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Abstract
The article presents a robust subsystem decoupling framework for uncertain
linear systems with linear fractional representation, where the uncertainties
are described by Integral Quadratic Constraints. The proposed method relies
on the synthesis of input- and output transformations, which maximize the
robust excitation of a selected subsystem, while minimize this effect on the other
parts of the dynamics. More precisely, the notion of minimum gain is defined
(and discussed) for uncertain systems, which is then maximized for the tar-
geted subsystem. In order to achieve decoupling, the maximum sensitivity of the
undesired dynamical part is minimized simultaneously. These criteria lead to
an optimization problem subject to linear matrix inequality constraints, hence
can be effectively solved. Numerical examples are used for demonstrating the
developed method and its possible applications.
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1 INTRODUCTION

The article discusses a decoupling method for linear uncertain systems, which allows to control subsystems without
interacting with other parts of the dynamics. The problem is best understood based on the general state space form of a
linear time invariant (LTI) system given as

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (1)

with the standard notations of x ∈ Rnx , u ∈ Rnu , and y ∈ R
ny being the state-, input-, and output- vectors, respectively. We

assume that the system is given (or transformed) in the following subsystem form*:

A =

[
Ac 0
0 Ad

]
, B =

[
Bc

Bd

]
,

C =
[

Cc Cd

]
, D =

[
D
]
. (2)

Here, subscripts are referring to the subsystems which are aimed to be controlled, or decoupled. An immediate observation
of the structure (2) is that the two subsystems are coupled through only their input–output channels. In order to isolate
the two subsystems from each other, it is natural to seek for input and output transformations which weakens or resolves
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BAÁR and LUSPAY 6087

this coupling. As it is shown in Section 2 this can be achieved by taking the linear combinations of the input and output
signals, respectively. The optimal combinations are termed as blend vectors, and they are calculated by an linear matrix
inequality (LMI) based optimization program. The results reported in the article are the extensions of the methodology
developed for nominal systems’ decoupling,1 and the two main contributions are:

1. Extending the notion of minimum sensitivity to uncertain linear systems. Relying on the work of Refer-
ences 2 and 3 an analysis condition with a corresponding LMI formulation (relying on Integral Quadratic Constraints
(IQCs)) is provided. By the aid of the Generalized Kalman-Yakubovich-Popov lemma, the finite frequency version of
the underlying analysis condition is also discussed.

2. Robust subsystem decoupling. By building on the LMI formulation of the robust minimum sensitivity and the well
known worst-case gain, an LMI based robust subsystem decoupling approach is presented. It is the robust extension of
the method presented in Reference 1, and it relies on the synthesis of input- and output transformation vectors which
guarantee robust decoupling of the subsystems. By building on the IQC framework, the proposed method is able to
handle various types of uncertainties.

The outlined idea of subsystem decoupling points towards the recent trends of structured controller design, where
each block of the controller may correspond to a specific subsystem. A conventional decoupling methodology in the
control system literature is the so called input–output decoupling, which is a frequently used approach to simplify
the control system design by enforcing a diagonal controller structure. This is a well established research field,4 and
most approaches trace back to the application of a suitable method which converts the system into a diagonally
dominant one (such as: decoupling by static and dynamic pre- and post-compensators,5,6 decoupling by state feed-
back,7 etc.). A common feature is that the outputs are defined to be the controlled variables. These methods limit
the interaction between certain loops, and consequently open up the possibility to design a feedback controller with
diagonal structure, where each diagonal block in the controller’s transfer function matrix is responsible for control-
ling one output. However, it has been noted7 that these methods are very sensitive to modeling errors and plant
uncertainties.

Accordingly, attempts for robust decoupling have also gained attention in the control community. Among the several
methods in the literature, we only highlight the one presented in chap. 8 of Reference 7, since it relies on similar math-
ematical tools as the approach presented in the article. Namely, a LMI based robust state feedback design approach for
uncertain systems is presented in Reference 7, which results in a diagonally dominant closed-loop plant. The method
relies on the LMI description of the minimum and maximum gains of a dynamical system; the designed state feedback
maximizes the transfer through the diagonal term of the closed loop transfer function matrix, and minimizes the maxi-
mum sensitivities over the off diagonal terms. Due to the presence of uncertainties exact decoupling is not possible, hence
Reference 7 labels this approach as near decoupling. The resulting transfer function matrix is diagonally dominant, with
transfer functions between each controlled variable and a corresponding set of control inputs on its diagonal. However
(2) reveals that due to their additive nature, various subsystems may contribute to a given system output. In contrast to
this approach, we aim to design transformations which turn the plant into diagonally dominant such that each diagonal
entry corresponds a certain dynamic subsystem.

Another main direction in decoupled control design is the approach of controlling selected subsystems by a specific
control law. Here, the frequency-wise separation of the different subsystems is one well-known tool. Traditionally notch-,
or roll-off filters are introduced to suppress certain frequency ranges, limiting the controller’s interaction with various
parts of the dynamics.8,9 In this framework, an ∞ closed-loop shaping approach has been presented in Reference 10,
involving band-stop weighting functions to achieve decoupled interaction between the plant and the controller. The con-
cept of dynamic filters often leads to satisfactory results, however the dimension of the controller is increased by each
applied weighting filter. In addition, the method was shown to provide satisfactory robustness properties against input
and output multiplicative uncertainties.

Our approach fits more closely into a recently developed trend in the decoupled control design; which is decoupling
by means of suitable input and output transformations. The advantage of these approaches is the unaltered dimension
of the underlying control problem: the static transformations convert the design to a SISO problem. The method of
“Modal Isolation and Damping for Adaptive Aeroelastic Suppression” (MIDAAS)11 is a constrained least-squares opti-
mization based algorithm, which designs controller for specifically damping the undesired dynamical components in the
system, without affecting the remaining dynamics. For this purposes a special combination of the available input- and
output signals are used. Its application to aerospace problem has been revealed by successful flutter suppression without
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6088 BAÁR and LUSPAY

interacting with the aircraft’s rigid body dynamics. Another static decoupling approach is presented in References 12 and
13 which relies on a joint2 norm based input- and output-blend calculation method to maximize the controllability and
observability of the selected modes and accordingly facilitates their decoupled control. The method has been successfully
applied in a gust load alleviation system on an experimental flexible wing,14 and in a structured controller design of a
flexible wing flutter demonstrator aircraft, suppressing unstable wing oscillations.15 Despite their successful applications,
these methods do not have robust extensions for uncertain systems.

The present paper addresses the problem of subsystem decoupling of uncertain dynamics by input- and output trans-
formations and organized as follows. The robust decoupling problem (RDP) is formalized in Section 2, followed by the
necessary mathematical backgrounds in Section 3. Section 4 extends the minimum sensitivity analysis to uncertain sys-
tems, relying on an IQC based description of the uncertainties. This section is the first novel contribution of the article.
The second new contribution is the design of the robust decoupling transformations, as discussed in Section 5, with the
numerical algorithms included in the Appendix. Numerical results are reported in Section 6, while concluding remarks
and open research questions are closing the article in Section 7.

2 THE ROBUST DECOUPLING PROBLEM

2.1 Notations

The mathematical notations of the article are fairly standard. R and C denote the set of real and complex numbers,
respectively. RL∞ is the set of rational transfer functions with real coefficients that are proper and have no poles on the
imaginary axis. RH∞ is the subset of functions in RL∞ that are analytic in the closed right half complex plane. Rm×n,
Cm×n, RL

m×n
∞ , RH

m×n
∞ denote the sets of m × n matrices that are in R, C, RL∞, and RH∞, respectively. The n dimensional

identity matrix is denoted by In.
Furthermore y ∈ 2 if ||y||22 = ∫ ∞0 |y(t)|2dt < ∞, and y ∈ 2e if ||y||22 = ∫ ∞0 |yT(t)|2dt < ∞, T ∈ R+, with yT(t) = y(t) for

0 ≤ t ≤ T and yT(t) = 0 for t ≥ T.
Systems will be denoted by capital caligraphic letters () or the two Greek letters Π, Ψ (in order to follow the con-

ventions of the literature), matrices are written by math variables (M). Furthermore, M ≺ 0 (≼) and M ≻ 0 (≽) denote
the negative- and positive (semi)definiteness of matrix M, respectively. For M ∈ Cm×n, MT denotes the transpose, and
M∗ denotes the complex conjugate transpose. Sm denotes the set of a symmetric m ×m matrices. The symmetric terms
in quadratic matrix products are replaced by

[
⋆

]
. The imaginary unit is denoted by j. The para-Hermitian conjugate of

 ∈ RL
m×n
∞ is denoted as∼ and defined by∼(s) ∶=(−s)T , with s being the Laplace variable. Lastly, the dual of

an(A,B,C,D) state space system is defined byT(AT
,CT

,BT
,DT).

2.2 The robust decoupling problem

Before going into the details in the forthcoming sections, first an overview of the RDP is given.
Throughout the article the uncertain system is assumed to be given as the linear fractional (LFT) interconnection of

a known certain part and an unknown, but norm bounded, structured uncertainty setΔ ∈ 𝚫. This standard represen-
tation is denoted by u(,Δ) and shown in Figure 2. Similarly for the nominal case presented in (2), we suppose that
system is brought to a subsystem form with =c +d. The indices are denoting that the subsystems should be
controlled, or decoupled, respectively.

