5). In the subsequent analysis we assume that x is
positive, which, for example, is ensured by Theorem 1 if
the compartmental graph is strongly connected.

A transformation of special interest is the case γi(r) = r.
This corresponds to the law of mass action; that is, in this
case Kij(ni, sj) = kijnisj . Furthermore, since∫ xi

xi

(
log γi(s)− log γi(xi)

)
ds = xi log

xi

xi
+ xi − xi

the Lyapunov function candidate can be written explicitly
as

V (x, x) =

2m∑
i=1

(
xi log

xi

xi
+ xi − xi

)
. (6)

Another important example from (bio)chemistry is a reac-
tion rate in rational form, which is given as γi(r) =

r
k+r for

some k > 0. This functions describes reaction rates with

saturation; that is, we have that γi(r) → 1 as r → ∞. In
this case, too, the integral can be calculated analytically
and we can rewrite the Lyapunov function candidate as

V (x, x) =

2m∑
i=1

(
(k + xi) log

k + xi

k + xi
+ xi log

xi

xi

)
. (7)

Let ρ(x) =
[
log γ1(x1) log γ2(x2) · · · log γ2m(x2m)

]T
and

and qi = ⟨yi, ρ(x) − ρ(x)⟩. Note, that ∇V (x, x) = ρ(x) −
ρ(x). Using this, we obtain

V̇ (x, x) = ⟨∇V, ẋ⟩

=
M∑
i=1

M∑
j=1

kijγ
yi(x)⟨ρ(x)− ρ(x), yj − yi⟩

M∑
i=1

M∑
j=1

kijγ
yi(x)(qj − qi).

(8)

Notice, that

γyi(x) = e⟨yi,ρ(x)⟩ = e⟨yi,ρ(x)⟩eqi

thus (8) can be rewritten as

V̇ (x, x) =

M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩eqi(qj − qi). (9)

Using

eqi(qj − qi) = eqi(qj − qi)− eqi(eqj−qi − 1)

+ eqi(eqj−qi − 1)

= eqi
(
(qj − qi)− eqj−qi + 1

)
+ eqj − eqi

= −eqi
(
eqj−qi − (qj − qi)− 1

)
+ eqj − eqi

= −eqiω(qj − qi) + eqj − eqi

where ω(r) = er − r − 1, further rewrite (9) as

V̇ (x, x) = −
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩eqiω(qj − qi)

+
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩(eqj − eqi).

Focusing on the second term we have that
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩(eqj − eqi )

=

M∑
j=1

eqj

( M∑
i=1

kije
⟨yi,ρ(x)⟩

)
−

M∑
i=1

eqi

( M∑
j=1

kij

)
e⟨yi,ρ(x)⟩

Let Y = [y1 y2 · · · yM ] be the stoichiometric matrix and
K be the weighted adjacency matrix of the reaction graph
of the CRN. Finally, introduce Q =

[
eq1 eq2 · · · eqM

]
to

find that
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩(eqj − eqi)

= QKeY
Tρ(x) −Qdiag

(
1T2mK

)
eY

Tρ(x)

= Q
(
K − diag

(
1T2mK

))
eY

Tρ(x) = QK̃eY
Tρ(x)

(10)

where K̃ is the weighted negative Laplacian of the reaction
graph. Recall that (5) is equivalent to

ẋ = Y K̃eY
Tρ(x)

and that at equilibrium

Y K̃eY
Tρ(x) = 0.

Since Y is of full rank (since each complex is unique, second
order and contains two different species), we have that

K̃eY
Tρ(x) = 0, and thus (10) is zero. This shows that

V̇ (x, x) = −
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩eqiω(qj − qi) =: −W (x, x).

We know that kij ≥ 0, e⟨yi,ρ(x)⟩ > 0 and eqi > 0. Finally,
we can observe that ω(r) = er − r− 1 ≥ 0 and ω(r) = 0 if
and only if r = 0, and thus

V̇ (x, x) = −W (x, x) ≤ 0

and V̇ (x, x) = 0 if and only if x = x and the proof is
finished.

