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Roland Tóth ∗,∗∗∗

∗ Control Systems Group, Dept. of Electrical Engineering, Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands.

∗∗ ESTEC, European Space Agency, Noordwijk 2200AG, The Netherlands.
∗∗∗ Systems and Control Lab, Institute for Computer Science and

Control, Budapest 1111, Hungary.

Abstract: Obtaining models that can be used for flight control is of outmost importance to
ensure reliable guidance and navigation of spacecrafts, like a Generic Parafoil Return Vehicle
(GPRV). In this paper, we convert an existing, high-fidelity nonlinear model of the atmospheric
flight dynamics of a GPRV to a Linear Parameter-Varying (LPV) form that enables high-
performance navigation control design. Application of existing systematic conversion methods
for such complicated nonlinear models often result in complex LPV representations, which
are not suitable for controller synthesis. We apply and compare state-of-the-art conversion
techniques on the GPRV model, including learning based approaches, to optimize the complexity
and conservatism of the resulting LPV embedding. The results show that we can obtain an
LPV embedding that approximates the complex nonlinear dynamics sufficiently well, where the
balance between complexity, conservatism and model performance is efficiently chosen.
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aerodynamics, principle component analysis, deep neural networks.

1. INTRODUCTION

The European Space Agency (ESA) is currently developing
a Generic Parafoil Return Vehicle (GPRV) to perform
missions at low orbits. The vehicle is designed to re-enter
Earth’s atmosphere and land at a designated location on
the surface to facilitate multiple reuse. An example of such
a vehicle is the Space Rider reusable spacecraft. In the
final stage of the landing process, the GPRV is navigated
towards the landing point by a guided parafoil as shown
in Figure 1. The navigation is challenging, as the flight
dynamics of the GPRV are subject to changing aerody-
namic effects, the parafoil is attached by flexible tension
lines to the canopy whose motion is governed by complex
fluid dynamics, and the overall vehicle is subject to harsh
wind disturbances, while the only available actuation is
steering of the parafoil lines (no active propulsion).

Reliable and accurate motion control of a GPRV is es-
sential for proper navigation (heading and flight path
tracking) and guaranteeing a safe landing. Hence, the de-
velopment of an accurate model, useful for flight controller
design, is crucial for the Guidance, Navigation & Control
(GNC) development of the prototype. In this paper, we
focus on obtaining a high-fidelity model of a GPRV and
show how it can be converted to Linear Parameter-Varying
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Fig. 1. Space Rider reusable spacecraft navigating with
its parafoil during the final phase of the re-entry and
landing process. (Image source: https://esa.int.)

(LPV) forms with various complexity levels, enabling high-
performance flight controller synthesis.

Common control design strategies in aerospace applica-
tions rely heavily on the LPV framework (Wu et al., 1995;
Corti et al., 2012). With this framework, it is possible to
embed complex nonlinear systems in a representation with
linear signal relations. These relations however vary with
a signal p, called the scheduling, which is assumed to be
measurable. This allows to extend powerful methods of
the Linear Time-Invariant (LTI) framework to design con-
trollers with stability and performance guarantees and rely
on efficient performance shaping concepts. While linearity
of the resulting LPV surrogate models of the dynamics
enables simplified control design and efficient performance
shaping, the construction of the often multidimensional
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Roland Tóth ∗,∗∗∗

∗ Control Systems Group, Dept. of Electrical Engineering, Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands.

∗∗ ESTEC, European Space Agency, Noordwijk 2200AG, The Netherlands.
∗∗∗ Systems and Control Lab, Institute for Computer Science and

Control, Budapest 1111, Hungary.

Abstract: Obtaining models that can be used for flight control is of outmost importance to
ensure reliable guidance and navigation of spacecrafts, like a Generic Parafoil Return Vehicle
(GPRV). In this paper, we convert an existing, high-fidelity nonlinear model of the atmospheric
flight dynamics of a GPRV to a Linear Parameter-Varying (LPV) form that enables high-
performance navigation control design. Application of existing systematic conversion methods
for such complicated nonlinear models often result in complex LPV representations, which
are not suitable for controller synthesis. We apply and compare state-of-the-art conversion
techniques on the GPRV model, including learning based approaches, to optimize the complexity
and conservatism of the resulting LPV embedding. The results show that we can obtain an
LPV embedding that approximates the complex nonlinear dynamics sufficiently well, where the
balance between complexity, conservatism and model performance is efficiently chosen.

Keywords: linear parameter-varying systems, scheduling reduction, spacecraft modeling,
aerodynamics, principle component analysis, deep neural networks.

1. INTRODUCTION

The European Space Agency (ESA) is currently developing
a Generic Parafoil Return Vehicle (GPRV) to perform
missions at low orbits. The vehicle is designed to re-enter
Earth’s atmosphere and land at a designated location on
the surface to facilitate multiple reuse. An example of such
a vehicle is the Space Rider reusable spacecraft. In the
final stage of the landing process, the GPRV is navigated
towards the landing point by a guided parafoil as shown
in Figure 1. The navigation is challenging, as the flight
dynamics of the GPRV are subject to changing aerody-
namic effects, the parafoil is attached by flexible tension
lines to the canopy whose motion is governed by complex
fluid dynamics, and the overall vehicle is subject to harsh
wind disturbances, while the only available actuation is
steering of the parafoil lines (no active propulsion).