In the article, the decoupling of these two subsystems is characterized by the minimum and maximum sensitivities,
defined as

||C||Δ− = inf
Δ∈𝚫

||u(C,Δ)||, (3)

||D||Δ∞ = sup
Δ∈𝚫

||u(D,Δ)||. (4)

The ||||Δ∞ term is usually labeled in the literature as the worst-case gain of theu(,Δ) interconnection.5 As it can be
depicted from its definition, we are using this metric for the subsystem which has to be decoupled, while the minimum
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BAÁR and LUSPAY 6089

F I G U R E 1 Closed loop control scheme with input and output blending

gain is used for the targeted subsystem (see Equation 3) and discussed in Section 4. Accordingly, we will often refer to||||Δ∞ as the robust maximum gain. Note also the subscript Δ in the above definitions, explicitly indicating that these
metrics are computed over the uncertainty set.

It is well known from the analysis of uncertain systems that the available knowledge regarding the perturbation
block Δ has a great importance. Generally, the exact description of Δ is unknown, nevertheless, some assumptions
can be given. Then (3) and (4) have to be evaluated over all the possible uncertainties satisfying the assumptions.
Among the different uncertainty modeling formalism, the IQC based framework has proved to cover a large class
of uncertainties and therefore used in the article. Appendix A discusses the IQC-based robust maximum gain cal-
culation using an LMI-based optimization. At the same time, the computation of the robust minimum gain (3)
is not yet discussed in the literature, (except Reference 16) and covered in Section 4, as a contribution of the
article.

Now, based on Figure 1, the decoupling problem can be stated as follows. Design an environment (denoted by
the dashed frame) which allows the control of the subsystem c(s) by a corresponding controller c(s) and mini-
mizes the interaction with d(s)†. This is achieved by finding linear combinations of the input- and output-signals
of the system, respectively. For this purpose ku ∈ Rnu×1 and ky ∈ R

ny×1 are introduced: the normalized (i.e., ‖ku‖ =‖‖ky‖‖ = 1) input- and output-blending vectors. They transform the signal vectors u and y onto a single dimension,
reducing the analysis and synthesis problems into a SISO one from u to y. In Figure 1 the control input u ∈ R is
distributed between the plant’s inputs (u = kuu) in a way that they excite the subsystem which one wishes to con-
trol as much as possible, without exciting the remaining dynamics (to be decoupled). Similarly the controller’s input
y = kT

y y ∈ R is calculated such that the information content from the targeted subsystem is maximized, while from
the other subsystems is minimized. The problem involving subsystem sensitivity measures is then formalized as
follows.

Problem 1. The robust decoupling problem (RDP). Find normalized vectors ku and ky such that they maximize the
transfer through the controlled subsystem

max:
ku,ky

𝛽

s.t.: ||kT
ycku||[𝜔,𝜔]Δ− > 𝛽, 𝛽 ≥ 0, (5)

and simultaneously minimize the amplification of the remaining subsystem, so

min:
ku,ky

𝛾

s.t.: ||kT
ydku||Δ∞ < 𝛾, 𝛾 ≥ 0, (6)

for allΔ ∈ 𝚫. Here 𝛽 and 𝛾 are two non-negative scalars denoting the robust minimum and maximum sensitivities of the
subsystems‡.
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6090 BAÁR and LUSPAY

3 MATHEMATICAL BACKGROUND

3.1 Integral Quadratic Constraints

Among the different uncertainty handling methodologies, the IQC based framework received the most attention, due to
the fact that numerous dynamical components (e.g., norm-bounded or polytopic uncertainties, time delays, saturation,
various types of non-linearities, etc.) can be covered by this formalism. The standard interconnection of a nominal, known
dynamics and an uncertain block is given in Figure 2, known as the linear fractional representation. Throughout the

article we are only interested in well-posed LFT formulations for =
[
11 12
21 22

]
, where (I −11Δ)−1 is nonsingular

and so the transfer from the input to the output is uniquely defined as

y =
(
21Δ(I −11Δ)−1

12 +22
)

u. (7)

The IQC framework assumes that the input and output signals of the uncertainty block satisfy an integral formula.
We follow the terminology of Reference 2, but the interested reader is referred to References 17,18 for a more detailed
presentation and discussion about the theory of IQCs.

We say that the signals v ∈ nv
2 , w ∈ nw

2 in the interconnection depicted in Figure 3 are satisfying the IQC defined by
Π in the frequency domain, if

∫

∞

−∞

[
v̂(j𝜔)
ŵ(j𝜔)

]∗
Π(j𝜔)

[
v̂(j𝜔)
ŵ(j𝜔)

]
d𝜔 ≤ 0, (8)

where v̂ and ŵ are the Fourier transforms of v, and w respectively. A time-domain alternative is constructed by calculating
a (Ψ, M) factorization of Π (with Π = Ψ∼MΨ), where M ∈ Snz and Ψ ∈ RH

nz×(nv+nw)
∞ is a stable, invertible, linear system

with the following frequency domain realization:

Ψ(j𝜔) ∶= CΨ(j𝜔I − AΨ)−1
[

BΨv BΨw

]
+
[

DΨv DΨw

]
, (9)

and state-space representation:

ẋΨ = AΨxΨ(t) + BΨvv(t) + BΨww(t),
z(t) = CΨxΨ(t) + DΨvv(t) + DΨww(t). (10)

This (Ψ, M) factorization allows the frequency domain IQC condition (8) to be expressed in the time domain as

∫

T

0
z(t)TMz(t)dt ≥ 0. (11)

If T = ∞ then (Ψ, M) is called a soft factorization. As Reference 2 discusses the formulation of an IQC as a time-domain
inequality (Equation 11) is only valid for frequency domain IQCs that admit a hard factorization (Ψ, M), where (11) holds
for all T ≥ 0.

F I G U R E 2 LFT description of an uncertain system

Δ

Ψ

F I G U R E 3 Graphical interpretation of an IQC
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BAÁR and LUSPAY 6091

The remainder of the article will simply treat (Ψ, M) as a hard factorization, and when Δ satisfies an IQC constraint
given by (Ψ, M), then it will be denoted by Δ ∈ IQC (Ψ, M). Note that there are infinitely many hard factorizations
for Π, among them a special class is called the J-spectral factorization.19 This is a straightforward way for finding hard
factorizations for dynamic IQC filters.

Definition 1. The J-spectral factorization.19 ( ̂Ψ, Jnv,nw) is called a Jnv,nw spectral factor of Π = Π∼ ∈ RL
(nv+nw)×(nv+nw)
∞ if

Π = ̂Ψ
∼

Jnv,nw
̂Ψ, Jnv,nw =

[
Inv 0
0 −Inw

]
, and ̂Ψ, ̂Ψ

−1
∈ RH

(nv+nw)×(nv++nw)
∞ .

This J-spectral factorization always exists, if Π satisfies the positive-negative multiplier property.

Definition 2. Positive-negative (PN) multiplier.19 Let Π = Π∼ ∈ RL
(nv+nw)×(nv+nw)
∞ be partitioned as

[
Π11 Π12
Π∼12 Π22

]
, where

Π11 ∈ RL
nv×nv
∞ and Π22 ∈ RL

nw×nw
∞ . Π is said to be a strict positive-negative (PN) multiplier if Π11 > 0 and Π22 < 0 ∀𝜔 ∈

R ∪ {∞}.

At J-spectral factorizations the matrix J is diagonal and ̂Ψ is square, stable and stably invertible. Furthermore J-spectral
factorizations exist for all strict PN multipliers.18 The Π = ̂Ψ

∼
Jnv,nw

̂Ψ J-spectral factorizations satisfy the

∫

T

0
z(t)TJnv,nw z(t)dt ≥ 0, (12)

integral relationship, that is, it is a hard factorization. In addition, if Δ satisfies an IQC constraint given by its J-spectral
factorization

(
̂Ψ, J

)
, then it will be denoted byΔ ∈ IQC

(
̂Ψ, J

)
. Hard and soft IQC factorizations are discussed in depth

in References 17 and 18.

3.2 Dual Integral Quadratic Constraints

System duality plays a key role in the proposed decoupling algorithm, therefore the dual IQCs are introduced briefly,
based on the discussion in Reference 19.

Definition 3. The dual IQC multiplier.19 Given the strict PN primal IQC multiplierΠ = Π∼ ∈ RL
(nv+nw)×(nv+nw)
∞ , the dual

IQC multiplier is denoted by D(Π) ∈ RL
(nw+nv)×(nw+nv)
∞ and is defined as

D(Π) ∶=

[
0 −Inw

Inv 0

]
Π−T

[
0 −Inv

Inw 0

]
. (13)

Here, Π−T is the transpose of the inverse of Π. The definition assumes Π to be a strict PN multiplier with Π11 ≻ 0 and
Π22 ≺ 0 ∀𝜔 ∈ R ∪ {∞}, therefore Π−1 and D(Π) exist. Definition 3 can also be extended for the case when Π is given by
its stable (Ψ,M) factorization. Then by Definition 3, the dual IQC multiplier can be expressed as

D(Π) =

[
0 −Inw

Inv 0

]
Ψ−T∼M−1Ψ−T

[
0 −Inv

Inw 0

]
, (14)

from which it follows that

D(Π) = D(Ψ)∼MD(Ψ), where D(Ψ) =

[
0 −Inw

Inv 0

]
Ψ−T

[
0 −Inv

Inw 0

]
. (15)

Finally, the connections between the primal and the dual representations are discussed in Lemma 1,19 and are
illustrated in Figure 4.