Remark 2. Note, that we did not use any structural prop-
erties of K or K̃, in particular, we did not rely on the
fact that the compartmental graph is strongly connected.
We would only need strong connectivity to ensure the
existence of a unique positive equilibrium point by the
virtue of Theorem 1. In fact, if for example the initial state
and the capacities guarantee that no compartment can
become empty, then our proof ensures Lyapunov stability,
see Example 5.2.

5. EXAMPLES

5.1 A strongly connected network

Consider a compartmental model with Q = {q1, q2, q3}
and A =

{
(q1, q2), (q2, q3), (q3, q1)

}
. The directed graph

D = (Q,A) is strongly connected, see Figure 1.

•
q1

•
q2

•
q3

Fig. 1. Compartmental graph of a strongly connected model

The corresponding chemical reaction network has species
Σ = {N1, N2, N3, S1, S2, S3} and consists of the following
reactions:

N1 + S2
K12−−→ N2 + S1

N2 + S3
K23−−→ N3 + S2

N3 + S1
K31−−→ N1 + S3

Indeed, the reaction graph is not strongly connected and
not weakly reversible. According to (3), the dynamics of
the system in the reduced state space can be given as
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saturation; that is, we have that γi(r) → 1 as r → ∞. In
this case, too, the integral can be calculated analytically
and we can rewrite the Lyapunov function candidate as

V (x, x) =

2m∑
i=1

(
(k + xi) log

k + xi

k + xi
+ xi log

xi

xi

)
. (7)

Let ρ(x) =
[
log γ1(x1) log γ2(x2) · · · log γ2m(x2m)

]T
and

and qi = ⟨yi, ρ(x) − ρ(x)⟩. Note, that ∇V (x, x) = ρ(x) −
ρ(x). Using this, we obtain

V̇ (x, x) = ⟨∇V, ẋ⟩

=
M∑
i=1

M∑
j=1

kijγ
yi(x)⟨ρ(x)− ρ(x), yj − yi⟩

M∑
i=1

M∑
j=1

kijγ
yi(x)(qj − qi).

(8)

Notice, that

γyi(x) = e⟨yi,ρ(x)⟩ = e⟨yi,ρ(x)⟩eqi

thus (8) can be rewritten as

V̇ (x, x) =

M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩eqi(qj − qi). (9)

Using

eqi(qj − qi) = eqi(qj − qi)− eqi(eqj−qi − 1)

+ eqi(eqj−qi − 1)

= eqi
(
(qj − qi)− eqj−qi + 1

)
+ eqj − eqi

= −eqi
(
eqj−qi − (qj − qi)− 1

)
+ eqj − eqi

= −eqiω(qj − qi) + eqj − eqi

where ω(r) = er − r − 1, further rewrite (9) as

V̇ (x, x) = −
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩eqiω(qj − qi)

+
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩(eqj − eqi).

Focusing on the second term we have that
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩(eqj − eqi )

=

M∑
j=1

eqj

( M∑
i=1

kije
⟨yi,ρ(x)⟩

)
−

M∑
i=1

eqi

( M∑
j=1

kij

)
e⟨yi,ρ(x)⟩

Let Y = [y1 y2 · · · yM ] be the stoichiometric matrix and
K be the weighted adjacency matrix of the reaction graph
of the CRN. Finally, introduce Q =

[
eq1 eq2 · · · eqM

]
to

find that
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩(eqj − eqi)

= QKeY
Tρ(x) −Qdiag

(
1T2mK

)
eY

Tρ(x)

= Q
(
K − diag

(
1T2mK

))
eY

Tρ(x) = QK̃eY
Tρ(x)

(10)

where K̃ is the weighted negative Laplacian of the reaction
graph. Recall that (5) is equivalent to

ẋ = Y K̃eY
Tρ(x)

and that at equilibrium

Y K̃eY
Tρ(x) = 0.

