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Abstract: Flat-field correction (FFC) is commonly used in image signal processing (ISP) to improve
the uniformity of image sensor pixels. Image sensor nonuniformity and lens system characteristics
have been known to be temperature-dependent. Some machine vision applications, such as visual
odometry and single-pixel airborne object tracking, are extremely sensitive to pixel-to-pixel sensitivity
variations. Numerous cameras, especially in the fields of infrared imaging and staring cameras,
use multiple calibration images to correct for nonuniformities. This paper characterizes the temper-
ature and analog gain dependence of the dark signal nonuniformity (DSNU) and photoresponse
nonuniformity (PRNU) of two contemporary global shutter CMOS image sensors for machine vision
applications. An optimized hardware architecture is proposed to compensate for nonuniformities,
with optional parametric lens shading correction (LSC). Three different performance configurations
are outlined for different application areas, costs, and power requirements. For most commercial
applications, the correction of LSC suffices. For both DSNU and PRNU, compensation with one or
multiple calibration images, captured at different gain and temperature settings are considered. For
more demanding applications, the effectiveness, external memory bandwidth, power consumption,
implementation, and calibration complexity, as well as the camera manufacturability of different
nonuniformity correction approaches were compared.

Keywords: CMOS; image sensor; ISP; FPGA; ASIC; NUC; FFC; FPN; DSNU; PRNU

1. Introduction

Digital images captured by image sensors are contaminated with noise, which deterio-
rate performance and reduce sensitivity. Image noise can be characterized as temporal or
lateral fixed-pattern noise (FPN). Temporal noise changes from frame to frame, while FPN
is mostly constant, but may depend on temperature or sensor configuration.

1.1. A Linear Model of Spatial Nonuniformity

The mathematical framework for analysis was introduced by Mooney [1] and later
simplified by Perry [2] for the linear model of FPN for infrared focal plane arrays. Though
Schulz [3] expanded the nonuniformity correction (NUC) to multipoint analysis to account
for the nonlinearities of IR FPNs, the linearity of the CMOS image sensor photoresponse
allows a generalization of Mooney’s framework for CMOS imagers. The luminous flux
received by a small surface element with A, exposed to irradiance L, with incident angle
Θ is

P = LAΘ, (1)
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Without considering the effect of temporal noise sources, such as electronic, ther-
mal, and shot noise, the number of electrons present on the cathode of a reverse-biased
photodiode illuminated by a narrow-band light source can be modeled by:

N = Tint(ηP + D) + QR, (2)

where Tint is the integration time, η is the quantum efficiency, assumed constant for the
narrow spectrum of the illuminator, D is the dark current, and QR is the residual charge
present on the cathode after reset. CMOS image sensors use correlated double sampling
(CDS) which effectively cancels out the QR term [3]. For a pixel with area A, at position x, y
in the pixel array, illuminated via a lens by a wideband illuminator, the number of electrons
collected by the pixel can be expressed as

Nx,y = Tint

[
τx,y

∫ λ2

λ1

Lx,y(λ)ηx,y(λ) dλAΩx,y

]
+ Dx,y, (3)

where Lx,y, ηx,y, and Dx,y are the spectral radiance density, the quantum efficiency, and the
residual dark offset specific for pixel x, y, respectively, while

Ωx,y =

[
π cos4 Θx,y

4F2 + 1

]
, (4)

is the projected solid angle subtended by the exit pupil of the optical system, as viewed
from the sensor pixel x, y, where Θx,y is the off-axis angle of the pixel and F is the F-number
of the lens. The transmittance of the optical system is assumed to be homogeneous in
Mooney’s model; however, for many CMOS cameras, optical efficiency tends to drop
towards the corner of the image due to the chief ray angle (CRA) mismatch between the
last lens element and the microlens array focusing light onto the photodiodes. Hence,
the optical efficacy, τx,y, is dependent on pixel position and is an important source of
fixed-pattern nonuniformity. With the introduction of a response coefficient,

Rx,y = Aτx,y

[
π cos4 Θx,y

4F2 + 1

]
, (5)

(3) can be simplified to

Nx,y = Tint

[
Rx,y

∫ λ2

λ1

Lx,y(λ)ηx,y(λ) dλ

]
+ Dx,y, (6)

To analyze the impact of pixel-to-pixel variation of parameters, the parameters can be
expressed as:

Dx,y = 〈D〉+ dx,y, (7)

Rx,y = 〈R〉+ rx,y, (8)

ηx,y(λ) = 〈η(λ)〉+ κx,y(λ), (9)

where the bracketed variables denote the mean value of the corresponding parameter across
the entire image, and the additive quantities capture the pixel-to-pixel variations. Namely,
dx,y, rx,y, and κx,y(λ) are the pixel-to-pixel variation in dark current, response coefficient,
and quantum efficiency, respectively. When capturing an image with zero illumination,
Lx,y(λ) = 0, referred to as the dark image, (6) yields

Nx,y = Dx,y = 〈D〉+ dx,y, (10)

the time-invariant pixel-to-pixel nonuniformity dx,y, referred to as dark signal nonunifor-
mity (DSNU), with variance σd.
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When looking at a uniform gray field, often referred to as a flat field (FF), with
Lx,y(λ) = L, (6) yields

Nx,y = Tint

[
Rx,yL

∫ λ2

λ1

(λ)ηx,y(λ) dλ

]
+ Dx,y, (11)

By substituting (7)–(9) into (11),

Nx,y = Tint

[
(〈R〉+ rx,y)L

∫ λ2

λ1

〈η(λ)〉+ κx,y(λ)dλ

]
+ 〈D〉+ dx,y, (12)

which in turn can be separated to a spatially uniform part, the perfectly reproduced,
constant, flat field:

N(L) = Tint

[
〈R〉L

∫ λ2

λ1

〈η(λ)〉(λ)dλ

]
+ 〈D〉, (13)

and another term constituting the fixed-pattern noise:

Nx,y = Tint

[
Lrx,y

∫ λ2

λ1

〈η(λ)〉+ κx,y(λ)dλ

]
+ dx,y, (14)

the first term of which is referred to as the photoresponse nonuniformity (PRNU). The
variance of the PRNU, following the derivation in [2], assuming κx,y(λ), dx,y, and rx,y are
statistically independent, can be expressed as:

σ2
n = σ2

D +
σ2

R
〈R〉2 (N(L)− 〈D〉) + 〈R〉L

∫ λ2

λ1

κx,y(λ)dλ, (15)

1.2. FPN Noise Reduction in CMOS Sensors

Figure 1 shows the typical structure of a CMOS image sensor.