Reliable and accurate motion control of a GPRV is es-
sential for proper navigation (heading and flight path
tracking) and guaranteeing a safe landing. Hence, the de-
velopment of an accurate model, useful for flight controller
design, is crucial for the Guidance, Navigation & Control
(GNC) development of the prototype. In this paper, we
focus on obtaining a high-fidelity model of a GPRV and
show how it can be converted to Linear Parameter-Varying

� This work was supported by the European Space Agency in
the scope of the ‘AI4GNC’ project with SENER Aeroespacial S.A.
(contract nr. 4000133595/20/NL/CRS) and was also supported
by the European Union within the framework of the National
Laboratory for Autonomous Systems (RRF-2.3.1-21-2022-00002).
The views expressed in this paper do not reflect the official opinion
of the European Space Agency. Corresponding author: Matthis de
Lange (m.h.d.lange@student.tue.nl)

Fig. 1. Space Rider reusable spacecraft navigating with
its parafoil during the final phase of the re-entry and
landing process. (Image source: https://esa.int.)

(LPV) forms with various complexity levels, enabling high-
performance flight controller synthesis.

Common control design strategies in aerospace applica-
tions rely heavily on the LPV framework (Wu et al., 1995;
Corti et al., 2012). With this framework, it is possible to
embed complex nonlinear systems in a representation with
linear signal relations. These relations however vary with
a signal p, called the scheduling, which is assumed to be
measurable. This allows to extend powerful methods of
the Linear Time-Invariant (LTI) framework to design con-
trollers with stability and performance guarantees and rely
on efficient performance shaping concepts. While linearity
of the resulting LPV surrogate models of the dynamics
enables simplified control design and efficient performance
shaping, the construction of the often multidimensional

LPV Modeling of the Atmospheric Flight Dynamics
of a Generic Parafoil Return Vehicle �

Matthis H. de Lange ∗ Chris Verhoek ∗ Valentin Preda ∗∗

Roland Tóth ∗,∗∗∗
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steering of the parafoil lines (no active propulsion).

Reliable and accurate motion control of a GPRV is es-
sential for proper navigation (heading and flight path
tracking) and guaranteeing a safe landing. Hence, the de-
velopment of an accurate model, useful for flight controller
design, is crucial for the Guidance, Navigation & Control
(GNC) development of the prototype. In this paper, we
focus on obtaining a high-fidelity model of a GPRV and
show how it can be converted to Linear Parameter-Varying
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Fig. 1. Space Rider reusable spacecraft navigating with
its parafoil during the final phase of the re-entry and
landing process. (Image source: https://esa.int.)

(LPV) forms with various complexity levels, enabling high-
performance flight controller synthesis.

Common control design strategies in aerospace applica-
tions rely heavily on the LPV framework (Wu et al., 1995;
Corti et al., 2012). With this framework, it is possible to
embed complex nonlinear systems in a representation with
linear signal relations. These relations however vary with
a signal p, called the scheduling, which is assumed to be
measurable. This allows to extend powerful methods of
the Linear Time-Invariant (LTI) framework to design con-
trollers with stability and performance guarantees and rely
on efficient performance shaping concepts. While linearity
of the resulting LPV surrogate models of the dynamics
enables simplified control design and efficient performance
shaping, the construction of the often multidimensional
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(LPV) forms with various complexity levels, enabling high-
performance flight controller synthesis.

Common control design strategies in aerospace applica-
tions rely heavily on the LPV framework (Wu et al., 1995;
Corti et al., 2012). With this framework, it is possible to
embed complex nonlinear systems in a representation with
linear signal relations. These relations however vary with
a signal p, called the scheduling, which is assumed to be
measurable. This allows to extend powerful methods of
the Linear Time-Invariant (LTI) framework to design con-
trollers with stability and performance guarantees and rely
on efficient performance shaping concepts. While linearity
of the resulting LPV surrogate models of the dynamics
enables simplified control design and efficient performance
shaping, the construction of the often multidimensional
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p that describes the effect of nonlinearities is highly im-
portant. In LPV embedding, the constructed scheduling
is inherently dependent on internal latent variables, like
states and inputs of the system. This dependence is ex-
cluded from the LPV model, intentionally seeing p as an
external independent variable (Tóth, 2010). By assuming
all possible variations of p, the solution set of the LPV
model will include the original trajectories of the nonlinear
model, but possibly even more due to the disregarded
relationship between p and its inducing variables. This
is called conservativeness of the embedding, and its re-
duction is highly important to avoid deterioration of the
achievable performance of LPV control based on the ex-
tracted surrogate model (Tóth, 2010). Furthermore, the
dimension of the constructed p and functional dependence
of the LPV model coefficients on p (e.g., affine, polyno-
mial, etc. dependence of the matrices in a state-space
representation), i.e., complexity of the LPV model, have
major impact on the computability of model-based LPV
controller synthesis (Hoffmann and Werner, 2014). Hence,
reduction of such complexity is also a key objective of
the LPV modeling toolchain. For this purpose, several
conversion strategies, e.g., substitution based transforma-
tion (SBT) methods (Rugh and Shamma, 2000; Carter
and Shamma, 1996; Marcos and Balas, 2004) and auto-
mated conversion procedures (Kwiatkowski et al., 2006;
Hoffmann and Werner, 2015; Tóth, 2010) together with
various complexity reduction methods, e.g., (Beck, 2006;
Hecker and Varga, 2005), have been introduced and also
applied for spacecraft models in Varga et al. (1998). How-
ever, only a limited number of methods have been derived
to optimize the scheduling complexity in the conversion
process, like the family of Principle Component Analysis
(PCA) methods (Kwiatkowski and Werner, 2008; Rizvi
et al., 2016; Sadeghzadeh et al., 2020) and learning-based
scheduling reduction methods discussed in Rizvi et al.
(2018); Koelewijn and Tóth (2020).