Lemma 1. The dual uncertain system.19 Given and Π, the following statements hold.

1.  is quadratically stable if and only if its dualT is quadratically stable.
2. Π is a strict PN multiplier if and only if D(Π) is a strict PN multiplier.
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6092 BAÁR and LUSPAY

F I G U R E 4 Relationship between the nominal and dual IQC representations

3. The u(,Δ) and u(T
,ΔD) representations of the uncertain system (shown in Figure 4) have the same

maximum sensitivity.
4. Let (Ψ,M) be any stable factorization of Π and (ΨD,MD) be any stable factorization of D(Π). Denote the max-

imum sensitivity analysis condition in (A1) by LMIΔ∞. Then, ∃P ∈ Snx satisfying LMIΔ∞(,P, 𝛾,Ψ,M) ≺ 0 if
and only if ∃PD ∈ Snx satisfying LMIΔ∞(T

,PD, 𝛾,ΨD,MD) ≺ 0.

Proof. The proof can be found in Reference 19. ▪

4 ROBUST MINIMUM SENSITIVITY

Having discussed the necessary mathematical tools, now we turn our focus on the computation of the robust mini-
mum gain. In the article we will adopt a notion from the fault detection filtering literature to characterize the minimum
sensitivity of a system (see e.g., References 20 and 21). More precisely we will use the so called− index, defined as

||(s)||[0,𝜔]− ∶= inf
𝜔∈[0,𝜔]

𝜎

[
(j𝜔)

]
, (16)

with 𝜎 denoting the minimum singular value and 𝜔 being the maximal frequency value of the frequency band [0, 𝜔]. The
computation of the − index over an infinite frequency range can be written as a semi-definite optimization problem.
Alternatively, the authors in Reference 3 proposed the following definition for the minimum gain:
Definition 4. Minimum gain of a system. A causal system  ∶ 2e → 2e, has minimum gain 0 ≤ 𝛽 ≤ ∞ if there exists
𝜈, depending only on the initial conditions, such that

||u||2T − 𝛽||u||2T ≥ 𝜈, ∀u ∈ 2e, ∀T ∈ R
+
. (17)

For LTI systems, an LMI-based computation has also been derived in Reference 3, which is referred as the “minimum
gain lemma”:

Lemma 2. The calculation of the minimum gain.3 A nominal LTI system given with state space matrices A, B, C, D has
minimum gain 0 ≤ 𝛽 ≤ ∞ if there exists P ∈ Snx

≽ 0 such that

[
PA + ATP − CTC PB − CTD
(PB − CTD)T 𝛽

2I − DTD

]
≼ 0. (18)

Proof. The detailed proof can be found in Reference 3 and hence is omitted here. ▪

This section discusses the IQC based robust minimum sensitivity calculation for uncertain LTI systems. The results
can be interpreted as the robust extension of the minimum gain lemma presented in Reference 3 for LTI systems. Further-
more note that the discussion follows the results presented in Reference 2 corresponding to the robust maximum gain
calculation.

4.1 Robust minimum sensitivity over infinite frequency range

The system interconnection used for the analysis is shown in Figure 5, where the dashed frame denotes thatΔ is removed
from the interconnection and theΨ filter is used to describe its effect. The state-space form corresponding to the extended
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BAÁR and LUSPAY 6093

F I G U R E 5 Analysis interconnection structure

dynamics is given by

̇x̃ = Ãx̃ + ̃Bww + ̃Buu,
z̃ = ̃Czx̃ + ̃Dzww + ̃Dzuu,
y = ̃Cyx̃ + ̃Dyww + ̃Dyuu, (19)

where the x̃ =
[
xT


xT
Ψ
]T state vector is composed of the states of the system and the filter Ψ. The signal w is treated

as an external signal and (11) is used for describing the w = Δ(v) relationship. Then, the following theorem provides the
computation of the robust minimum gain over the entire frequency domain.

Theorem 1. The robust minimum gain over the entire frequency domain. Assume that u(,Δ) is well posed for all Δ ∈
IQC(Ψ,M). Then the minimum gain is finite and larger than 𝛽, if there exists a P ∈ Snx and 𝜆 > 0 such that

⎡⎢⎢⎢⎣
PÃ + ÃTP P ̃Bw P ̃Bu

̃BT
wP 0 0
̃BT

u P 0 𝛽

2I

⎤⎥⎥⎥⎦
+ 𝜆

⎡⎢⎢⎢⎣
̃CT

z

̃DT
zw

̃DT
zu

⎤⎥⎥⎥⎦
M

[
⋆

]
−
⎡⎢⎢⎢⎣
̃CT

y

̃DT
yw

̃DT
yu

⎤⎥⎥⎥⎦
[
⋆

]
≺ 0. (20)

is satisfied.

Proof. We start with the definition of the minimum gain (see Definition 4):

||u||2T − 𝛽||u||2T ≥ 𝜈, ∀u ∈ 2e, ∀T ∈ R
+
, (21)

where the left-hand side can be rewritten as

||y||22T − 𝛽
2||u||22T = ∫

T

0

(|y|2 − 𝛽2|u|2) dt. (22)

The integral term in (22) can be trivially extended with a quadratic storage function and IQC term as:

∫

T

0

(|y|2 − 𝛽2|u|2 + d
dt
(xTPx) − d

dt
(xTPx) + 𝜆zTMz − 𝜆zTMz

)
dt. (23)

Using the state-space representation in (19), the following form can be derived after some algebraic manipulations:

∫

T

0

⎡⎢⎢⎢⎣
x
w
u

⎤⎥⎥⎥⎦

T

(−Γ1 − 𝜆Γ2 + Γ3 − Γ4)
⎡⎢⎢⎢⎣

x
w
u

⎤⎥⎥⎥⎦
dt +

∫

T

0

⎡⎢⎢⎢⎣
x
w
u

⎤⎥⎥⎥⎦

T

(Γ1 + 𝜆Γ2)
⎡⎢⎢⎢⎣

x
w
u

⎤⎥⎥⎥⎦
dt, (24)

where we have introduced the following notations:

Γ1 =
⎡⎢⎢⎢⎣
PÃ + ÃTP P ̃Bw P ̃Bu

̃BT
wP 0 0
̃BT

u P 0 0

⎤⎥⎥⎥⎦
, Γ2 =

⎡⎢⎢⎢⎣
̃CT

z

̃DT
zw

̃DT
zu

⎤⎥⎥⎥⎦
M

[
̃Cz ̃Dzw ̃Dzu

]
, Γ3 =

⎡⎢⎢⎢⎣
̃CT

y

̃DT
yw

̃DT
yu

⎤⎥⎥⎥⎦
[
̃Cy ̃Dyw ̃Dyu

]
, Γ4 =

⎡⎢⎢⎢⎣
0 0 0
0 0 0
0 0 𝛽

2I

⎤⎥⎥⎥⎦
.

(25)
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6094 BAÁR and LUSPAY

Now, if one restricts the first term in (24) to be positive (i.e., [−Γ1 − 𝜆Γ2 + Γ3 − Γ4] ≻ 0), then by neglecting the
corresponding integral term, the following lower approximation is obtained:

||u||22T − 𝛽
2||u||22T ≥ ∫

T

0

⎡⎢⎢⎢⎣
x
w
u

⎤⎥⎥⎥⎦

T

(Γ1 + 𝜆Γ2)
⎡⎢⎢⎢⎣

x
w
u

⎤⎥⎥⎥⎦
dt, (26)

where the integral’s value on the right-hand side is:

∫

T

0

⎡⎢⎢⎢⎣
x
w
u

⎤⎥⎥⎥⎦

T

(Γ1 + 𝜆Γ2)
⎡⎢⎢⎢⎣

x
w
u

⎤⎥⎥⎥⎦
dt = −xT(0)Px(0) − 𝜆zT(0)Mz(0). (27)

Note that the latter is finite, therefore the system possesses a finite minimum gain by definition. At the same time,
the technical condition on the positive definiteness of −Γ1 − 𝜆Γ2 + Γ3 − Γ4 can be easily verified as the LMI condition
of (20). ▪

Remark 1. The worst case induced 2 gain, ||||Δ∞ > 𝛾 can be calculated by replacing 𝛽2I by −𝛾2I, and changing the
sign of the last term (corresponding to yTy) to + in (20). For more details we refer to Reference 2. Note that Reference 22
showed that this LMI condition can be satisfied by an indefinite P ∈ Snx as well.

Remark 2. Various uncertainties may be present in the system, with Δ having a blockdiagonal structure Δ =
diag{Δ1, … ,ΔN}. Furthermore the (Ψ, M) IQC factorizations, serve as basis functions to describe each block in Δ. In a
general case a blockdiagonal element in Δ may be best described by a linear combination of these basis functions, that
is, the ΔN term is characterized by the

{
(ΨN1, MN1) , ... (ΨNR, MNR)

}
basis function set. As Reference 2 discusses, the

presented method allows the treatment of several uncertainties in the analysis problem by replacing the corresponding
term by

N∑
n=1

R∑
r=1
𝜆nr

⎡⎢⎢⎢⎣
̃CT

znr

̃DT
zwnr

̃DT
zunr

⎤⎥⎥⎥⎦
Mnr

[
⋆

]
, (28)

with 𝜆nr ≥ 0. The outer summation corresponds to the
[
Δ1, ..., ΔN

]
blocks in Δ, while the inner one belongs to the{

(ΨN1, MN1) , ... (ΨNR, MNR)
}

basis function set describing each uncertainty block. Note that R may be different for
each element in Δ.