Since Y is of full rank (since each complex is unique, second
order and contains two different species), we have that

K̃eY
Tρ(x) = 0, and thus (10) is zero. This shows that

V̇ (x, x) = −
M∑
i=1

M∑
j=1

kije
⟨yi,ρ(x)⟩eqiω(qj − qi) =: −W (x, x).

We know that kij ≥ 0, e⟨yi,ρ(x)⟩ > 0 and eqi > 0. Finally,
we can observe that ω(r) = er − r− 1 ≥ 0 and ω(r) = 0 if
and only if r = 0, and thus

V̇ (x, x) = −W (x, x) ≤ 0

and V̇ (x, x) = 0 if and only if x = x and the proof is
finished.

Remark 2. Note, that we did not use any structural prop-
erties of K or K̃, in particular, we did not rely on the
fact that the compartmental graph is strongly connected.
We would only need strong connectivity to ensure the
existence of a unique positive equilibrium point by the
virtue of Theorem 1. In fact, if for example the initial state
and the capacities guarantee that no compartment can
become empty, then our proof ensures Lyapunov stability,
see Example 5.2.

5. EXAMPLES

5.1 A strongly connected network

Consider a compartmental model with Q = {q1, q2, q3}
and A =

{
(q1, q2), (q2, q3), (q3, q1)

}
. The directed graph

D = (Q,A) is strongly connected, see Figure 1.

•
q1

•
q2

•
q3

Fig. 1. Compartmental graph of a strongly connected model

The corresponding chemical reaction network has species
Σ = {N1, N2, N3, S1, S2, S3} and consists of the following
reactions:

N1 + S2
K12−−→ N2 + S1

N2 + S3
K23−−→ N3 + S2

N3 + S1
K31−−→ N1 + S3

Indeed, the reaction graph is not strongly connected and
not weakly reversible. According to (3), the dynamics of
the system in the reduced state space can be given as
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ṅ1 = K31(n3, c1 − n1)−K12(n1, c2 − n2)

= k31θ3(n3)ν1(c1 − n1)− k12θ1(n1)ν2(c2 − n2)

ṅ2 = K12(n1, c2 − n2)−K23(n2, c3 − n3)

= k12θ1(n1)ν2(c2 − n2)− k23θ2(n2)ν3(c3 − n3)

ṅ3 = K23(n2, c3 − n3)−K31(n3, c1 − n1)

= k23θ2(n2)ν3(c3 − n3)− k31θ3(n3)ν1(c1 − n1).

For the following simulations we set the capacities as
c1 = c2 = c3 = 100 and the reaction rate coefficients
as k12 = 100, k23 = 60 and k31 = 20.

Mass action kinetics Let us assume that the rate func-
tions are of the mass action type; that is, each transforma-
tion has the form γi(r) = r, and thus each Kij(ni, sj) =
kijnisj . Figure 2 shows the level set of the first integral{
x ∈ C

∣∣H(x) = 150
}

and its unique equilibrium, along
with some orbits on the level set. The (n1, n2) plane
contains the (filled) level curves of the Lyapunov function
in (6), which, considering the conservation H(n) = 150,
can be viewed as a function of two variables.

Fig. 2. Phase portrait of a strongly connected compartmental model
with mass action kinetics

Figure 3 shows the level curves of the Lyapunov function
along with the vector field [ṅ1, ṅ2]

T and the unique
equilibrium of the level set.

Fig. 3. Level curves of the Lyapunov function (6) for a strongly
connected system with mass action kinetics

Rational kinetics In this example we assume that each
transformation has the rational form γi(r) = r

k+r with
k = 50. Figures 4 and 5 show the phase portrait and level
curves of the Lyapunov function in a similar manner as
before.

Fig. 4. Phase portrait of a strongly connected compartmental model
with rational kinetics

Fig. 5. Level curves of the Lyapunov function (7) for a strongly
connected system with rational kinetics

5.2 General network topology

In this example we consider a compartmental model with
Q = {q1, q2, q3} and A =

{
(q2, q3), (q3, q1), (q3, q2)

}
. The

directed graph D = (Q,A) in this case is not strongly
connected, see Figure 6.