Figure 1. Typical CMOS image sensor block diagram.
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A matrix of pixels can collect electrons generated by the photoelectric effect. A row
of pinned photodiodes can be reset, exposed, and read out by corresponding row reset,
row transfer, and select drivers. Multiple pixels of a row can be read out simultaneously
via a set of programmable gain amplifiers (PGAs) and analog to digital converters (ADCs).
Modern CMOS sensors use correlated double sampling (CDS, Nakamura [4]) or correlated
multiple sampling (CMS) (Min-Woong [5]). Analog or digital hardware solutions eliminate
dark charge QR, by sampling and holding the output of a pixel after reset, then sampling
the same output during readout. The column amplifier outputs the difference between
the two samples, which effectively removes any common mode bias, such as reset noise.
Differential delta sampling (DDS) aims to remove fixed-pattern noise introduced by small
differences between the sample-and-hold (SH) capacitors, and biases of the programmable
gain amplifiers using a crowbar operation (Kim [6]). Before CDS and DDS, column-wise
readout via PGAs and ADCs and row-wise addressing gave the DSNU and PRNU a
characteristic striated, row–column-oriented structure shown on the left-side image of
Figure 2. The right-side image shows a magnified, contrast-enhanced sample enhanced
for visibility.

(a) (b)

Figure 2. FPN of the IMX265LLR-C at 60 ◦C and 12 dB of analog gain: (a) no zoom and (b) 8× zoom.

Another often-used technique to remove DSNU is to use the optically masked pix-
els surrounding the active pixel area. These pixels are affected by the same conditions
(temperature, electronic noise, analog gain) as the active pixels, and their values could be
digitally subtracted from the corresponding rows and columns, further reducing systemic,
row–column-structured noise

1.3. Temperature Dependence

The temperature dependence of dark current in silicon photodiodes (Takayanagi [7])
can be expressed as:

ID(T) = AdgenT1.5e−
−Eg
2kT + Bdi f f T3e−

−Eg
kT , (16)

where Eg is the activation energy, k is the Boltzmann constant, and Adgen and Bdi f f are
technology dependent coefficients. The shape of the aggregate temperature dependence
function has two exponential regions, one dominated by the diffusion current and one by
the spontaneous generation current.

2. Motivation

This section provides an overview of the application areas benefiting from an improved
uniformity of image sensors.
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2.1. Image and Video Quality Improvements for Enhanced Viewer Experience

While this analysis focuses on large pixel, high-quality, low-noise, global shutter
sensors, many consumer products use small, low-cost CMOS sensors. Smaller pixels often
have a reduced full well capacity and in turn a smaller dynamic range. Video recorded from
sensors contains temporal and fixed-pattern noise superimposed on the signal. The human
visual system easily disregards the temporal, Gaussian noise, but discerns patterned FPN
deeply buried in temporal noise. FPN is particularly disturbing when it is superimposed
on human faces in video conferencing. As viewers track facial features, movements of the
face relative to the image sensor causes an apparent shift of FPN artifacts over the subject,
which most viewers notice and may find objectionable.

2.2. Astronomy and LIDAR

On the other end of the sensor price/quality spectrum, large, stabilized focal plane
arrays are used to image celestial objects. High-end staring cameras typically track their
targets and use extended exposure intervals or collect many exposures to form output
images then register the image stacks. Image stacking may amplify DSNU if motion
between constituent frames is negligible relative to the spatial frequencies of the DSNU.
Scheimpflug Lidars using CMOS sensors (Mei [8]) also depend on FFC to improve SNR.

2.3. Visual Odometry

In machine vision camera applications, the consumer of video streams are algorithms,
which may be less effective at canceling noise than the human visual system. Especially for
high-frame-rate imaging tasks with short integration time, the relatively low signal-to-noise
ratio calls for digital postprocessing of the images to reduce FPN. A prime example of
this use case is disparity mapping for visual odometry. In this case, two image sensors,
with different FPN profiles are looking at the scene. The processing algorithm infers depth
or the z-axis distance from the sensor pair from the difference or disparity between the
images. Disparity mapping attempts to find a correspondence between an image pair,
and often sub-pixel differences in x–y plane disparities are amplified when estimating the
z-axis depth.

The analysis of stereo image pairs collected using a low-cost sensor (EV76C661 [9])
showed that matching density improved from 10.2% to 13.1% with FFC enabled, a 28%
improvement. Expected improvements in matching performance can be simulated without
the actual image sensor in hand. If detailed FPN information is available, e.g., by perform-
ing the EMVA1288 [10] analysis of a sensor, then synthetic image pairs with ground-truth
depth information, such as the Middlebury dataset (Scharstein [11]), can be analyzed with
and without FPN (Figure 3). Similar to lab results with actual image sensors, matching
densities without lens shading, DSNU, and PRNU were 28% better for both the cone and
teddy datasets (Figure 4).

Figure 3. Cone dataset original (left) and with FPN (right).
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Figure 4. Teddy dataset original (left) and with FPN (right).

2.4. Forensics

To extract DSNU and PRNU from live video or image frames using nonuniform
illumination, different algorithmic solutions have been proposed, based on regularization
(Li, [12]), or convolutional neural networks (Guan, [13]). Using a large number of frames,
especially with large image areas with frequency content sufficiently different from the
spectra of the DSNU and PRNU, such as images of the sky, allows the recovery of the
DSNU and PRNU. The same techniques can be used to identify the source of a video,
by matching FPN as a watermark, embedded in the sources. One application of FFC is
to promote data privacy by reducing FPN to a level below the capabilities of forensic
algorithms (Karaküçük [14]).

3. Materials and Methods
3.1. Image Capture Parameters

At least two exposures, one with no illumination, and one with a flat uniform illumi-
nation are necessary to capture the sensor-specific correction images. For low-noise, CMOS,
visible light sensors with improved image sensor circuitry (7 transistor pixels, CDS, DDS),
thermal, electrical, and shot noise can be several orders of magnitude larger than FPN. In
order to cancel temporal noise and to measure DSNU and PRNU, thousands of images need
to be captured and averaged. To analyze the temperature and analog gain level dependency
of the DSNU and PRNU, the capture sequence was performed in a temperature-controlled
environment, with different gain settings. Specifically, images were captured

• For two 2nd generation, global shutter, monochrome, Sony Pregius machine vision
sensor candidates, the IMX265LLR-C and the IMX273LLR-C;

• Across the entire analog gain range supported by the two sensor candidates, at 0.0,
6.0, 12.0, 18.0 and 24.0 dB;

• For the above datasets, for both sensors, for 5 gain settings, via the temperature range
supported by the sensors, at 0.0, 15.0, 30.0, 45.0, and 60 Celsius degrees.