4.2 Robust minimum gain over finite frequency range

So far we have been assuming that the interconnected system is bi-proper (possesses a direct feed-through term). However,
it is possible to calculate the minimum gain for systems where this condition is not fulfilled by the aid of the General-
ized Kalman-Yakubovich-Popov (GKYP) lemma.23,24 In this case the minimum sensitivity is computed over a selected
frequency range of interest. In Reference 25 it is shown that the sensitivity of a system can be investigated over a certain
frequency range if the system is controllable and its input is such that u ∈ 2 and the

∫

∞

0

(
−ẋẋT + i�̃�xẋT − i�̃�ẋxT − 𝜔𝜔xxT) dt ≥ 0, (29)

integral holds, with �̃� = 𝜔+𝜔
2

. The following theorem extends Theorem 1 for systems without direct feed-through:

Theorem 2. The robust minimum gain over a finite frequency domain. Assume that u(,Δ) is well posed for all Δ ∈
IQC(Ψ,M). Let 𝜔, 𝜔 denote the minimum and maximum frequencies respectively in the interested frequency range, with
�̃� = 𝜔+𝜔

2
. Then ||u(,Δ)||Δ− > 𝛽 if there exists a Hermitian P, Q and real 𝜆 > 0 such that Q ≻ 0 and
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BAÁR and LUSPAY 6095

⎡⎢⎢⎢⎣
Ã ̃Bw ̃Bu

0 0 0
I 0 0

⎤⎥⎥⎥⎦

T

Ξ
[
⋆

]
+
⎡⎢⎢⎢⎣
0 0 0
0 0 0
0 0 𝛽

2I

⎤⎥⎥⎥⎦
+ 𝜆

⎡⎢⎢⎢⎣
̃CT

z

̃DT
zw

̃DT
zu

⎤⎥⎥⎥⎦
M

[
⋆

]
−
⎡⎢⎢⎢⎣
̃CT

y

̃DT
yw

̃DT
yu

⎤⎥⎥⎥⎦
[
⋆

]
≺ 0, (30)

where Ξ =

[ Φ11Q 0 P + Φ12Q
0 0 0

P + Φ21Q 0 Φ22Q

]
, with Φ =

[
−1 j�̃�
−j�̃� −𝜔𝜔

]
.

Proof. Multiplying the inequality in (30) by
[
xT wT uT] from the left and by

[
xT wT uT]T from the right and then

using the state space equations of (19), the following is derived:

d
dt
(xTPx) + 𝛽2uTu + 𝜆zTMz − yTy + Φ11ẋTQẋ + Φ12ẋTQx + Φ21xTQẋ + Φ22xTQx < 0. (31)

This can be integrated along the state trajectory from t = 0 to t = T to get:

− x(0)TPx(0) + 𝛽2
∫

T

0
u(t)Tu(t)dt + 𝜆

∫

T

0
z(t)TMz(t)dt −

∫

T

0
yT(t)y(t)dt

+
∫

T

0

(
Φ11ẋTQẋ + Φ12ẋTQx + Φ21xTQẋ + Φ22xTQx

)
dt < 0, (32)

where we have exploited the fact that x ∈ 2e. Then it follows from the IQC condition (11) that

− x(0)TPx(0) − 𝜆z(0)TMz(0) + 𝛽2
∫

T

0
u(t)Tu(t)dt −

∫

T

0
yT(t)y(t)dt

+ tr
[

Q∫ T
0
(
Φ11ẋT ẋ + Φ12ẋTx + Φ21xTẋ + Φ22xTx

)
dt
]
< 0. (33)

Since Q ≻ 0 and u satisfies condition (29) the tr[⋅] term is non-negative. Therefore we have

− x(0)TPx(0) − 𝜆zT(0)Mz(0) <
∫

T

0
yT(t)y(t)dt − 𝛽2

∫

T

0
u(t)Tu(t)dt, (34)

which completes the proof. ▪

5 THE PROPOSED DECOUPLING ALGORITHM

Based on the derived minimum sensitivity conditions, we are now discussing the solution to the proposed RDP in
Section 2. Our starting point is the u(,Δ) interconnection of the known dynamics and the uncertaintyΔ, as shown
in Figure 2.

Suppose that is brought to a subsystem form, with =c +d and state space matrices as:

A =

[
Ac 0
0 Ad

]
, B =

[
Bcw Bcu

Bdw Bdu

]
, C =

[
Ccv Cdv

Ccy Cdy

]
, D =

[
Dvw Dvu

Dyw Dyu

]
. (35)

As it has been emphasized in Section 2 our aim is to find ku and ky transformation vectors which are minimizing
the coupling, which appears only through the input- and output channels of the system. The remainder of the section is
devoted to the calculation of these transformation vectors. This can be achieved in two consecutive steps. First an optimal
input blend is found, and applied to the system, next a corresponding output blend is calculated.

Remark 3. Note thatmay contain the dynamics of the nominal subsystems, and the weighting filters which are used
to describe the frequency wise distribution of the uncertainties.
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6096 BAÁR and LUSPAY

Remark 4. In the remainder of the section we will use u(c,Δc) and u(d,Δd) to describe well-posed uncer-
tain subsystems. The subscripts at Δ are necessary in order to indicate different uncertainties in the various sub-
systems. As an example: an uncertain element in Ad will only affect d, and not appear in Δc. Shared uncer-
tainties (Δs) affecting both subsystems appear in Δc and Δd as well. However note that if there are uncertainties
affecting both subsystems, then u(,Δ) ≠ u(c,Δc) + u(d,Δd). In this case the decomposition may lead to
the removal of certain couplings between the subsystems through the shared elements in the Δ block. A possi-
ble (although conservative) remedy can be the selection of the (Ψi,Mi) IQC filters based on u(,Δ), describ-
ing the wi = Δivi relationship, and so constraining wi ∈i , vi ∈ i signals to belong the corresponding sets.
Then, during the decoupling design, the same filters are applied for each subsystems to characterize the exter-
nal signals. This approach restricts the signals corresponding to Δs to belong to the same set as in the u(,Δ)
case.

5.1 Input blend calculation

In this subsection the computation of the input blend vector ku is carried out, which maximizes the excitation of the
targeted subsystem, while minimizes the impact on the one(s) to be decoupled. In Reference 1 it was shown that the
LMI-based computation of the minimum sensitivity is only solvable for tall or square systems. This necessitates the appli-
cation of an initial output blend§ ky0 ∈ R

1×ny to the system, which will assure that the upcoming design LMIs are written
for tall systems.

The subsystems extended by the IQC filters are denoted by ̃c and ̃d respectively, with state space representations
(with i ∈ {c, d})

̇x̃{i} = Ã{i}x̃{i} + ̃Bw,{i}w + ̃Bu,{i}u,
z̃{i} = ̃Cz,{i}x̃{i} + ̃Dzww + ̃Dzuu,
y{i} = ̃Cy,{i}x̃{i} + ̃Dyww + ̃Dyuu. (36)

The extended states are given by x̃{i} =
[
xT

i xT
Ψ,{i}

]T , where xΨ,{i} denotes the states of the IQC basis functions.
The layout for the input blend calculation is given in Figure 6: the upper subfigure¶ shows the core of the con-

cept, while the lower one represents the structure that is applied for the computations (discussed later). According to
the problem formulation, the aim is to maximize the transfer from the single input signal u to the single output of the
controlled subsystem y

c
, while at the same time minimize this transfer to the single output of the decoupled subsystem

y
d
. In order to satisfy these goals, an nu dimensional input blend vector ku is introduced, which distributes the scalar

u input between the real physical inputs of the system. Using our terminology the decoupling is formulated as: the

F I G U R E 6 Problem layout for input blend calculation
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BAÁR and LUSPAY 6097

minimum sensitivity from u to the performance output y
c

is to be maximized, while the maximum sensitivity from u to
y

d
is minimized.
At this point it would be straightforward to put together all the building blocks by applying the systems’ description

(36) and the definition and computation of the minimum and maximum sensitivities (30), (A1) respectively. However,
this would lead to a bi-linear optimization problem as shown in Reference 1. Therefore, the dual representation is applied,
which preserves the input–output gain of a system, but facilitates linearity in the optimization variables. Accordingly,
the dual IQCs D( ̂Ψ) are used and the problem is reformulated as shown on the lower subfigure of Figure 6. By substi-
tuting u(̃T

c ,D( ̂Ψc)) into (30), and introducing the new variable Ku = kukT
u , the following form can be derived for the

computation of the controlled subsystem’s minimum gain:

⎡⎢⎢⎢⎣
ÃT

c ̃CT
z,c ̃CT

y,cky0

0 0 0
I 0 0

⎤⎥⎥⎥⎦

T

Ξ
[
⋆

]
+
⎡⎢⎢⎢⎣
0 0 0
0 0 0
0 0 𝛽

2I

⎤⎥⎥⎥⎦
+ 𝜆c

⎡⎢⎢⎢⎣
̃Bw,c

̃Dzw,c

kT
y0
̃Dyw,c

⎤⎥⎥⎥⎦
Mc

[
⋆

]
−
⎡⎢⎢⎢⎣

̃Bu,c

̃Dzu,c

kT
y0
̃Dyu,c

⎤⎥⎥⎥⎦
Ku

[
⋆

]
≺ 0, (37)

where Ξ is given in (30). Similarly, by substituting u(̃T
d ,D( ̂Ψd)) into (A1), the computation of the maximum gain of

the subsystem is written as:

⎡⎢⎢⎢⎣
ÃT

d Pd + PdÃd P ̃CT
z,d P ̃CT

y,dky0

⋆ 0 0
⋆ 0 −𝛾2I

⎤⎥⎥⎥⎦
+ 𝜆d

⎡⎢⎢⎢⎣
̃Bw,d

̃Dzw,d

kT
y0
̃Dyw,d

⎤⎥⎥⎥⎦
Md

[
⋆

]
+
⎡⎢⎢⎢⎣

̃Bu,d

̃Dzu,d

kT
y0
̃Dyu,d

⎤⎥⎥⎥⎦
Ku

[
⋆

]
≺ 0. (38)

These are the synthesis inequalities for finding the input blend vectors. Note that these inequalities are only linear because
of the dual representation and the introduction of the Ku = kukT

u blend matrix variable, which is a dyadic product of the
input blend vectors, that is, the newly introduced variable Ku is a rank 1 matrix, which has to be taken into consideration
in the solution. Furthermore, inequality (37) and (38), are coupled through the same Ku variable, otherwise independent.
The input blend calculation is summarized in Proposition 1.