•
q1

•
q2

•
q3

Fig. 6. Compartmental graph of a not strongly connected model

In this case, too, the reaction graph is not strongly
connected and not weakly reversible. According to (3), the

dynamics of the system in the reduced state space can be
given as

ṅ1 = k31θ3(n3)ν1(c1 − n1)

ṅ2 = k32θ3(n3)ν2(c2 − n2)− k23θ2(n2)ν3(c3 − n3)

ṅ3 = k23θ2(n2)ν3(c3 − n3)− k31θ3(n3)ν1(c1 − n1)

− k32θ3(n3)ν2(c2 − n2).

We consider rational kinetics with capacities and reaction
rate coefficients as before and k = 50. Notice, that ṅ1(t) =
0 for some t ≥ 0 implies n1(t) = c1 or n3(t) = 0, but
n3(t) = 0 cannot happen as long as n2(t) > 0. Thus, on
the level set corresponding to a total mass of 150, there
exists a unique equilibrium with n1 = c1 = 100, i.e. the
compartment q1 gets saturated. The remaining subsystem
(q2, q3) is strongly connected, and thus by Theorem 1 the
equilibrium is positive. Figures 7 and 8 show the phase
portrait of the system and the level curves of the Lyapunov
function.

Fig. 7. Phase portrait of a not strongly connected compartmental
model with rational kinetics

Fig. 8. Level curves of the Lyapunov function (7) for a not strongly
connected compartmental model with rational kinetics

6. CONCLUSIONS

In this paper we investigated a class of compartmental
models called generalized ribosome flows. Using the kinetic
representation we showed that the positive equilibria are
stable with a logarithmic Lyapunov function well-known
from the theory of reaction networks. The results are

applicable to a wide class of reaction rate functions in-
cluding mass action kinetics. The qualitative properties
of generalized ribosome flows were illustrated on small
examples. In particular, a model with not strongly con-
nected compartmental topology was investigated, where
the graph structure and the initial values ensured the exis-
tence of a positive equilibrium. Motivated by these results,
our further plans include the analysis of more general
compartmental graphs and the application of Lyapunov
stability in control problems.
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dynamics of the system in the reduced state space can be
given as

ṅ1 = k31θ3(n3)ν1(c1 − n1)

ṅ2 = k32θ3(n3)ν2(c2 − n2)− k23θ2(n2)ν3(c3 − n3)

ṅ3 = k23θ2(n2)ν3(c3 − n3)− k31θ3(n3)ν1(c1 − n1)

− k32θ3(n3)ν2(c2 − n2).

We consider rational kinetics with capacities and reaction
rate coefficients as before and k = 50. Notice, that ṅ1(t) =
0 for some t ≥ 0 implies n1(t) = c1 or n3(t) = 0, but
n3(t) = 0 cannot happen as long as n2(t) > 0. Thus, on
the level set corresponding to a total mass of 150, there
exists a unique equilibrium with n1 = c1 = 100, i.e. the
compartment q1 gets saturated. The remaining subsystem
(q2, q3) is strongly connected, and thus by Theorem 1 the
equilibrium is positive. Figures 7 and 8 show the phase
portrait of the system and the level curves of the Lyapunov
function.

Fig. 7. Phase portrait of a not strongly connected compartmental
model with rational kinetics

Fig. 8. Level curves of the Lyapunov function (7) for a not strongly
connected compartmental model with rational kinetics

6. CONCLUSIONS

In this paper we investigated a class of compartmental
models called generalized ribosome flows. Using the kinetic
representation we showed that the positive equilibria are
stable with a logarithmic Lyapunov function well-known
from the theory of reaction networks. The results are

applicable to a wide class of reaction rate functions in-
cluding mass action kinetics. The qualitative properties
of generalized ribosome flows were illustrated on small
examples. In particular, a model with not strongly con-
nected compartmental topology was investigated, where
the graph structure and the initial values ensured the exis-
tence of a positive equilibrium. Motivated by these results,
our further plans include the analysis of more general
compartmental graphs and the application of Lyapunov
stability in control problems.
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