The dataset was collected with the Sony IMX265LLR-C, with the lens and lens housing
removed. A smaller dataset, with two temperatures (10 ◦C and 50 ◦C) and two analog
gain settings (2.0 dB and 24.0 dB), was collected for both the IMX265 and IMX273, with
two different lens assemblies attached to the sensor PCBA. For each sensor, gain, and
temperature setting, the mean of the collected image stack:

µx,y( p̄) =
1
N

N

∑
1

Fx.y( p̄), (17)



Sensors 2022, 22, 9733 7 of 27

and the standard deviation of the stack was computed as

σx,y( p̄) =
1

N − 1

√√√√ N

∑
1

F2
x.y( p̄)− Nµ2

x,y( p̄), (18)

where p̄ = [T, α, sID, t] is a parameter vector of the capture temperature (T), analog gain
(α), sensor ID (sID), and exposure time (t). F2

x,y( p̄) and µ2
x,y designate the element-wise

squaring of pixel values for FF frame Fx,y( p̄) and image stack mean frame µx,y( p̄). To
reduce temporal noise below 1 LSB, N = 4000 images had to be averaged for each parameter
combination.

3.2. Instrumentation

In order to precisely control the temperature of the sensor, the sensor module was
mounted on a 24 V 30 W flexible polyimide heating film, connected to a USB controllable
power supply (Keysight E3634A). To control sensor temperature, a software-defined PID
controller was employed, using the built-in thermometer function of the sensor.

Data collection took place in a temperature chamber (No Door α LST365W-PF), which
could cool the sensor down to 0 ◦C. As a FF light source, an LED panel, Imaging Tech
Innovation model ITLB-ST-V1-100K, was used. The thermoelectric heating/cooling plate
and the sensor module were housed in a custom designed, 3D-printed enclosure, which
attached the sensor assembly to a flexible, collaborative robot arm (Universal Robot UR5e),
programmed to move the sensor assembly on a closed, circular trajectory (Figure 5).

Figure 5. Sensor assembly on robot arm in temperature chamber.
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The introduction of motion while the image stack was recorded was necessary to blur
any nonuniformity attributable to the light source. This was essential for the dataset with
properly focused lens assemblies attached to the sensor. While many other results published
(Burggraaff [15]) were based on measurements with integrating spheres, experiments
with the lens assembly attached and properly focused revealed both the low-frequency
(shading), and the high-frequency (contamination) characteristics of our integrating sphere.
Wang [16] also documented and addressed this issue. The specified uniformity of laboratory
integrating spheres, typically in the 40 dB range [17], is insufficient for testing 12-bit sensors.

With lens shading corrected and the image normalized for viewing, the high-frequency
content of the integrating sphere nonuniformity was revealed (Figure 6). If the image sensor
was repositioned in the viewport, the PRNU component remained fixed, but smudges and
other artifacts were shifted.

Figure 6. Static integrating sphere’s image artifacts.

4. Related Work

As mentioned in the introduction, the linear model framework for FFC was introduced
by Mooney [1] and Perry [2]. Generalized linear correction architectures similar to (19)
were proposed in the seminal works of Seibert [18] and Snyder [19].

Most FFC approaches are based on static dark-frame and flat-field calibration images,
but dynamic methods, using scene-based FFC have also been proposed [20]. While scene-
based methods require no calibration prior to use, significant back-end image processing is
necessary to discern non-striated nonuniformities to be suppressed from the dynamic scene
content. Convolutional neural networks (CNN) can also be used to identify and suppress
FPN [13]; however, this method also requires dedicated HW resources or CNN accelerators
made available for the embedded ISP platform. With either method, ISP architects are
trading static calibration time, invested during manufacturing, with initialization time
spent after each power-on, while the system dynamically calibrates to discern sensor-
specific FPN. It is worth mentioning that dynamic methods can automatically correct for
FPN variations due to parameter and temperature changes.

Based on application area, cost, and performance requirements, many solutions were
proposed for FFC implementation and calibration methods. As for the implementation of
FFC in an FPGA, Vasiliev [21] describes an FPGA-based ISP for a VGA CMOS image sensor,
including a column-based DSNU correction. For a basic FFC of the OmniVision OV5647
and Sony IMX219 sensor, Bowman et al. [22] proposed a simple apparatus to counter lens
shading and establish color-correction coefficients.

To correct lens shading and sensor nonuniformity, many documented solutions pro-
pose static, single-reference solutions. This is suitable for applications such as microscopy



Sensors 2022, 22, 9733 9 of 27

(Zhaoning [23]), where at least temperature is expected to be relatively stable. The ap-
proach is also viable for IR FPAs, used by many consumer grade (Teledyne-FLIR [24]) and
aerospace (Hercules [25]) IR cameras, which perform NUC periodically during operation
using a cold-plate mechanical shutter (Orżanowski [26]). However, closing the shutter
during use for a short period to capture FPN reference images may not be acceptable for
defense or real-time process control applications. Another class of FFC solutions compen-
sate for temperature but disregards the dependency of the DSNU and PRNU on analog
gain (Yao, [27]).

5. Results

This section first introduces the proposed FFC architecture, suitable for an embedded
implementation on FPGAs or ASIC ISPs, then reviews temperature and analog gain depen-
dence of DSNU and PRNU measurements on the Sony IMX265 and IMX273 global shutter
machine vision sensors. Fixed-pattern noise suppression results are presented for different
FFC configurations.

5.1. Flat-Field Correction

In the pixel stream Nx,y, as defined by (12), the signal is coupled with the DSNU term
dx,y and PRNU term rx,y. In order to correct frames with the commonly used reference-
based two-point calibration (TPC) method [26], the additive DSNU, and the multiplicative
PRNU need to be removed by performing the following correction:

Ox,y( p̄) = Gg
[
Nx.y( p̄)− Zin − Gd( p̄)dx.y( p̄)

][
gx.y(C, T)rx.y( p̄)

]
+ Zout, (19)

where Zin = 〈D〉 is the black level of the sensor input frame, Zout is the expected output
black level, Gd( p̄) is a temperature, gain, and sensor ( p̄)-dependent coefficient, which may
need to be re-evaluated every time parameters, such as temperature or analog gain, change.
During DSNU measurement, and consequently during regular use, the input black level,
Zin, is typically set in the sensor to several times the expected standard deviation of the
DSNU to avoid clipping the measured FPN. Coefficients Gg and Zout perform a linear
transformation of the output pixel range, mapping values to the expected output range,
8–16 bits per pixel data.