In de Lange (2021), the 12 Degree of Freedom (DOF)
motion dynamics of a GPRV with detailed aerodynamical
effects have been derived in terms of a nonlinear dynamic
model. To make this model suitable for LPV control, as
a main contribution of the paper, we develop a global
embedding of these dynamics in terms of an LPV repre-
sentation, where both the conservativeness and complexity
of the embedding are optimized. For this purpose, we
apply and compare two data-based scheduling dimension
reduction methods: (i) the PCA method in (Sadeghzadeh
et al., 2020) that is the current state-of-the-art method
in the PCA family of reduction techniques and the (ii)
Deep Neural Network (DNN) method from (Koelewijn and
Tóth, 2020) that has been reported to perform the best
among the learning based methods. The accuracy of the
obtained LPV models with various complexity levels is
analyzed in simulation studies with the original model.

The paper is organized as follows. First in Section 2,
the dynamic motion model of a GPRV is introduced
and its LPV conversion based on direct factorization is
explained. This is followed in Section 3 by a brief overview
of the PCA and DNN methods used for complexity and
conservativeness reduction of LPV models. In Section 4,
the discussed methods are applied on the LPV modeling
problem of the GPRV. Finally, the conclusions on the
obtained results are given in Section 5.

2. MODELING OF THE FLIGHT DYNAMICS

In this section, a (simplified) dynamic model of a GPRV
is introduced based on the detailed modelling discussed in
de Lange (2021).

2.1 Simplified dynamic model of a GPRV

For the simplified model of a GPRV, the parafoil and
vehicle body is approximated as a single rigid body. The
model equations are given by

ṙ = R(η)v (1a)

η̇ = J(η)ω (1b)

v̇ = −ω × v + 1
m (fa(η, v, ω, δ, w) + fg(r, η)) (1c)

ω̇ = −I−1ω × Iω + I−1 (ma(η, v, ω, δ, w)) (1d)

with translational position vector r(t) ∈ R3, Euler angles
η(t) ∈ R3 of the GPRV and corresponding translational
speeds v(t) ∈ R3 and angular rates ω(t) ∈ R3 in the
frame of the Earth, where t ∈ R denotes time. The input
δ(t) ∈ [0, 1]2 is the left and right deflection of the parafoil,
while w(t) ∈ R3 denotes the wind velocity, which acts as
disturbance. R, J : R3 → R3×3 are nonlinear functions of
η as given in de Lange (2021). m is the cumulative mass
and I ∈ R3×3 is the moment inertia at the center of mass
of the spacecraft body, rigidly connected to the parafoil. fg
is the gravitational, while fa is the aerodynamic force and
ma is the aerodynamic moment, which are all nonlinear
functions of the states. The states, forces and moments
are all defined in the body frame. We can write (1) as

ẋ = f(x, u, w), (2a)

y = x, (2b)

where x(t) ∈ Rnx is the composite state variable in terms

of x = [ r� η� v� ω� ]
�

with nx = 12, while u = δ and w
is the wind disturbance. The whole state is considered to
be measurable: y = x. A typical operating region of the
system is given in terms of the compact sets X ⊂ Rnx ,
U ⊂ Rnu and W ⊂ Rnw , corresponding to

rx(t), ry(t) ∈ [−3 · 103, 3 · 103] [m]

rz(t) ∈ [6.3 · 106, 6.4 · 106] [m]

η(t) ∈ [−π, π]3 [rad]

v(t) ∈ [−50, 50]3 [m/s]

ω(t) ∈ [−0.1, 0.1]3 [rad/s].

Furthermore, U := [0, 1]2 and the wind disturbance inW is
considered to be bounded by 3D gusts of 18 [m/s], which is
a realistic choice based on the data of the National Oceanic
and Atmospheric Administration.