Proposition 1. The input blend design. The optimal robust input blend ku for the system given in the form of u(,Δ) can
be calculated as the left singular vector corresponding to the largest singular value of the blend matrix Ku, where Ku satisfies
the following optimization problem

minimize
Pd, 𝜆d, Ku, Pc, 𝜆c, Qc, 𝛽

2
, 𝛾

2
− 𝛽2 + 𝛾2

subject to (37), (38),
Pd = PT

d , Pd ≽ 0,
Pc = PT

c , Qc = QT
c , Qc ≽ 0,

𝜆c > 0, 𝜆d > 0,
0 ≼ Ku ≼ I, and rank (Ku) = 1, (39)

with I being the identity matrix with appropriate dimensions.

Proposition 1 is a multi-objective optimization problem, which is frequent in mixed −∕∞ fault detection
observer design (see e.g., Reference 20). More precisely, the two competing objectives (i.e., maximization of 𝛽2 and
minimization of 𝛾2) are merged into a single value by using scalarization. The proposed objective function can
be considered as a special case of weighted scalarization, with weights equaling one. This expresses that no apri-
ori knowledge is available before the optimization, however it can be changed in a later stage of the decoupling
design. Furthermore, the proposed multi-objective optimization has a simple, but illustrative game-theoretic inter-
pretation, where the two players wishes to reach their individual goals of maximizing 𝛽 or minimizing 𝛾 together.27

Since the two optimizations are connected through the shared variable Ku, the game is cooperative. It is known
that the solution is then Pareto-optimal, that is, any decrease in one objective simultaneously increases the other
one. In order to investigate this trade-off more systematically, the 𝜖-constrained reformulation of (39) is invoked as
follows
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6098 BAÁR and LUSPAY

infeasible

feasible

Pareto front

− 2

2

⋆utopia point

F I G U R E 7 Pareto optimality

minimize
Pd, 𝜆d, Ku, Pc, 𝜆c, Qc, 𝛽

2
, 𝛾

2
− 𝛽2

subject to (37), (38),
𝛾

2
< 𝜖,

Pd = PT
d , Pd ≽ 0,

Pc = PT
c , Qc = QT

c , Qc ≽ 0,
𝜆c > 0, 𝜆d > 0,
0 ≼ Ku ≼ I, and rank (Ku) = 1. (40)

In (40) the objective function is selected as one of the competing goals#, while the other objective is constrained by a
suitable chosen constant 𝜖. By systematically varying 𝜖 the entire set of Pareto-optimal solutions can be generated.28 This
is illustrated in Figure 7, where the two objectives to be minimized are given in the x and y axis of the plot. The green star
denotes an utopia point, where both objectives are minimal, but cannot be reached due to the trade-off between these
goals. The Pareto-optimal solutions form the so-called Pareto-front, expressing that any decrease in one objective increases
the other one. These are also called as Pareto-efficient solutions, to distinguish from other feasible points, where both
objectives could be further decreased. The set of infeasible points cannot be reached due to the constraints. Finally we
mention that the 𝜖-constrained formulation of the decoupling can also be used for generating problem specific solutions
with prescribed level of suppression (or excitation) by setting the 𝜖 value accordingly. Such solutions can be also achieved
by changing the weights of the objectives in (39). However the user should keep in mind the trade-off, represented by the
Pareto-front: minimizing the maximum sensitivity of the subsystem to be decoupled will also decrease the sensitivity of
the targeted subsystem and vice versa.

As stated in (39), the optimization variable Ku has to be a rank-one solution, representing a non-convex constraint.
This issue is addressed by adopting an alternating projection scheme, similarly to the nominal decoupling reported in
Reference 1. Technical details are summarized in Appendix B, while for a more in-depth review please follow References
1 and 29.

Now we are in the position to present the solution to Proposition 1. Here-under we discuss its numerical steps, while
the complete algorithm is given in Appendix C,

1. The solution process starts with defining the subsystem one wishes to control and the subsystem one wishes to decou-
ple from it, that is, the system is transformed to the form given in the lower subfigure of Figure 6. This is the starting
point of Algorithm 1, in line Algorithm 1.

2. Next the optimization problem presented in Proposition 1 is solved, without the arising rank constraint on Ku; the
blend matrix is constrained to be symmetric and 0≼ Ku ≼ I. This provides Ku0 which is then treated as the initial value
in the following alternating projection sequence. The corresponding step is given in line 2 of Algorithm 1 and provides
the achievable values for 𝛽 and 𝛾 .

3. In the step of alternating projections (line 3) the computed 𝛽 and 𝛾 are kept constant. Here, the inner loop iterations
contain a series of alternating projections in order to obtain the corresponding reduced rank solution. Upon conver-
gence, measured by a suitable metric, the outer loop reduces the rank further, until 1 is achieved. This optimal 1-rank
solution is denoted by K⋆

u .
4. The blend vector ku can be found from the singular value decomposition of the blend matrix K⋆

u : it is the left singular
vector corresponding to the largest singular value of K⋆

u . Once ku is computed, it is then applied to the input of the
subsystems in (36) to obtain a single blended input description, forming the basis of the output blend calculation.
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BAÁR and LUSPAY 6099

5.2 Output blend calculation

After the optimal input blend is computed, a similar procedure can be carried out for determining a linear combina-
tion of the available outputs, such that the state information regarding the targeted subsystem is maximized, while it is
minimized for the other subsystem. This is discussed briefly in this section. Using our notations kT

y should create a sin-
gle blended output, with having maximal sensitivity on the performance output of the subsystem to be controlled, and
minimal transfer on the one to be decoupled. The approach is outlined in Figure 8.

The computation is essentially the same as for the input blend part, with the following modified LMI constraints:

⎡⎢⎢⎢⎣
Ãc ̃Bw,c ̃Bu,cku

0 0 0
I 0 0

⎤⎥⎥⎥⎦

T

Ξ
[
⋆

]
+
⎡⎢⎢⎢⎣
0 0 0
0 0 0
0 0 𝛽

2I

⎤⎥⎥⎥⎦
+ 𝜆c

⎡⎢⎢⎢⎣
̃CT

z,c

̃DT
zw,c

kT
u ̃D

T
zu,c

⎤⎥⎥⎥⎦
Mc

[
⋆

]
−
⎡⎢⎢⎢⎣

̃CT
y,c

̃DT
yw,c

kT
u ̃D

T
yu,c

⎤⎥⎥⎥⎦
Ky

[
⋆

]
≺ 0, (41)

⎡⎢⎢⎢⎣
PdÃd + ÃT

d Pd Pd ̃Bw,d Pd ̃Bu,dku

̃BT
w,dPd 0 0

kT
u ̃B

T
u,dPd 0 −𝛾2I

⎤⎥⎥⎥⎦
+ 𝜆d

⎡⎢⎢⎢⎣
̃CT

z,d

̃DT
zw,d

kT
u ̃D

T
zu,d

⎤⎥⎥⎥⎦
Md

[
⋆

]
+
⎡⎢⎢⎢⎣

̃CT
y,d

̃DT
yw,d

kT
u ̃D

T
yu,d

⎤⎥⎥⎥⎦
Ky

[
⋆

]
≺ 0. (42)

The LMI condition (41) assures that the transfer through the controlled subsystem is maximized (with Ξ is given in
(30)), and the satisfaction of (42) guarantees that the maximum sensitivity of the undesired dynamics is minimized. Note
that, we have again introduced the new matrix variable Ky = kykT

y . The optimization problem to be solved is given in
Proposition 2 with variables Pc, Qc, Pd, Ky, 𝛽2, 𝛾2, 𝜆c, 𝜆d.

Proposition 2. The output blend design. The optimal output blend vector ky for the system with ku input blend can be
calculated as the left singular vector corresponding to the largest singular value of the blend matrix Ky, where Ky satisfies the
following optimization problem

minimize
Pd, 𝜆d, Ky, Pc, 𝜆c, Qc, 𝛽

2
, 𝛾

2
− 𝛽2 + 𝛾2

subject to (37), (38),
Pd = PT

d , Pd ≽ 0,
Pc = PT

c , Qc = QT
c , Qc ≽ 0,

𝜆d > 0, 𝜆c > 0,
Ky = KT

y , 0 ≼ Ky ≼ I, and rank
(

Ky
)
= 1. (43)

The rank one solution for the blend matrix Ky is achieved again by applying the alternating projection scheme as for
the input blend. The solution of Proposition 2 for the output blend vector ky is a straightforward modification of the input
blend calculation algorithm, by applying ku as initial blend vector, and replacing (37), (38) by (41), (42).