Figure 7 shows a block diagram of a single-channel FFC module. Inputs to the module
are the sensor input pixels ix,y =

[
αρNx,y

]
, where α is the analog gain applied, ρ is a charge-

to-voltage coefficient, and [] denotes the quantization, clipping, and clamping of the sensor
output. Internal to the FFC module is an optional, parametric lens shading correction
(LSC) block, which can be configured with a 32 × 32 matrix C(T) of temperature-dependent
coefficients.

Figure 7. Flat-field correction module block diagram.
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Parameters Gd, GG, C(T), Zin, and Zout, which only change between frames, are pro-
vided by ISP FW. In the proposed FPGA implementation of an ISP for a stereo machine
vision camera, the module maps efficiently to the DSP48 resources of novel Xilinx or Lattice
FPGAs. Generic parameters controlling the instantiation of the DSNU, lens shading, and
PRNU correction sections allow a balancing of FPGA logic resources with the performance
requirement of the target application. For example, if a temperature-compensated lens
shading correction is not a requirement, lens shading correction can be performed by
the PRNU correction multiplier, if the frame buffer providing rx,y is initialized with the
combined PRNU and lens shading correction image. All coefficients of the FFC hardware
component need to be initialized before use, and coefficients Gd( p̄), C(T), dx,y, and rx,y may
need to be regularly updated to match sensor operating parameters. The initialization and
subsequent parameter updates are carried out by firmware (FW), which in the proposed
implementation are executed by an embedded processor collocated in the same multipro-
cessor system on a chip (MPSoC) FPGA as the ISP HW (Figure 8). Besides configuring FFC
parameters, FW also configures the sensor(s), which includes programming the black level
to the same Zin value provided to the FFC module corresponding to the sensor.

Per-pixel DSNU and PRNU correction reference frames dx,y and rx,y are provided
to the HW FFC modules from external memory (DDR). The video direct memory access
(VDMA) modules in the system transfer video frames between the memory controller and
other system components. The memory controller provides a shared access to external
memory, by arbitrating and prioritizing requests. The VDMAs are also configured by
the system processor, and cyclically write or read frames from predetermined memory
address ranges. During initialization, one, or many DSNU and PRNU calibration images,
pertinent to different temperature and analog gain settings, can be loaded to the DDR
memory. During operation, FW programs exposure and analog gain settings into the image
sensors for every frame (autoexposure) and periodically reads sensor temperatures. Based
on temperature and gain settings, it may also reconfigure the VDMAs to select PRNU and
DSNU images best matched to the operating conditions and update the parametric lens
shading model coefficients (C) based on temperature.

Figure 8. Uniformity correction of stereo cameras.

The DDR memory bandwidth is a scarce resource, shared by the VDMA modules,
the system processor, and other ISP modules and HW accelerators implemented in the
MPSoC. As the high-speed components of the external memory interface subsystem are
primary drivers of dissipation and power consumption, a secondary goal of an efficient
FFC solution is to minimize the DDR memory bandwidth. Another design objective is to
minimize manufacturing and calibration time. Capturing DSNU and PRNU images for
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large sets of gain–temperature combinations for each individual sensor can be prohibitively
costly for mass manufacturing practical machine vision systems.

The subsequent analysis and summary focus on DSNU and PRNU reduction over the
entire gain and temperature range served by the ISP, while simultaneously minimizing
access to the DDR memory and the number of calibration images used.

5.2. DSNU Analysis

DSNU measurements without the lens holder and lens assembly were conducted
with a cover over the sensor. DSNU measurements with the lens assembly attached were
conducted with the lens cap covering the lens.

5.2.1. DSNU and Exposure Time

In the first dataset DSNU images for the IMX265LLR-C and IMX273LLR-C sensors
were captured at 0.5 ms and 2 ms exposure times, while holding the temperature and
gain constant. Table 1 demonstrates almost perfect correlation between frames captured
with different exposure times, with an almost identical standard deviation (SD). The SD is
expressed in LSBs of 12-bit sensor data.

Table 1. DSNU standard deviations and Pearson correlations.

Sensor Type Temperature
(◦C)

Analog Gain
(dB)

Std. Dev.
Tint =
0.5 ms

Std. Dev.
Tint =
2.0 ms

Pearson
Correlation

IMX265 10 2.0 1.423 1.416 0.974
IMX265 10 24.0 26.164 26.047 0.997
IMX265 50 2.0 3.275 4.982 0.983
IMX265 50 24.0 60.294 60.428 0.997
IMX273 10 2.0 4.430 4.416 0.988
IMX273 10 24.0 52.864 52.880 0.995
IMX273 50 2.0 4.799 5.376 0.962
IMX273 50 24.0 64.950 65.802 0.982

The dark current (thermal noise) was attenuated, but not fully canceled by averag-
ing. Note that the lower correlation values pertained to parameter sets with a low SD,
which amplified the relative effects of quantization and residual temporal noise. Likely
these sensors already contained advanced silicon processes and features to reduce dark
current and to compensate for biases. These findings were consistent with the findings of
Changmiao [28]. Based on the results, for the rest of the analysis, the DSNU was treated as
invariant with respect to the exposure time.

5.2.2. Standard Deviation of Uncorrected DSNU

Figure 9 presents the SD of the uncorrected DSNU as a function of temperature and
analog gain. Matching expectations and existing results, the magnitude of the DSNU scaled
exponentially with both temperature and analog gain.
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Figure 9. Standard deviation of uncorrected DSNU.

5.2.3. Single-Point Correction

As a first approximation a single prior, d̂x,y, was used without adjusting the magnitude
(Gd) to cancel the DSNU across the entire temperature and analog gain range. Figure 10
presents the SD of the residual DSNU when corrected with a static reference image captured
at 45 ◦C and 18.0 dB. At these parameter values, the SD of the DSNU was 28.64 (Table 2),
about half of the worst-case SD.

Figure 10. Residual SD of DSNU with a single, static image.

As expected, due to the strong correlation between the DSNU across temperatures and
gain ranges, the DSNU was almost perfectly canceled at parameter values close to reference
image capture conditions. The nonzero residual noise was due to the fact that two sets of
2000 images were collected for each parameter setting, and one stack was corrected using
the other as reference. This method also helped quantify leftover temporal noise in the data.
The worst-case DSNU was reduced considerably, by 37%, but the DSNU is significantly
increased in the range of the parameter space where the SD of the DSNU was lower than
that of the reference image. Pearson’s correlation was chosen as a similarity metric between
FPN captures due to its invariance to signal magnitude. Pearson’s correlation between
a scaled reference frame and an actual dark input frame remained unaffected by scaling
with (Gd).
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Table 2. SD and Pearson correlation for DSNU correction with a single static reference.