2.2 LPV conversion by factorization

A common technique to embed a nonlinear SS model (2)
into an LPV description is to factorize the state transition
function f to obtain

ẋ = A(x, u, w)x+ Bu(x, u, w)u+ Bw(x, u, w)w, (3)

where the matrix functions A,Bu,Bw are assumed to be
bounded and to have appropriate argument and image
dimensions. Note that the output function y = x is already
linear, hence it is left out out from the model conversion.
To obtain (3) based on (2a), the aerodynamic forces
and moments are factorized w.r.t. the trans. and angular
velocities and the input. The gravity force is factorized
w.r.t. the position vector. As a second step, the scheduling
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cluded from the LPV model, intentionally seeing p as an
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all possible variations of p, the solution set of the LPV
model will include the original trajectories of the nonlinear
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effects have been derived in terms of a nonlinear dynamic
model. To make this model suitable for LPV control, as
a main contribution of the paper, we develop a global
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the dynamic motion model of a GPRV is introduced
and its LPV conversion based on direct factorization is
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of the PCA and DNN methods used for complexity and
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the discussed methods are applied on the LPV modeling
problem of the GPRV. Finally, the conclusions on the
obtained results are given in Section 5.
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In this section, a (simplified) dynamic model of a GPRV
is introduced based on the detailed modelling discussed in
de Lange (2021).

2.1 Simplified dynamic model of a GPRV

For the simplified model of a GPRV, the parafoil and
vehicle body is approximated as a single rigid body. The
model equations are given by

ṙ = R(η)v (1a)

η̇ = J(η)ω (1b)

v̇ = −ω × v + 1
m (fa(η, v, ω, δ, w) + fg(r, η)) (1c)

ω̇ = −I−1ω × Iω + I−1 (ma(η, v, ω, δ, w)) (1d)

with translational position vector r(t) ∈ R3, Euler angles
η(t) ∈ R3 of the GPRV and corresponding translational
speeds v(t) ∈ R3 and angular rates ω(t) ∈ R3 in the
frame of the Earth, where t ∈ R denotes time. The input
δ(t) ∈ [0, 1]2 is the left and right deflection of the parafoil,
while w(t) ∈ R3 denotes the wind velocity, which acts as
disturbance. R, J : R3 → R3×3 are nonlinear functions of
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are all defined in the body frame. We can write (1) as
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y = x, (2b)

where x(t) ∈ Rnx is the composite state variable in terms
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with nx = 12, while u = δ and w
is the wind disturbance. The whole state is considered to
be measurable: y = x. A typical operating region of the
system is given in terms of the compact sets X ⊂ Rnx ,
U ⊂ Rnu and W ⊂ Rnw , corresponding to

rx(t), ry(t) ∈ [−3 · 103, 3 · 103] [m]
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η(t) ∈ [−π, π]3 [rad]

v(t) ∈ [−50, 50]3 [m/s]

ω(t) ∈ [−0.1, 0.1]3 [rad/s].

Furthermore, U := [0, 1]2 and the wind disturbance inW is
considered to be bounded by 3D gusts of 18 [m/s], which is
a realistic choice based on the data of the National Oceanic
and Atmospheric Administration.

2.2 LPV conversion by factorization

A common technique to embed a nonlinear SS model (2)
into an LPV description is to factorize the state transition
function f to obtain

ẋ = A(x, u, w)x+ Bu(x, u, w)u+ Bw(x, u, w)w, (3)

where the matrix functions A,Bu,Bw are assumed to be
bounded and to have appropriate argument and image
dimensions. Note that the output function y = x is already
linear, hence it is left out out from the model conversion.
To obtain (3) based on (2a), the aerodynamic forces
and moments are factorized w.r.t. the trans. and angular
velocities and the input. The gravity force is factorized
w.r.t. the position vector. As a second step, the scheduling

is extracted by constructing p(t) = ψ(x(t), u(t), w(t)) ∈
Rnp such that the resulting LPV model is

ẋ = A(p)x+Bu(p)u+Bw(p)w, (4a)

y = x, (4b)

where A : Rnp → Rnx×nx , Bu : Rnp → Rnx×nu and
Bw : Rnp → Rnx×nw belong to a given function class like
affine (that is, A(p) = A0 +

∑np

i=1 Aipi), polynomial, etc.,
and A = A◦ψ, Bu = Bu ◦ψ, Bw = Bw ◦ψ, with ◦ denoting
the function composition operator. As affine dependence of
A, Bu and Bw is generally preferred for controller design,
A, Bu and Bw is converted to A ◦ψ, Bu ◦ψ and Bw ◦ψ by
extracting every nonlinearity as a new scheduling variable.
Finally, the scheduling region P is computed, by taking
the smallest hypercube around the extreme values of each
component of ψ over (X,U,W).

While this constitutes to a simple LPV model conversion
process, where the obtained model is an exact represen-
tation of the original nonlinear system, the conservative-
ness and complexity of the representation are maximized,
achieving a scheduling dimension np = 71. As a next step,
we will reduce np and optimize the conservativeness of the
LPV representation of the GPRV dynamics. Furthermore,
we will show that the wind w can be excluded from ψ
without significant deterioration of the model accuracy.