Remark 5. In order to simplify the notations in (37), (38) and (41), (42), inequalities are given for a single block in
Δ, described by a single (Ψ, M) IQC. If multiple uncertainties are present, then we refer to Remark 2 to replace the
corresponding terms in the inequalities.

F I G U R E 8 Problem layout for output blend calculation
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6100 BAÁR and LUSPAY

Until this point we have considered the ku and ky input and output transformations as vectors. This is desirable because
it significantly simplifies the control problem, by turning the plant into a SISO one. However these transformations may
also be matrices, and sometimes this is necessary to achieve proper decoupling. In these cases there are 1 or more (n)
singular values of Ku0 which have comparable magnitude to the largest one. This means that there are n possible input
directions which yield acceptable decoupling. On the contrary, the singular vectors corresponding to the smallest singular
values of Ku0 are denoting input directions which excite the decoupled dynamics. For keeping n input directions, one
needs to run the alternating projection sequences nu − n times, where at the beginning of each sequences the smallest
nonzero singular value of Ku is zeroed out (removing directions from Ku corresponding to the decoupled subsystem).
For details see the alternating projection algorithm in Appendix B. Note that finding the desired value of n is problem
dependent and may involve certain engineering judgment.

Note that the only assumptions we made so far are that the A matrix ofmust have a blockdiagonal structure, or it has
to be block-diagonalizable, and u(,Δ) needs to be well posed. However some notes need to be taken about the case of
unstable subsystems. The definition and analysis conditions provided in Section 4 for the robust minimum sensitivity also
apply for unstable subsystems. The robust maximum sensitivity by definition applies for stable systems. In Reference 1
a workaround has been discussed by mirroring the unstable poles over the imaginary axis.

The application of input and output blends may introduce unstable zeros to the open loop SISO plant. Some of them are
directly connected to the suppression of the undesired dynamics, and in the transfer function form may lead to pole-zero
cancellations. On the other hand the appearance of additional zeros can be avoided when necessary by the fact that
non-square systems rarely have transmission zeros.5,30 This means that the open loop system might be converted to a
non-square system by suitable input and (or) output transformation matrices.

Remark 6. The computation of the input and output blend vectors require an initial output and input blend vector,
respectively. At the same time, the joint computation of the input and output blend calculations would lead to a bilinear
optimization problem, whose solution is often obtained in an iterative manner with one variable fixed in each step. We
suggest a similar computation for the ku and ky blend vectors. Starting from an initial ky0 an optimal solution for ku is
calculated based on Section 5.1 with a corresponding ky relying on Section 5.2. Then by selecting ky0 = ky this iteration
continues until convergence, defined by pre-set thresholds and the final values are then considered as optimal values.
According to our numerical studies, better decoupling can be achieved through the iterative process than by separate
design of the blend vectors. However in most cases the improvement provided by this iteration is marginal compared to
the increased computational time, and so upon satisfactory results after the first step further iterations could be neglected.

6 NUMERICAL EXAMPLES

This section provides numerical examples for evaluating the decoupling algorithm and for showing its effectiveness. First
a simple academic example is given, which can be used for reproducing the results. Second, a more complex, real-world
example is presented, where the flexible modes of an airplane are controlled, without interacting with the rigid body
dynamics||.

6.1 Academic example

In order to give an easily reproducible example, the following systems are considered.

c =

[
Ac Bc

Cc D

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.51 −9.52 0 0.39 0.6 0.96
9.52 −1.51 0 0.78 0.14 0

0 0 pc 0 −0.54 −1.27

1.6 −0.39 −1.56 0.61 1.51 1.27
−1.04 0.66 0 0.91 1.29 0.21
0.39 −0.36 0.81 1.61 1.38 1.66
2.12 −0.26 −0.55 1.02 1.17 0.82

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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BAÁR and LUSPAY 6101

d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.76 0 0 −1.8 −0.11 −0.53
0 −7.24 0 −0.39 −0.02 0
0 0 pd 0.42 −0.48 0.82

−0.56 0 −0.76 0.61 1.51 1.27
0.94 0.19 −0.58 0.91 1.29 0.21
−1.79 −0.68 0.61 1.61 1.38 1.66
−0.51 0.37 −0.32 1.02 1.17 0.82

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

According to our terminology, c will play the role of the targeted subsystem, while d is the subsystem we wish to
decouple. Both subsystems have 3 states, 3 inputs, and 4 outputs, and they are given in modal form with one uncertain
parameter pc and pd respectively. These are treated as parametric uncertainties for characterizing uncertain pole locations.
These parameters are assumed to be bounded as pc ∈

[
−2.55, −6.375

]
and pd ∈

[
−1.272, −4.2824

]
. Thesystem is built

up by these two subsystems as: p = c + d.
One common source of uncertainties is unmodeled dynamics at higher frequencies, which is introduced in the

example as a dynamic input multiplicative uncertainty. Accordingly, these blocks are appended to the system as u(s) =
p

(
I +Wm(s)diag (Δ1,Δ2,Δ2)

)
, with SISO ||Δ1,2(s)|| ≤ 1 and

Wm(s) =
s + 30.36

1.25s + 101.2
. (44)

This uncertainty description is common to cover neglected dynamics; where the specific form of Wm represents 30%
uncertainty at low, and 80% uncertainty at high frequency ranges.5

Once the uncertainty channels are set up, the upper LFT representation of the uncertain system can be constructed as
u(,Δ), where Δ = diag(Δ1,Δ2,Δ2, 𝛿c, 𝛿d) with ||Δ1,2(s)|| ≤ 1, and |𝛿c,d| ≤ 1. The latter being the reparametrized and
normalized representations of the parameter uncertainties pc and pd. Note also that u(,Δ) can be represented as the
interconnection of two subsystems u(c,Δc) and u(d,Δd) respectively, with Δc,d = diag(Δ1,Δ2,Δ2, 𝛿c,d).

As discussed, in the IQC framework specific multipliers describe the behavior of each uncertainty block, so, the next
question is the appropriate filter selection. Δ1,2 are dynamic SISO LTI uncertainties, with ||Δ1,2(s)|| < 1, and for this case
Reference 17 proposes an IQC multiplier in the form of

ΠΔ(j𝜔) =

[
x(j𝜔)I 0

0 −x(j𝜔)I)

]
, (45)

where x(j𝜔) > 0 is a stable, measurable function. Due to the special and simple form of (45) the (Ψ, M) pair can be directly
selected by picking

MΔ =

[
1 0
0 −1

]
, ΨΔ(s) =

[
s+106

s+9.639
0

0 s+106
s+9.639

]
. (46)

The numerical values of ΨΔ(s)were selected such that it gives an upper bound on the maximum singular value curves of
the sampled uncertain subsystems, and has a slightly higher natural frequency than those. According to the uncertainty
modeling formalism, three separateΨΔ(s) filters are connected to the input–output channels of theΔ block corresponding
to each Δ1,2 block respectively.

The uncertain pole locations are described by the |𝛿i| ≤ 1 parametric uncertainties. The corresponding dynamic
multiplier suggested by Megretski and Rantzer17 has the form of

Π
𝛿

(j𝜔) =

[
X(j𝜔) Y (j𝜔)
Y (j𝜔)∗ −X(j𝜔)

]
, (47)

where X(j𝜔) = X(j𝜔)∗ ≥ 0 and Y (j𝜔) = −Y (j𝜔)∗ are bounded and measurable matrix functions. The SISO X(j𝜔) and Y (j𝜔)
transfer functions were initially selected to over-bound the maximum singular value curves of the sampled uncertain
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6102 BAÁR and LUSPAY

F I G U R E 9 Academic example, subsystem decoupling results

subsystems, and then adjusted for better decoupling. A hard factorization ofΠ
𝛿

is provided by its J-spectral factorization,
as described in the appendix B of Reference 2. By selecting Π

𝛿

(j𝜔) as

Π
𝛿

(s) =

[
96.39

s+96.39
s

s+0.255
s

s−0.255
−96.39
s+96.39

]
, (48)

it’s J-spectral factorization is:

J
𝛿

=

[
1 0
0 −1

]
,

̂Ψ
𝛿

(s) =
⎡⎢⎢⎣

0.70711(s+198.4)
s+96.39

0.70711(s+47.02)
(s+96.39)

−70711(s+47.02)
(s+96.39)

0.70711(s+198.4)
(s+96.39)

⎤⎥⎥⎦ . (49)

In the example we want to achieve decoupling over the
[
0, 𝜔

]
frequency range, where 𝜔 was selected as the 10 times

of the maximum natural frequency (96.4 rad/s) of the targeted subsystem c. The dynamical models have been extended
with the IQC descriptions and the corresponding algorithms were performed in order to calculate the input and output
blend vectors.

Upon computing the blend vectors, the decoupling performance is evaluated in the frequency domain, based on the
singular values of the blended subsystems, shown in Figure 9. Instead of specific singular value curves, shaded intervals
are plotted denoting the ranges where the uncertain singular values may fall. Green and red colors correspond to the
controlled and decoupled subsystems, respectively. Clearly our aim is to separate the two sets of curves by maximizing
the difference between these ranges, and having higher gains through the controlled subsystem than through the one to
be decoupled.