Temperature
(◦C)

Analog Gain
(dB) Tint (ms) Original Std.

Dev.
Residual Std.

Dev.
Pearson

Correlation

0 0 0.53 3.16 26.44 0.726
0 24 0.02 47.17 31.43 0.761
15 0 0.51 3.23 25.99 0.840
15 24 0.02 48.82 27.94 0.867
30 0 0.49 3.43 25.49 0.929
30 24 0.01 50.99 26.01 0.939
45 0 0.46 3.76 24.98 0.977
45 6 0.23 7.34 21.39 0.991
45 12 0.10 14.44 14.36 0.995
45 18 0.05 28.64 2.80 0.995
45 24 0.01 57.63 29.28 0.995
60 0 0.45 4.64 24.44 0.920
60 6 0.21 8.69 20.75 0.948
60 12 0.10 17.71 13.62 0.939
60 18 0.04 34.43 12.23 0.941
60 24 0.01 68.42 42.62 0.940

Equation (16) establishes the theoretical background for the exponential relation with
temperature, while the definition, α = 20log10 Ag (dB) of analog gain consequently results
in α, used by the programmable gain amplifiers in the sensor to scale exponentially with
the Ag factor as shown in Figure 11a.

(a) (b)

Figure 11. Standard deviation of DSNU at 30 ◦C (a) and at a gain of 24.0 dB (b).

By fitting exponentials along the axes (Figure 11) and modeling DSNU as a product of
an FPN template, with the magnitude approximated with a separable surface yielded:

dx,y(T, α) ≈ d̂x,yD(T, α) (20)

D(T, α) = c0(c1ec2α + c3)(c4ec5T + c6) (21)

where d̂x,y is a reference DSNU capture, normalized to σ = 1.0. For optimal results d̂x,y
should be captured at a temperature and gain setting maximizing correlation with DSNU
images captured for the rest of the parameter space.

For the IMX265, c0,1,...,6 = {0.0196, 3.1605, 0.1156, 0.2679, 1.547, 0.0449, 45.5775}.
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Considering the high correlation of FPN patterns for different parameters (T, α), FPN
suppression could be significantly improved by scaling the reference DSNU image captured
using the parametric approximation model of Equation (20).

Figure 12 presents the standard deviation of the residual DSNU after correction with a
single reference that was scaled by

Gd(T, α) =
D(T, α)

σ(d̂x,y)
, (22)

where D(T, α) is the approximation introduced in Equation (21), and σ(d̂x,y) is the SD of
the reference frame. This method reduced the DSNU across the entire temperature and
gain parameter space. The best DSNU reduction performance, 91.39% (21.3 dB), coincided
with the temperature and gain identical to the reference frame parameters, with the highest
Pearson correlation between frame and reference. The worst reduction performance, 25.1%
(2.51 dB), was measured at the parameter combination with the least Pearson correlation
with the reference frame. Establishing D(T, α) for each sensor instance may be prohibitively
costly for mass manufacturing. While D(T, α) is fairly uniform for the same batch of sensors,
a more accurate method is to read out the optically blanked pixels (OBP) around the active
region of the sensor image frame, then calculate the standard deviation of the OBP region.
OBPs are affected by temperature and gain settings identical to regular pixels and provide
an accurate value for in situ assessment of SD magnitude. This method can be considered a
digital postprocessing step after the analog correction proposed by Zhu [29]. Reading out
the OBP presents a small (∼1%) overhead during regular operation, which is a trade-off to
be considered with the manufacturing overhead of establishing D(T, α).

Figure 12. Standard deviation of DSNU corrected with a single, scaled image.

5.2.4. Multipoint Correction

Results from correction with a single reference frame have confirmed that the key to
improved FPN reduction performance is to use reference frames better correlated with
the FPN characteristic to the temperature and gain parameters of the image frames to be
corrected. For this purpose, many IR thermal imaging sensors and staring cameras use
multiple sets of FPN reference images and apply the one best suited to actual operating
parameters.

5.2.5. Linear Interpolation between Multiple Reference Images

A straightforward way to improve correlation is to calibrate at multiple gain and
temperature settings, then interpolate the reference frame used by FFC HW based on current
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temperature and gain settings (T, α). Suppose n ≥ 3 reference points, {p1, p2, . . . , pn},
in parameter space p̄ are selected for calibration, for which the corresponding DSNU
reference images d̂i ∈ {d̂1, d̂2 . . . d̂n} have been captured. To find the estimated d̂ pertinent
to p = {a, T}, we need to find pA, pB and pC, the three closest neighbors to p, defining a
triangle that preferably contains p. Operator ‖p− pi‖ = (c(α− αi)

2 + (T− Ti)
2 can be used

to rank order all candidate reference points by proximity, where α and T are the analog gain
and temperature for p, αi and Ti are the analog gain and temperature for reference point pi,
and c is a constant scalar. Note that the perfect distance metric would be the inverse of the
correlation between the DSNU of the particular frame and the DSNU of the reference frame;
however, the DSNU of the current frame is unknown. Based on Table 2, the analog gain
only scales DSNU; therefore, the DSNU along the gain axis is highly correlated, suggesting
a low value for c. The resulting reference frame to be used for FFC is interpolated using

d̂ = ∑
i∈{A,B,C}

λi d̂i, (23)

where λi are the barycentric coordinates of p, as defined by the triangle formed by pA, pB
and pC in the analog gain and temperature parameter space p̄ = {a, T}. λi can be found by
solving

Pλ̄ = p̄′ (24) 1 1 1
aA aB aC
TA TB TC

 λA
λB
λC

 =

 1
a
T

 (25)

for λ̄, which yields λA
λB
λC

 =

 ((λB − λC)(T − TC) + (λ− λC)(TC − TB))/D
((λC − λA)(T − TC) + (λ− λC)(TC − TA))/D

1− λA − λB

 (26)

D = (λC − λB)(TA − TC) + (λA − λC)(TB − TC) (27)

The magnitude of D can be thought of as the oriented area of a parallelogram defined

by the p AB−→ and p AC−→ vectors. If pA, pB and pC are on a line, then D = 0. The larger |D|
is, the more orthogonal p AB−→ and p AC−→ are, thus the better for interpolating p̄. Another
consideration besides having D 6= 0 for selecting three candidates from the rank-ordered list
of reference candidates is to have positive barycentric coordinates (λi > 0), ∀i ∈ {A, B, C},
which ensures d̂ is not extrapolated in Equation (23).