3. SCHEDULING REDUCTION METHODS

For reducing the conservativeness and complexity of the
converted LPV model, we will first briefly introduce the
PCA method of Sadeghzadeh et al. (2020) and the DNN
approach in Koelewijn and Tóth (2020), after which they
are applied to our GPRV model Section 4.

3.1 PCA-based scheduling dimension reduction

The PCA-based scheduling dimension reduction method
of Sadeghzadeh et al. (2020) is an improved version of
Kwiatkowski and Werner (2008). The idea of the PCA
method is to extract the principle components of the model
variations that contribute most to the system behavior
under typical operation. The principle components are ex-
tracted with Singular Value Decomposition (SVD), allow-
ing for the selection of an effective number of components
with which the reduced model is scheduled.

We capture system variations along the typical oper-
ation trajectories of the GPRV in a data-set DN =
{x(k), u(k), w(k)}Nk=1 ∈ R(nx+nu+nw)×N , on which the
PCA is performed. The variation of A,Bu, Bw along p(k)
(in DN ) is represented with Γ,

Γ(p(k)) = vec ([A(p) Bu(p) Bw(p)](k)) , (5)

where vec(·) denotes column vectorization of a matrix and
p(k) ∈ PN = ψ(DN ). Note that DN should represent
the solution space the GPRV encounters during typical
operation as much as possible. The variation of Γ over the
entries in DN is collected in ΠN , i.e.,

ΠN = [Γ(p(1)) Γ(p(2)) · · · Γ(p(N))] ∈ RnΠ×N . (6)

where nΠ = (nx + nu + nw)nx.

To improve numerical conditioning, the data is centered
and normalized

Π̄N = N (ΠN ) := Sscale · (ΠN −Πc ⊗ 1nΠ×N ), (7)

where Πc ∈ RnΠ is the column average, i.e, mean,
of ΠN , Sscale ∈ RnΠ×nΠ is a diagonal scaling ma-
trix and ⊗ denotes the Kronecker product. In this

work, min-max normalization and standard deviation-
based normalization are considered. For min-max normal-
ization, we have Sscale := diag−1(d(ΠN,1), . . . , d(ΠN,nΠ)),
with d(ΠN,i) = max(ΠN,i) − min(ΠN,i). For stan-
dard deviation-based normalization, we have Sscale :=
diag−1(std(ΠN,1), . . . , std(ΠN,nΠ)), with std(·) the square
root of the sample variance.

Taking the SVD of Π̄N allows us to find the principle
components in the variations of A, . . . ,Dw, i.e.,

Π̄N = UΣV � = [Us Ur]

[
Σs 0
0 Σr

] [
V �
s

V �
r

]
, (8)

where Σ has the principle components, i.e., singular values,
in descending order in its diagonal. Π̄N is projected to a
lower dimension, while the ns most significant components
contributing to the variation are retained:

ˆ̄ΠN = UsΣsV
�
s = UsU

�
s Π̄N . (9)

The core idea is to use U�
s Π̄N as the new scheduling

map, whose dimension is equal to the selected principal
components, i.e., ns = np̂. Here Us describes the linear
combination of these variables which describe the varia-
tion, i.e., how these new scheduling variables will compose
a new affine dependency of the LPV model. Note that
such a decomposition is based on normalized and centered
variations, hence the approximation of the original matrix
variations is found with the inverse of the normalization
N−1( ˆ̄ΠN ) = S−1

scale
ˆ̄ΠN + Πc ⊗ 1nΠ×N , which is still an

affine operator, preserving the affine dependency structure
of the LPV model. Based on these, the reduced scheduling
variable p̂ is given as

p̂(t)=U�
s N (Γ(p(t)))=U�

s N (Γ(ψ(x(t), u(t), w(t))))︸ ︷︷ ︸
ψ̂(x(t),u(t),w(t))

. (10)

The new linear affine dependency on p̂ that approximates
the original A, . . . ,Dw is reconstructed from the approxi-
mated matrix variations Γ(p) ≈ Γ̂(p̂) = N−1(Usp̂), i.e.,

Γ̂(p̂) = vec
( [

Â(p̂) B̂u(p̂) B̂w(p̂)
]

︸ ︷︷ ︸
M̂0+

∑np̂

i=1
p̂iM̂i

)
, np̂ < np (11)

where M̂0 = [A0 Bu,0 Bw,0 ] + vec−1(Πc) and M̂i =
vec−1(S−1

scaleUs,i), with vec−1 the inverse operation of (5)

and Us,i representing the ith column of Us with 1 ≤ i ≤ ns.

The final step is to determine the reduced scheduling
region P̂ in which p̂ is varying. The region P̂ can be defined
as a hypercube denoted as

p̂min
i ≤ p̂i ≤ p̂max

i ,

where p̂min
i and p̂max

i are obtained as the minimum and
maximum values of p̂i(t) over ψ(DN ). This does not

result in a P̂ with minimum volume, which introduces
conservatism. Sadeghzadeh et al. (2020) discusses methods

to find a minimum-volume hypercube that defines P̂ using
the Kabsch algorithm (when np̂ ≤ 3) and hyper-ellipse
fitting (when np̂ > 3).