The left subfigure of Figure 9 shows the robust maximum gains of the subsystems over frequency, before applying the
blend vectors. Note that without blending, the subsystems to be decoupled have higher amplifications through certain
input–output pairs than the controlled ones. The results were calculated by MATLAB’s wcgain function.

The middle subfigure of Figure 9 presents a nominal design based on the algorithm published in Reference 1. Here
the corresponding input and output blend vectors have been computed based on a nominal model, with pc = −2.55,
pd = −4.24 and neglecting the input multiplicative uncertainties. These blend vectors are then applied to the uncer-
tain dynamics and visualized in the plot. As it can be depicted the nominal decoupling decreased the gap between
the two sets of curves, however the two areas are overlapping. That is, the nominal vectors cannot guarantee robust
decoupling, there might be cases when the decoupled subsystem has higher amplification than the controlled one.
The upper bounds of the shaded areas were computed by MATLAB’s wcgain function. Then by MATLAB’s usam-
ple function samples were taken such that the uncertainties are uniformly distributed in their variation intervals.
Then a frequency a wise lower bound was calculated as the minimum values of the corresponding sets at each
frequency.
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BAÁR and LUSPAY 6103
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F I G U R E 10 Pareto front for the output blend calculation of the academic example

The right subfigure of Figure 9 shows the robust design case. It is obvious that up to the maximum natural fre-
quency (9.64 rad/s) of the targeted subsystem decoupling is achieved. The controlled subsystem’s gains are higher than
the one to be decoupled. At the same time, the sensitivity of the controlled subsystem has also been decreased, com-
pared to the nominal design case, which is a price that one has to pay in order to achieve robust decoupling. The
discussed game-theoretic interpretation of the solution has also been calculated for the academic example and sum-
marized in Figure 10 for better understanding the trade-off. The yellow curve represents the Pareto-front computed
by using the 𝜖-constrained method as in (40) with different values of 𝜖, these are the Pareto-efficient solutions. The
blue and the red curves refer to the corresponding single objective optimization problems. In these optimization only
one of the two objectives has been considered and solved for different values of 𝜖, without any information about
the “other” subsystem. The resulting blend matrices are then applied for the complementary subsystems to see the
achieved effects. These are the solutions for the non-cooperative games, where the two players are aiming to minimize
their respective costs only.28 It can be depicted that 𝛽 maximization can achieve a high minimum sensitivity (≈ 0.95),
however the corresponding 𝛾 value is also high (≈ 10). On the other hand, minimizing only 𝛾 can lead to small val-
ues, but the resulting blend matrix also decreases the 𝛽 significantly. Lastly, the solution to the optimization in (39)
is denoted by the red star. To evaluate this result, the contour plots of the scalarized objective function −𝛽2 + 𝛾2 are
also given in Figure 10. Along each line, the cost is constant, while they increase from the bottom to the top. Accord-
ingly, one can depict that the red star has actually the minimal cost with the highest 𝛽 value among the Pareto-efficient
solutions.

In order to test the dependency of the blend vectors on the initial conditions, a numerical convergence analysis
has been carried out. By setting randomized initial conditions ku0 and ky0 for the input and output blend calculations,
with |ku0|2 = 1 and |ky0|2 = 1, the ku and ky vectors were recalculated 100 times. These results showed that after the
iteration is converged the recalculated ku and ky blend vectors pointed in the same direction as the original ones used
in the article. Note that in this case the blend calculation steps given in Sections 5.1 and 5.2 did not depend on each
other.

6.2 Aerospace example

The next example shows a possible application of the robust decoupling, based on a flexible wing aircraft model31 devel-
oped in the FLIPASED project.32 This UAV airplane serves as a testbed for investigating various flutter suppression
techniques. Flutter is a phenomena which originates from the interaction of the aerodynamic- and structural forces,
leading to a lightly damped or unstable oscillating motion of the wings. If this oscillation is not suppressed prop-
erly it might lead to premature material fatigue endangering the structural integrity of the aircraft. In the example
we aim to find input and output combinations which assure that the asymmetric flutter mode is decoupled from the
rigid body dynamics, even if our knowledge of the plant is uncertain. The physical interpretation of this decoupling
is straightforward: facilitating the separate design of a flutter suppression controller, without changing the rigid-body
autopilot.
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6104 BAÁR and LUSPAY

A nonlinear model of the flexible wing aircraft has been presented in Reference 31. For the purpose of this example,
the nonlinear model has been linearized at the 50 m/s airspeed, yielding an LTI model with 12 inputs, 6 outputs, and 12
states. Eight states describe the usual rigid body aircraft dynamics, while the remaining 4 represents symmetric and asym-
metric flutter modes corresponding to the flexible dynamics. The aircraft has 8 ailerons (4-4 on each wing) and a V-tail
configuration accommodating 4 ruddervators (2-2 on each side). Opposite deflections of the ruddervators correspond to
an elevator input, while deflections to the same direction create a rudder input. Measurements are carried out at both
wing tips, and they include vertical accelerations, and angular rates about the x and y axis respectively. In the example
three different types of uncertainties are considered.

1. Dynamic input multiplicative uncertainties are connected to the two inner ailerons describing the effects of unmodeled
dynamics and the mismodeling of the actuators (only two were considered in order to avoid inflating the problem’s
dimension). Similarly to the previous example, 30% uncertainty is added to the low, and 80% is added to the high
frequencies.

2. One common issue in the literature of flutter modeling and control, is the exact knowledge of the parameters of flexible
modes.33 In order to reflect this issue, a parametric uncertainty is introduced for the poles of the asymmetric flutter
dynamics: the Ac matrix is multiplied by an uncertain parameter, introducing a ±40% variation. In addition, the poles
of the roll subsidence and the spiral modes were allowed to vary by ±10%.

3. Lastly 1-1 memoryless nonlinearities were connected to the outer two ailerons describing the fact that their effective-
ness is not precisely modeled. These are treated as sector bounded nonlinearities over the sector

[
0 𝜁

]
. Note that Δ

𝜁

belongs to this sector if

Δ
𝜁

(v, t)(𝜁v − Δ
𝜁

(v, t)) ≥ 0, (50)

holds for all v, t ∈ R.2 In our example 𝜁 = 0.2 was selected, which is then expressed by an IQC multiplier as

M
𝜁

=

[
0 𝜁

𝜁 −2

]
, Ψ

𝜁

(s) =

[
1 0
0 1

]
. (51)

This is depicted in Figure 11, where the aircraft denotes the nominal model when the parametric uncertainties are
pulled out by an LFT transformation to the corresponding Δ block. Similarly to the previous one, this example also
evaluates the decoupling performance based on frequency domain responses. The decoupling problem is considered
to be successful, when the controlled subsystem takes its values from a higher area on the singular value plot, than
the decoupled one. The results are shown in Figure 12. The left subfigure shows the robust maximum gains corre-
sponding to the two subsystems before applying the blend vectors. Note that without blending, the subsystems to be
decoupled have higher amplifications through certain input–output pairs then the controlled ones. The remaining two

2Δ

2Δ2 ( )
++d 1

d 2

d 1,2

d 3

d 4

F I G U R E 11 Aerospace example layout
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BAÁR and LUSPAY 6105

F I G U R E 12 Aerospace example, subsystem decoupling results

subfigures show the transfer characteristics of the blended subsystems. The nominal blend vectors were designed for
the subsystems without uncertainties. The middle subfigure shows that decoupling cannot be guaranteed in this case,
because there might be an uncertainty combination, that the decoupled subsystem has higher gain than the flutter mode.
However, if one is taking into account the underlying uncertainties, as discussed in the article, then it is possible to
robustly decouple the subsystems. This is shown in the right subfigure of Figure 12. Note that the approximately 20
dB gap between the two areas represents that the controlled subsystem has a 10 times higher sensitivity than the other
dynamics.

7 CONCLUSIONS

The article proposed a robust decoupling scheme for LTI systems with LFT interconnected uncertainty, where the
behavior of the uncertain blocks were assumed to be described by IQCs. First an LMI based analysis result is estab-
lished for the computation of the robust minimum gain of such systems. Infinite and finite frequency ranges are
treated separately, with different analysis conditions. Based on the derived results a robust decoupling scheme was
proposed, where blend vectors are synthesized to maximize the excitation of the targeted subsystem, and atten-
uate the effects on the decoupled ones. Numerical algorithms are provided along with their applications. The
reported examples clearly show that, the systematic handling of model uncertainties increases the robust decoupling
performance.