5.2.6. Single-Point Correction

The SD of the resulting blended reference d̂ can be calculated during the evaluation
of (23), or can be estimated using precomputed SDs of the constituent references:

σ(d̂) ≈
√

∑
i∈{A,B,C}

λiσ2(d̂i), (28)

Similar to the method introduced for a single reference, the estimated SD can be
used to scale the interpolated reference frame d̂ according to (22). To evaluate the linear
interpolation method, four reference DSNU images were captured at the four corners of
the parameter space, using both extremes of temperature and gain. This intuitive selection
ensured that for any parameter combination p in parameter space p̄, a set of three references
could be selected such that p was inside the triangle defined by the references. Figure 13
shows that interpolating the reference image produced very good results, significantly
reducing the worst-case DSNU.
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Figure 13. SD of DSNU corrected with linearly interpolated reference, using 4 reference captures.

5.2.7. Optimizing DSNU Reference Selection

In order to interpolate between references, at least three reference DSNU captures are
needed. Intuitively, by each additional reference image captured, we can minimize the
DSNU for the parameter combinations of the reference image, at the cost of additional
calibration time, DDR memory allocation, and boot time. DSNU suppression quality can
be also improved by optimizing the reference parameters for a given number of reference
frames. Figure 14 presents the residual SD after correction with five reference images,
captured at (0 ◦C, 0 dB), (60 ◦C, 0 dB), (0 ◦C, 24 dB), (30 ◦C, 24 dB), and (60 ◦C, 24 dB).

Figure 14. SD of DSNU corrected with linearly interpolated reference, using 5 reference captures.

Table 3 lists the Pearson correlation values between the actual frames and the in-
terpolated references. Besides improved DSNU suppression measurements, notice the
improvement in the correlation with respect to the correlation values in Table 2.
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Table 3. Residual SD, Pearson correlation, and DSNU reduction using interpolation and 5 references.

Temperature
(◦C)

Analog
Gain (dB) Frame SD Residual

SD
Pearson

Correlation

DSNU
Reduction

(%)

DSNU
Reduction

(dB)

0 12 11.90 1.28 0.994 89.3 19.39
0 24 47.17 3.82 0.997 91.9 21.84
0 18 23.61 2.89 0.993 87.8 18.24
0 6 6.05 0.87 0.990 85.7 16.88
0 0 3.16 1.06 0.944 66.6 9.52

15 24 48.82 5.33 0.994 89.1 19.24
15 18 24.40 2.73 0.994 88.8 19.01
...

...
...

...
...

...
...

45 12 14.44 2.28 0.987 84.2 16.02
45 6 7.34 2.12 0.958 71.1 10.80
45 0 3.76 0.65 0.985 82.8 15.30
60 24 68.42 7.10 0.995 89.6 19.69
60 18 34.43 5.17 0.989 85.0 16.47
60 12 17.71 3.21 0.984 81.9 14.84
60 6 8.69 1.56 0.984 82.0 14.90
60 0 4.64 1.55 0.944 66.6 9.52

Every time the analog gain or measured die temperature deltas exceed a predefined
threshold, the embedded processor controlling the ISP needs to recompute the interpolated
reference image d̂. Selecting the three closest candidates around the current p = {α, T}
from a set of {p1, p2 . . . pn} reference parameters is trivial. The majority of the FFC-related
workload for the embedded ISP processor is to perform the actual interpolation on millions
of pixels, which is dependent on the frame size, but invariant regarding the number of
reference images, n. At startup, the embedded processor needs to load reference DSNU
frames from the nonvolatile memory (NVME) to the system memory (DDR), which, de-
pending on the NVME used may present a small penalty in terms of boot time, for each
additional reference image. DDR memory or NVME’s size/cost is typically not a concern
considering image sizes relative to current package capacities. In order to optimize the
locations of reference captures {p1, p2 . . . pn} in parameter space p̄ = {α, T}, we need to
introduce the following quantities:

• Let ψε̄(α′, T′) denote the probability that during regular operation, the sensor tem-
perature (T) and analog gain (α) are within a predefined range |T − T′| < εT and
|α− α′| < εa, such that

αmax

∑
αmin

∫ Tmax

Tmin

ψε̄(α, T)dT = 1.0 (29)

ψε̄ is essentially the 2D probability density function based on discrete parameter
α, which is a register setting, and continuous parameter T, derived from camera
usage statistics.

• Let ω(α, T) denote the weight or relative importance of the user application, e.g.,
disparity mapping, associated with parameter combination (α, T). For high-gain
scenarios, an increased temporal noise may reduce the importance of DSNU.

With these quantities, we can now select the optimum set of reference parameters, p̄,
defined by:

p̂ = arg min
p∈ p̄

αmax

∑
αmin

∫ Tmax

Tmin

σp(α, T)ω(α, T)ψε̄(α, T)dT, (30)

where p = {p1, p2 . . . pn} is the set of (α, T) parameters at which reference images were
captured. σp(α, T) is the SD of the residual DSNU on images corrected with reference
set p. The argmin operation can be implemented with the simulated annealing (SA) by
Kirkpatrick [30], starting with p chosen from a constellation of parameters distributed
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along the edges of the parameter space. This offline operation may be time-consuming
even on a powerful computer, but it only has to be performed once per reference set p
during system design, assuming ω(a, T) and ψε̄(a, T) are stable.

5.2.8. Correction with Logarithmic Interpolation

Since DSNU is an exponential function of both α and T, interpolating in logarithmic
space intuitively may improve results:

d̂′ = exp

 ∑
i∈{A,B,C}

λi d̂′i

, (31)

where d̂′i = ln d̂i are the reference DSNU images stored in logarithmic format. Results un-
fortunately did not confirm this hypothesis, and with the same set of reference parameters,
the resulting DSNU residuals were slightly higher than that of the linear interpolation.

5.3. PRNU Analysis

Noise patterns on the sensor output image depend on imaging conditions: illumina-
tion, exposure time, analog gain, temperature, and conducted, capacitive, and inductive
electronic interference. The first set of experiments were designed to determine which
imaging parameters affected the PRNU.

5.3.1. PRNU and Exposure Time

FF images were captured for multiple IMX265LLR-C and IMX273LLR-C sensor in-
stances at 0.5 ms and 2 ms exposure times, while holding the temperature and gain constant.
Measurements were performed with the lens assembly present over the sensor. Table 4
demonstrates the almost perfect correlation between FF image stacks captured with differ-
ent exposure times.

Table 4. PRNU standard deviations and Pearson correlations.