3.2 DNN-based scheduling dimension reduction

The PCA method uses a linear mapping from a fixed set of
model variations governed by p to the reduced scheduling
vector p̂. With the DNN method, proposed in Koelewijn
and Tóth (2020), the scheduling map ψ is learned, i.e., op-
timized, simultaneously along the reduction step. Figure 2
shows a schematic overview of the DNN architecture. The
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Fig. 2. DNN architecture for learning-based scheduling
reduction (adopted from Koelewijn and Tóth (2020)).

encoding layers encode (x, u, w) into the reduced schedul-
ing vector, while the decoding layer decodes the reduced
scheduling vector to the approximated model variations,
resulting in the linear affine dependency structure. The
DNN consists of an input layer, nhl hidden layers and an
output layer. The input and hidden layers are given as

l[τ ] = g[τ ]
(
W [τ ]l[τ−1] + b[τ ]

)
, τ = 0, . . . , nhl, (12)

where g[τ ](·) is the activation function (e.g., hyperbolic
tangent, ReLU, sigmoid), l[τ ] is the output and W [τ ] and
b[τ ] are the weight matrix and the bias vector of the τ th

layer, respectively. The input to the DNN, i.e., (x, u), is
thus l[−1] := vec(x, u). The reduced scheduling vector is
the output of the nhl

th hidden layer, i.e., p̂ := l[nhl]. The
associated vectorized system matrices Γ̂ follow from the
last layer, which is affine, i.e., Γ̂ = W [Γ]p̂+ b[Γ]. Â, . . . , B̂w

are obtained as in the PCA method. The weightings and
biases of the DNN are optimized by minimizing

min
W [k],b[k]

1
N

∑N
j=1 ‖Γ̂(p̂(j))− Γ(p(j))‖22. (13)

The optimization problem is solved with back-propagation
combined with stochastic gradient descent, which are im-
plemented in popular solvers such as Adam, or AdaBound
(Kingma and Ba, 2014; Luo et al., 2019). Multiple tech-
niques exist to prevent overfitting, like weight regulariza-
tion and early stopping (Goodfellow et al., 2016). Based

on the obtained ψ̂, p̂, the scheduling region P̂ can be deter-
mined using the same methods as discussed in Section 3.1.

4. LPV MODELING OF THE GPRV

Armed with the PCA and DNN methods introduced in
Section 3, we optimize the scheduling complexity in the
LPV modeling of the GPRV flight dynamics together with
the conservativeness of the embedding.

4.1 Data-generation

We perform the optimization of the complexity and conser-
vativeness based on trajectory data from typical operation
of the GPRV. SENER Aerospace presented in Cacciatore
et al. (2019) a baseline solution of the GNC problem on
a simplified model of the GPRV. From the associated
simulator, typical initial conditions are obtained for the
states and input trajectories of δ to simulate our high-
fidelity model (as presented in Section 2.1) in open-loop.
These trajectories navigate the GPRV from∼5.5 km above
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Earth’s surface to a predefined landing location. As the
wind cannot be measured during operation, we are not able
to schedule the model based on the wind. For this reason,
we exclude the wind from the model i.e., w = 0, and we
assume that the GNC will be able to reject the disturbance
in closed-loop. The simulation is computed with an ODE4
solver running at fs = 400 Hz. The resulting DN data-set
with N = 105 is chosen as randomly picked samples of the
simulated trajectory.

4.2 Reducing the scheduling dimension

We will now further optimize the direct LPV model (4)
in both scheduling complexity and conservativeness. The
former will be accomplished with the PCA and DNN-based
scheduling reduction methods.

4.2.1 PCA approach: Based on (4) and the design choice
of w = 0, implying that Bw ≡ 0, Γ(p(k)) reduces to

Γ(p(k)) = vec ([A(p) Bu(p)](k)) , (14)

from which ΠN is constructed. Normalization of ΠN is
done with both std and min-max normalization The prin-
ciple components of Π̄N with min-max normalization are
plotted in Figure 3, which shows an exponential decrease
of the singular values. For the 52nd singular value till the
last, the singular values drop below the numerical precision
bound and can be considered zero. Hence, the full LPV em-
bedding (4) requires 52 principal components to describe
all variations of A and Bu for typical operation. We now
construct a compact scheduling map with np̂ � 52 to
economically represent the GPRV in an LPV form, which
results in making a trade-off between model complexity
and accuracy. To visualize this trade-off, we compute the
reduced model for scheduling dimensions np̂ = 1, . . . , 10.
This is often the range that is numerically manageable in
controller synthesis for systems with nx > 10.