Besides the work covered in the article, the authors are aware that there are several open questions to be answered in
the future. Exact decoupling conditions, characterizing under what conditions is it possible to decouple the subsystems,
are not yet established. There are several numerical issues that also have to be addressed in order to provide a solid
framework for system’s decoupling. This is mainly due to the fact that the conservativness of the IQC analysis conditions
are sensitive to the applied filters. Although their are guidelines to how to select the structure of a filter, the precise
description of the underlying uncertainty with minimal number of filters is still an open question. However, the achieved
results are promising and the applied mathematical framework allows the extension of the method for linear parameter
varying systems as well.
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ENDNOTES
∗Note that this special form describes the parallel interconnection of the underlying subsystems.
†The article only discusses the decoupling transformations. The underlying (s) controller can be designed by any robust control technique,
and the calculated transformation vectors will assure that it does not interact with the decoupled dynamics.
‡The minimum sensitivity is evaluated over a specified [𝜔,𝜔] frequency interval, ensuring a non-zero value for strictly proper systems.
§The initial ky0 output blend has to be selected such that it does not turn any of the subsystems unobservable. Note that selecting ky0 as a
column of ones usually suffices. If not, initial ky0 can be found based on the Popov-Belevitch-Hautus (PBH) observability test.26 It states that

the system is observable if rank
[

kT
y0C

sI − A

]
= nx . In other words for all p eigenvectors of A, the kT

y0Cp ≠ 0 relationship must hold. By collecting

all eigenvectors to a P matrix, ky0 can be found as a solution to kT
y0CP = 1, where 1 is a vector of ones with appropriate dimension. For complex

eigenvalues the real and imaginary parts of a corresponding eigenvector have to be substituted.
¶Note that  =c +d, from what it follows that the yc and yd output signals should also be added to formulate the output of .

However since we are interested in the transfer properties of the individual subsystems, for brevity this addition is neglected in the
figure.
#Alternatively the value of 𝛽 can also be constrained while minimizing only 𝛾 .||The following numerical examples are relying on the hard IQC factorizations given by the (Ψ, M) pair. In some case this factorization can
be easily found (e.g., dynamic uncertainty), however in other cases the hard factorization needs to be calculated numerically for example by
the J-spectral factorization (see Section 3.1). This leads to the

(
̂Ψ, J

)
pair. While the analysis and synthesis inequalities were written for the

(Ψ, M) pair in the article, it should be obvious that
(
̂Ψ, J

)
is used whenever it is available.
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APPENDIX A. WORST- CASE GAIN CALCULATION

The worst case gain can be calculated as follows. Append theΨ filter to the LFT interconnection to get an extended system
as shown in Figure 5. The dynamics of this interconnection is described by (19). Then the robust maximum sensitivity is
given by the following lemma.

Lemma 3. Robust maximum sensitivity.2 Assume that u(,Δ) is well posed for all Δ ∈ IQC(Ψ,M), and the inter-
connection is stable. Then the worst-case gain is finite and less than 𝛾 , if there exists a P ∈ Snx

≻ 0 and 𝜆 > 0 such
that

⎡⎢⎢⎢⎣
PA + ATP PBw PBu

BT
wP 0 0

BT
u P 0 −𝛾2I

⎤⎥⎥⎥⎦
+ 𝜆

⎡⎢⎢⎢⎣
CT

z

DT
zw

DT
zu

⎤⎥⎥⎥⎦
M

[
⋆

]
+
⎡⎢⎢⎢⎣

CT
y

DT
yw

DT
yu

⎤⎥⎥⎥⎦
[
⋆

]
≺ 0, (A1)

is satisfied.

Proof. The proof can be found in Reference 2. ▪
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6108 BAÁR and LUSPAY

F I G U R E B1 Alternating projections

APPENDIX B. ALTERNATING PROJECTIONS

Define two sets, with a possible intersection, as shown in Figure B1. The Γconvex set is described by the LMIs (37) and (38).
This is the solution set of Proposition 1, without the rank constraint. Γrank denotes the non-convex rank constraint on
Ku. We are interested in finding a solution at the intersection of the two sets, denoted by K⋆

u in Figure B1. The alternat-
ing projection algorithm has two consecutive steps in a sequence. The first step involves an orthogonal projection from
the Γconvex to the Γrank set by Lemma 4. This assures that the rank of Ku is reduced by 1. In a second step one needs to
project this reduced rank Ku matrix back to the Γconvex solution set. This is done based on Lemma 5. Then one needs to
iterate these two steps until a solution is found in the intersection of the two sets. If a solution is found, then the rank
of Ku has been successfully decreased by 1. In order to satisfy the rank constraint in Proposition 1, the whole projec-
tion sequence shown in Figure B1 has to be evaluated nu-1 times until rank(K⋆

u ) = 1 is achieved. Lemmas 4 and 5 are as
follows.

Lemma 4. Orthogonal projection to a lower dimensional set.29 Let Z ∈ Γn×n
rank and let Z = USV T be a singu-

lar value decomposition of Z. The orthogonal projection, Z⋆ = Γn−k
rank

Z, of Z onto the Γn−k×n−k
rank dimensional set is

given by

Z⋆ = USn−kV T
, (B1)

where the Sn−k diagonal matrix is obtained by replacing the smallest k singular values by zeros.

Lemma 5. Projection to a general LMI constraint set Γ.29 Let Γ be a convex set, described by an LMI. Then the projection
X⋆ = PΓX can be computed as the unique solution Y to the semidefinite programing problem

minimize trace(S)

subject to

[
S Y − X

Y − X I

]
≽ 0,

Y ∈ Γ, S,Y ,X ∈ Rn×n
, (B2)

with S = ST .

Proof. For further details about the projection sequences the reader is invited to consult with Reference 29. ▪

The alternating projection technique is an effective tool to find a K⋆ at the intersection of the Γrank and Γconvex sets.
However it does not guarantee global optimality of the solution, and the point of convergence heavily depends on the
initial condition K0. In some cases, especially when the intersecting angle between the two sets is small, the rate of conver-
gence to a feasible solution at the intersection may degrade. In this case the directional alternating projection algorithm
may provide faster convergence. For details see Reference 29.
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BAÁR and LUSPAY 6109

APPENDIX C. THE INPUT BLEND CALCULATION ALGORITHM

Algorithm 1. Input blend calculation with alternating projection

1: Given: The subsystems u(c,Δ) and u(d,Δ) are given in a form as shown in Figure 6.
2: Initialization: Solve the following optimization problem, for 𝛽2, 𝛾2, 𝜆c, 𝜆d, Pd, Pc, Qc, Ku:

minimize
Pd, Ku, Pc, Q, 𝛽2

, 𝛾

2
, 𝜆c, 𝜆d

− 𝛽2 + 𝛾2

s.t.:[
̃AT

c
̃CT

z,c
̃CT

y,cky0
0 0 0
I 0 0

]T

Ξ
[
⋆

]
+

[0 0 0
0 0 0
0 0 𝛽

2I

]
+ 𝜆c

⎡⎢⎢⎣
̃Bw,c
̃Dzw,c

kT
y0
̃Dyw,c

⎤⎥⎥⎦Mc
[
⋆

]
−
⎡⎢⎢⎣

̃Bu,c
̃Dzu,c

kT
y0
̃Dyu,c

⎤⎥⎥⎦Ku
[
⋆

]
≺ 0,

⎡⎢⎢⎣
̃AT

d Pd + Pd ̃Ad P ̃CT
z,d P ̃CT

y,dky0
⋆ 0 0
⋆ 0 −𝛾2I

⎤⎥⎥⎦ + 𝜆d

⎡⎢⎢⎣
̃Bw,d
̃Dzw,d

kT
y0
̃Dyw,d

⎤⎥⎥⎦Md
[
⋆

]
+
⎡⎢⎢⎣

̃Bu,d
̃Dzu,d

kT
y0
̃Dyu,d

⎤⎥⎥⎦Ku
[
⋆

]
≺ 0,

0 ⪯ Ku ⪯ I, Q ⪰ 0, Pd ≻ 0, 𝜆c ≻ 0, 𝜆d ≻ 0.

3: for k = 1 to nu − 1 do
4: j = 0
5: K⋆

u = Γn−k
rank

Ku

6: while
|K⋆

uj+1
−K⋆

uj
|

|K⋆

uj
| >threshold do

7: Solve the following optimization problem, for 𝜆c, 𝜆d, Pc, Q, Pd, S, Ku:

minimize
Pd, Ku, Pc, Q, S, 𝜆c, 𝜆d

trace (S)

s.t.:[
̃AT

c
̃CT

z,c
̃CT

y,cky0
0 0 0
I 0 0

]T

Ξ
[
⋆

]
+

[0 0 0
0 0 0
0 0 𝛽

2I

]
+ 𝜆c

⎡⎢⎢⎣
̃Bw,c
̃Dzw,c

kT
y0
̃Dyw,c

⎤⎥⎥⎦Mc
[
⋆

]
−
⎡⎢⎢⎣

̃Bu,c
̃Dzu,c

kT
y0
̃Dyu,c

⎤⎥⎥⎦Ku
[
⋆

]
≺ 0,

⎡⎢⎢⎣
̃AT

d Pd + Pd ̃Ad P ̃CT
z,d P ̃CT

y,dky0
⋆ 0 0
⋆ 0 −𝛾2I

⎤⎥⎥⎦ + 𝜆d

⎡⎢⎢⎣
̃Bw,d
̃Dzw,d

kT
y0
̃Dyw,d

⎤⎥⎥⎦Md
[
⋆

]
+
⎡⎢⎢⎣

̃Bu,d
̃Dzu,d

kT
y0
̃Dyu,d

⎤⎥⎥⎦Ku
[
⋆

]
≺ 0,

[
S Ku − K⋆

u
Ku − K⋆

u I

]
⪰ 0,

0 ⪯ Ku ⪯ I, Q ⪰ 0, Pd ≻ 0, 𝜆c ≻ 0, 𝜆d ≻ 0.

8: K⋆

uj+1
= Γn−k

rank
Kuj

9: j = j + 1
10: end while
11: end for
12: Find ku as the left singular vector corresponding to the largest singular value, from the singular value decomposition

K⋆

u = USV T .
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