Sensor Type Temperature
(◦C)

Analog Gain
(dB)

Std. Dev.
Tint =
0.5 ms

Std. Dev.
Tint =
2.0 ms

Pearson
Correlation

IMX265 0 2.0 175.69 176.00 0.999141
IMX265 20 2.0 174.47 176.33 0.999050
IMX265 60 2.0 171.03 174.16 0.998582
IMX273 35 0.2 182.69 183.31 0.996231
IMX273 35 12.0 180.74 183.32 0.995280
IMX273 60 0.2 177.80 181.75 0.999082
IMX273 60 12.0 154.77 155.31 0.996216

For the IMX265, the SD displayed only a slight dependence on exposure time and
temperature, a 0.1% increase at 0 ◦C, and a 2.1% increase at 60 ◦C, while the exposure time
increased fourfold from 0.5 ms to 2.0 ms. These increases were under the residual noise
floor after averaging the temporal noise over 2000 images. The IMX273 did not display
any measurable dependence on exposure time. Based on these results, for the rest of this
analysis, PRNU was treated as invariant with respect to the exposure time.

In comparison with Table 1, the SD of the PRNU was up to two orders of magnitude
larger than that of the DSNU, and initially seemed a lot less dependent on analog gain or
temperature. A second set of measurements were performed with a focus on temperature
and gain dependence for the IMX265LLR-C, capturing the PRNU at analog gain levels {0, 6,
12, 18, and 24 dB} levels, at {0, 15, 30, 45, and 60} degrees Celsius temperatures. For each
sensor, gain, and temperature combination, two sets of measurement data were recorded,
based on N = 2000 frame captures in each set. Both sets contained mean images, µ1(T, α)
and µ2(T, α), which were generated by averaging the captured images, as well as standard
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deviation σ1(T, α) and σ2(T, α) images, by calculating the SD for each pixel across the stack
of N images. The per-pixel SD allowed the estimation of the residual temporal noise present
in the data.

5.3.2. PRNU and Exposure Time

Before continuing with the analysis of the noise on image stacks captured with the FF
illumination, it was important to characterize noise sources. At higher illumination levels,
temporal noise is dominated by shot noise, the collective effect of the quantum nature of
light. The actual number of photons captured during the exposure period follows a Poisson
distribution. If the mean number of photons captured is ν, then the SD of shot noise is

√
ν.

The maximum number of photons converted to electrons is limited by the full well capacity
of the sensor, νmax, as well as the saturation level of the ADCs following the PGAs. Thus,
to get to an expected digital output level, such as a 70% white level, with higher analog
gains, fewer photons need to be captured. When using analog gain α, the SD of the shot
noise associated with the photon flux is reduced by

√
α at the photodiode, but this noise,

superimposed on the signal, is then amplified by the PGA.

σ(α) = α

√
ν

α
=
√

αν, (32)

Effectively, when comparing FF images captured with different analog gain settings
resulting from similar output white levels, the SD is expected to scale with the square root
of the gain applied. Figure 15, plotting the measured standard deviations E[σ1(T, α)] on
a lin–log scale, confirms this expectation. The 24.0 dB (maximum gain for the IMX265
and IMX273) applied a factor of 16 amplification, for which a 4× increase in shot noise
was observed.

Figure 15. Shot noise as a function of analog gain.

Averaging over N images reduces the SD of shot noise by a factor of
√

N. Based on
SD measurements, the SD of temporal noise present in the image stack means µ1(α, T)
and µ2(α, T) are expected to range from 11.2 LSBs (T = 0 ◦C, α = 0.0 dB) to 44.72 LSBs
(T = 60 ◦C, α = 24.0 dB), due to averaging.

It is also worth noting that the distribution of per-pixel standard deviation σ1(α, T) is
not necessarily Gaussian (Figure 16). Per the central limit theorem, the effects of multiple,
uncorrelated noise sources with different means and SDs (such as shot noise, thermal noise,
and electronic noise) superimposed on pixel outputs would present as a single Gaussian
even if the distributions of the individual noise sources were not Gaussian. Different
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sensitivities translate to different photon counts and in turn, different SD distributions
of shot-noise. For a monochrome sensor, with no lens assembly attached, Figure 16 is
proof of a continuum of different sensitivities, which effectively is the definition of the
PRNU present. To analyze noise variance on the pixel output, all temporal noise sources
dependent on the illumination and gain, such as shot noise, were incorporated into ns(L, α)
and all other temporal noise sources, such as reset, electronic, thermal noise into nT(α, T).
By factoring these into (11), with N′x,y(α, T) as the output pixel value, assuming a uniform
gray illumination (L), we obtained:

N′x,y(α, T) = TintRx,yLα + Dx,y(α, T) + ns(L, α) + nT(α, T) (33)

For FF measurements, exposure time Tint was set such that the expected output value
remained constant (70% of the white value, Nmax) for the chosen illumination intensity
L and analog gain α. Hence, LTintα = 0.7Nmax was a constant factored into the PRNU,
rx,y = TintRx,yLα = 0.7NmaxRx,y. Since the DSNU for all analog gain and temperature
combinations used in the PRNU analysis were recorded, captures could be corrected with
the DSNU:

nx,y(α, T) = N′x,y(α, T)− Dx,y(α, T), (34)

nx,y(α, T) = rx,y + ns(L, α) + nT(α, T), (35)

Assuming statistical independence between the noise sources, the noise variance on
the output could be expressed as:

σ2
n = σ2

r + σ2
s + σ2

T = σ2
r + σ2

t (36)

The first noise term, σr was pertinent to the fixed pattern PRNU, which we aimed
to minimize. The suppression of the temporal noise term σt was beyond the scope of
this paper.

Figure 16. Distribution of per-pixel SD at T = 30 ◦C, α = 0.0 dB.

Figure 17 illustrates the SD of the temporal noise as a function of the temperature and
analog gain used. As expected, thermal noise nT(α, T) increased with temperature, and
shot noise ns(L, α) increased with analog gain α.
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Figure 17. σt(α, T) ◦C, α = 0.0 dB.

5.3.3. Analysis of Flat-Field Image Stacks

The SD of the FF image stack (σn) and temporal noise (σt) were directly observ-
able. When the two sets of mean images, µ1(α, T) and µ2(α, T), of the image stacks were
combined:

s(α, T) =
µ1(α, T) + µ2(α, T)

2
(37)

The SD of the per-pixel temporal noise was suppressed by
√

2N ≈ 63.24 and

σ2
s = σ2

r +
σ2

t
2N

(38)

In the per-pixel differences of the two sets of mean images

d(α, T) =
µ1(α, T)− µ2(α, T)

2
(39)

the FPN term was eliminated, and the difference image capturing the residual temporal
noise after averaging was:

σ2
s =

σ2
t

2N
(40)

5.3.4. Standard Deviation of Uncorrected PRNU

From measurements of σs(α, T) and σd(α, T), the SD of the fixed-pattern component
(PRNU) could be deduced:

σr =
√

σ2
s − σ2

d (41)

Figure 18 illustrates the dependence of the PRNU on the analog gain and temperature.
It is also worth noting that the nonuniformity was only visible, though subtle, at very low
gains where shot noise was at minimum. Above 0.5 dB gain, the FPN on the video was
imperceptible as it was deeply buried in temporal noise.
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Figure 18. SD of uncorrected PRNU, σr(α, T).