4.2.2 DNN approach: The factorization based LPV
model in terms scheduling complexity is optimized for
np̂ = 1, . . . , 10 using the DNN approach. The DNN is
implemented with 4 hidden layers, each consisting of 128
neurons with tanh activation, which is sufficiently com-
plex to capture the GPRV variations. Moreover, we apply
a linear bypass between the input and output to allow
for linear input-output relationships. The DNN input is

[ r� η̃� V � ω� δ� ]
�
, where η̃� := [ sin(η)� cos(η)� ]

�
, result-

ing in 17 inputs. This decomposition of the Euler an-
gles often helps in training. The decoding layer, i.e., the
output layer of the DNN (as depicted in Figure 2), has
np̂ = 1, . . . , 10 inputs 1 and the nΠ = (nx + nu)nx = 168
matrix variations as output. Note that this is a linear
layer, which results in a linear affine dependence on p̂.
1 Note that the network has to be retrained for every np̂.
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Fig. 2. DNN architecture for learning-based scheduling
reduction (adopted from Koelewijn and Tóth (2020)).
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thus l[−1] := vec(x, u). The reduced scheduling vector is
the output of the nhl
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min
W [k],b[k]

1
N

∑N
j=1 ‖Γ̂(p̂(j))− Γ(p(j))‖22. (13)

The optimization problem is solved with back-propagation
combined with stochastic gradient descent, which are im-
plemented in popular solvers such as Adam, or AdaBound
(Kingma and Ba, 2014; Luo et al., 2019). Multiple tech-
niques exist to prevent overfitting, like weight regulariza-
tion and early stopping (Goodfellow et al., 2016). Based
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Earth’s surface to a predefined landing location. As the
wind cannot be measured during operation, we are not able
to schedule the model based on the wind. For this reason,
we exclude the wind from the model i.e., w = 0, and we
assume that the GNC will be able to reject the disturbance
in closed-loop. The simulation is computed with an ODE4
solver running at fs = 400 Hz. The resulting DN data-set
with N = 105 is chosen as randomly picked samples of the
simulated trajectory.

4.2 Reducing the scheduling dimension

We will now further optimize the direct LPV model (4)
in both scheduling complexity and conservativeness. The
former will be accomplished with the PCA and DNN-based
scheduling reduction methods.

4.2.1 PCA approach: Based on (4) and the design choice
of w = 0, implying that Bw ≡ 0, Γ(p(k)) reduces to

Γ(p(k)) = vec ([A(p) Bu(p)](k)) , (14)

from which ΠN is constructed. Normalization of ΠN is
done with both std and min-max normalization The prin-
ciple components of Π̄N with min-max normalization are
plotted in Figure 3, which shows an exponential decrease
of the singular values. For the 52nd singular value till the
last, the singular values drop below the numerical precision
bound and can be considered zero. Hence, the full LPV em-
bedding (4) requires 52 principal components to describe
all variations of A and Bu for typical operation. We now
construct a compact scheduling map with np̂ � 52 to
economically represent the GPRV in an LPV form, which
results in making a trade-off between model complexity
and accuracy. To visualize this trade-off, we compute the
reduced model for scheduling dimensions np̂ = 1, . . . , 10.
This is often the range that is numerically manageable in
controller synthesis for systems with nx > 10.

4.2.2 DNN approach: The factorization based LPV
model in terms scheduling complexity is optimized for
np̂ = 1, . . . , 10 using the DNN approach. The DNN is
implemented with 4 hidden layers, each consisting of 128
neurons with tanh activation, which is sufficiently com-
plex to capture the GPRV variations. Moreover, we apply
a linear bypass between the input and output to allow
for linear input-output relationships. The DNN input is

[ r� η̃� V � ω� δ� ]
�
, where η̃� := [ sin(η)� cos(η)� ]

�
, result-

ing in 17 inputs. This decomposition of the Euler an-
gles often helps in training. The decoding layer, i.e., the
output layer of the DNN (as depicted in Figure 2), has
np̂ = 1, . . . , 10 inputs 1 and the nΠ = (nx + nu)nx = 168
matrix variations as output. Note that this is a linear
layer, which results in a linear affine dependence on p̂.
1 Note that the network has to be retrained for every np̂.

The �2-weight regularization is set to 10−4. The Adam
optimizer (Kingma and Ba, 2014) is used during training
with a learning rate of 10−5. The batch-size is 128 and
the network is trained to minimize (13) for 200 epochs.
We did not perform any hyper-parameter optimization, as
the initial parameter-set already gave good results. Both
the input and output data are normalized before training
with the aforementioned normalization methods. We want
to stress here that the DNN-based scheduling reduction
approach simultaneously learns a nonlinear map between
the input (x, u) and a scheduling vector of size np̂ under
affine dependency.

4.2.3 Comparison of the results: We compare the out-
comes of the scheduling reduction methods using two types
of error measures on a validation data-set independent
of the training data-set. The first error measure is the
normalized approximation error of the elements of Γ, i.e.,
along the rows of Π. Let

eΠ,i :=
‖ΠN,i − Π̂N,i‖2

‖ΠN,i‖∞
, i = 1, . . . , nΠ, (15)

with ‖·‖2 and ‖·‖∞ being the 2 and∞ vector-norms. While
this error measure indicates how

[
Â(p̂) B̂u(p̂)

]
captures

[A(x, u) Bu(x, u)], we are mainly interested in how well
the obtained LPV model represents the true solution space
of the GPRV. An error measure for this is based on
comparing the state-derivatives, i.e. A(x, u)x + Bu(x, u)u

with Â(p̂)x+ B̂u(p̂)u. Let

fN = [A(p(1))x(1)+Bu(p(1))u(1) ··· A(p(N))x(N)+Bu(p(N))u(N) ],

f̂N = [ Â(p̂(1))x(1)+B̂u(p̂(1))u(1) ··· Â(p̂(N))x(N)+B̂u(p̂(N))u(N) ],

and define the second error measure as

eẋ,i :=
‖fN

i − f̂N
i ‖2∥∥fN

i

∥∥
∞

, i = 1, . . . , nx. (16)

Figure 4 shows the plots for maxi eΠ,i, RMSi{eΠ,i},
maxi eẋ,i and RMSi{eẋ,i}, where RMSi{ai} :=

√∑na

i=1 a
2
i ,

for both the PCA and DNN-based scheduling reduction
methods. The plots show no significant difference between
the PCA and the DNN methods with both error measures,
where the main difference between the results is due to the
type of normalization that is used on the data. This cause
often plays a role in function approximation as well, when
using basis functions such as splines or Chebyshev bases.
The results show that, with min-max normalization, the
RMS error drops below ∼ 5% for np̂ ≥ 3, which is excellent
model accuracy for such a reduction. Moreover, this np̂ is
highly suitable for controller synthesis. Therefore, np̂ = 3
is the optimal trade-off between complexity and accuracy
of the LPV model. When we compare the behavior along
a nominal flight trajectory, we obtain the open-loop sim-
ulated model responses in Figure 5. The large differences
between the trajectories are due to the integrator behavior,
i.e., the small errors (quantified in Fig. 4) are magnified
over time. This will not play a role during closed-loop
operation, as the qualitative responses are quite similar.

From a computational perspective, the DNN approach
is much more expensive than the PCA approach due to
the training time. Especially when the reduction must
be computed for multiple np̂. On the other hand, large
data-sets make the SVD computation for PCA intractable,
while the DNN approach can handle large data-sets better.

(a) Comparison using the error measure in (15).

(b) Comparison using the error measure in (16).

Fig. 4. Comparison of the results on scheduling reduction:
DNN (dashed lines) and PCA (solid line) under min-
max-based and std-based normalization of the data.

Fig. 5. Flight trajectory based on the original GPRVmodel
compared to the simulated responses of the reduced
LPV models with np̂ ∈ {3, 5, 10}.

4.3 Optimizing the conservativeness

We will briefly discuss the construction of P̂ when np̂ = 3.

Defining P̂ as the convex hull around all p̂(k) generated
with DN reduces the conservatism, but likely results in
a P̂ with many vertices, making LPV controller synthesis
computationally intractable. Therefore, we use the Kab-
sch algorithm to construct a minimum-volume cube that
encloses U�

np̂
Π̄N . The resulting cubes which define P̂ are

depicted in Figure 6. To give an indication of the conser-
vatism, we calculate the ratio between ‘un-used’ and ‘used’

space of P̂, i.e., Volume(cube)−Volume(polytope)
Volume(polytope) , with Vol-

ume(cube) the volume of the cube, and Volume(polytope)
as the volume of the minimal convex hull around the
scheduling trajectories p̂(k) . The latter is computed with
the Matlab function convhulln. The resulting ratios are
0.49 for the PCA based optimization and 0.54 for the
DNN-based optimization for np̂ = 3, which implies that
the conservativeness of both methods is similar.
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(a) P̂ from PCA method. (b) P̂ from DNN method.

Fig. 6. Construction of P̂, with the data-points p̂(k) in blue

and the minimum-volume cube, defining P̂, in red.

5. CONCLUSIONS

This paper presents LPV modeling of the highly complex
GPRV dynamics, where the LPV model is optimized
over its complexity and conservativeness, such that it is
suitable for LPV controller synthesis. From the results
we conclude that we are able to obtain an affine LPV
embedding of the complex nonlinear model of the GPRV
with a scheduling dimension of 3. This is without requiring
major simplifications of the dynamics, which is often done
for tractability of GNC design. Both the PCA and DNN
approaches obtain a good LPV model that is suitable
for LPV controller synthesis. It must be noted that a
clear advantage of the DNN method is that we have
direct control over the variables participating in the new
scheduling map, while there is no control over this for the
PCA-based approach. For future work, we aim to design
a high-performance LPV controller for the obtained LPV
model and test its performance in closed-loop with a high-
fidelity simulator of the vehicle.
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(1998). Automated generation of LFT-based parametric
uncertainty descriptions from generic aircraft models.
Mathematical and Computer Modelling of Dynamical
Systems, 4(4), 249–274.

Wu, F., Packard, A., and Balas, G. (1995). LPV control
design for pitch-axis missile autopilots. In Proc. of
the 34th IEEE Conference on Decision and Control,
volume 1, 188–193.