5.3.5. Single-Point Correction

Selecting a single correction image (Figure 19) is the simplest way to calibrate nonuni-
formity and has demonstrated good results (Yao, [27]). For suppression of the visible PRNU
artifacts, selecting a calibration frame in the middle of the temperature range and at analog
gain α = 0.0 dB removed all visible artifacts.

Figure 19. Residual SD of PRNU, single-reference correction.

The analysis of the PRNU recorded at different temperatures and analog gains revealed
a very high correlation across the entire temperature range. This augmented the findings of
Figure 20, suggesting that the PRNU was stable across the operating temperature range.
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Figure 20. Projections and averages of σr(α, T).

5.3.6. Multipoint Correction

The results suggested that using multiple reference frames along the gain axis in the
middle of the temperature range could minimize the SD over the entire parameter range
(Figure 21).

Figure 21. Residual SD of PRNU, multi-reference correction.

Even though a multipoint correction can reduce the worst-case PRNU by a factor of
four, a practical implementation of this method requires capturing multiple PRNU reference
images in a temperature-controlled environment. The large number of images to capture
for each image stack and reference image may be prohibitively expensive in a production
environment.

6. Discussion

Based on the initial design objectives (FPN suppression performance, design silicon
footprint, DDR memory bandwidth, and calibration complexity), and the insights gained
from the analysis of factors affecting the DSNU and PRNU performance, the following
solutions are recommended for different performance tiers:

1. The most egregious nonuniformity problem is uncorrected lens shading. For consumer
products with inexpensive CMOS sensors and optics, such as webcams, a minimal ISP
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solution can use population images, captured once per manufactured batch, for lens
shading correction, and no correction for DSNU or PRNU. Objectionable to human
observers, and detrimental to machine vision and processing algorithms, lens shading
can be compensated using just the parametric LSC module in the proposed FFC
solution. This performance tier does not require an external frame buffer, VDMAs, or
FW initialization of the correction buffers (dx,y and rx,y).

2. For video applications where visible FPN is not acceptable, such as cell phones and
DSLR cameras, the PRNU and DSNU has to be suppressed. This performance tier
requires an external frame buffer, and VDMAs around the ISP block to provide dx,y
and rx,y. If fixed -focus optics are used, and the temperature compensation of the lens
is not a requirement, LSC can be performed by convolving the intensity correction
with PRNU correction in rx,y. The results of Section 5.2.3 demonstrated that using a
single, static image did not correct the DSNU sufficiently. As temperature and sensor
gain change, this method may introduce more noise than originally present in the
sensor image.

3. The top performance tier is suitable for high-end machine vision cameras, studio
equipment, or computational photography where motion-compensated image stacks
are registered to suppress temporal noise. For these demanding applications gain-
and temperature-compensated DSNU, PRNU, and LSC are all utilized. Parametric
LSC is suggested with module-specific, temperature-compensated lens shading pa-
rameters accounting for zoom and focus settings. For this tier, FW needs to either
calculate D(T, α) or gather image statistics from the OBP region of the sensor and
calculate σ(T, α) (Section 5.2). Moreover, FW may dynamically adjust the frame buffer
contents to interpolate between DSNU and PRNU frames stored in DDR memory.
As demonstrated in Section 5.2.3, DSNU correction can be significantly improved by
using the global DNSU amplifier (Gd) feature of the FFC. PRNU suppression can be
improved by using gain-dependent calibration images (rx,y). For this performance
tier, at initialization, multiple rx,y images need to be deposited into DDR memory
by FW. During use, FW also needs to read out sensor temperature T, and based on
the current analog gain setting α, update Gd(α, T) and reprogram the VDMA read
controller to point to the rx,y(α) best matched to operating conditions.

7. Future Work

More work is necessary to study the stability of DSNU and PRNU images over time. It
is well understood that the aging of image sensors due to high temperature and exposure
to cosmic rays may introduce defective pixels during use. Very likely the same processes
affect DSNU and PRNU, for which nonuniformity correction images need to be recalibrated
periodically. Removing and reattaching the lens assembly to record PRNU images without
LSC is problematic and may require access to a clean room and AA equipment, as the
removal of sealing compounds may damage or contaminate the sensor assembly. Therefore,
for the long-term use of sensor modules, DSNU and PRNU calibration with the lens
assembly attached is much preferred.

8. Summary

In the introduction, we reviewed sources of nonuniformity in imaging systems: DSNU,
PRNU and lens shading. In the subsequent Results section, we analyzed the dependency
of the DSNU and PRNU of two modern, global shutter machine vision sensors on exposure
time, die temperature, and analog gain (Figures 9 and 18). In Section 5.1, we also provided
an FFC architecture for ISPs, optimized for FPGA or ASIC implementation supporting
different FPN suppression performance and resource use trade-offs. Based on different use
case scenarios, the proposed FFC and ISP architecture could be configured for different
performance tiers. For all performance tiers, the proposed architecture introduced minimal
latency as images were read out from attached image sensors. The noise suppression
performance of four different algorithms were quantified to suppress DSNU (Section 5.2),
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along with the analysis of the embedded software and calibration complexity of the different
approaches. We provided methods (Section 5.2.7) for optimizing the capture parameters
of reference captures. The performance of PRNU suppression with single and multiple
reference captures were analyzed in Section 5.3.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC Analog-to-digital converter
ASIC Application-specific integrated circuit
CDS Correlated double sampling
CMOS Complementary metal–oxide semiconductor
CNN Convolutional neural network
DDS Differential delta sampling
DDR Double data rate random-access memory
DSNU Dark signal nonuniformity
FFC Flat-field correction
FPA Focal plane array
FPGA Field-programmable gate array
FPN Fixed-pattern noise
FW Firmware
ISP Image signal processor
IR Infrared
LSC Lens shading correction
LED Light-emitting diode
MPSoC Multiprocessor system on a chip
PGA Programmable gain amplifier
PRNU Photoresponse nonuniformity
RST Reset
SD Standard deviation
SEL Select
SH Sample and hold
SoC System on a chip
TEC Thermoelectric cooler
TX Transmit
VDMA Video direct memory access
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