
IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022 3355

Nonparametric, Nonasymptotic Confidence
Bands With Paley-Wiener Kernels for

Band-Limited Functions
Balázs Csanád Csáji , Member, IEEE , and Bálint Horváth

Abstract—This letter introduces a method to con-
struct confidence bands for bounded, band-limited func-
tions based on a finite sample of input-output pairs.
The approach is distribution-free w.r.t. the observation
noises and only the knowledge of the input distribution is
assumed. It is nonparametric, that is, it does not require
a parametric model of the regression function and the
regions have non-asymptotic guarantees. The algorithm is
based on the theory of Paley-Wiener reproducing kernel
Hilbert spaces. This letter first studies the fully observable
variant, when there are no noises on the observations and
only the inputs are random; then it generalizes the ideas
to the noisy case using gradient-perturbation methods.
Finally, numerical experiments demonstrating both cases
are presented.

Index Terms—Statistical learning, stochastic systems,
estimation, nonlinear system identification.

I. INTRODUCTION

REGRESSION is one of the fundamental problems of
statistics, system identification, signal processing and

machine learning [1]. Given a finite sample of input-output
pairs, the typical aim is to estimate the so-called regression
function , which, given an input, encodes the conditional
expectation of the corresponding output [2]. There are sev-
eral well-known (parametric and nonparametric) approaches
for regression, from linear regression to neural networks and
kernel methods, which provide point-estimates from a given
model class [3].

However, sole point-estimates are often not sufficient and
region-estimates are also needed, for example, to support
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robust approaches. These region-estimates have several vari-
ants, such as confidence regions for the “true” function
generating the observations [4]; for the expected output at a
given input [5]; and prediction regions for the next (noisy)
observation [6].

In this letter, we focus on building confidence bands for the
regression function. These bands have natural connections to
filtering and smoothing methods. While in a parametric setting
such region-estimates are typically induced by confidence sets
in the parameter space, in a nonparametric setting this indirect
approach is not feasible. Therefore, nonparametic confidence
bands for the expected outputs should be constructed directly.

Regarding prediction intervals for the next observation,
promising distribution-free approaches are interval predic-
tor models (IPMs) based on the scenario approach [7], [8],
and the conformal prediction framework also offers several
nonparametric methods for regression and classification [6].

If the data is jointly Gaussian, a powerful methodology is
offered by Gaussian process regression [5] that can provide
prediction regions for the outputs, and credible regions for
the expected outputs. However, the Gaussianity assumption is
sometimes unrealistic that calls for alternative approaches.

In this letter, we suggest a nonparametric approach using
Paley-Wiener kernels, to build data-driven simultaneous confi-
dence bands for an unknown bounded, band-limited function,
based on an independent and identically distributed (i.i.d.)
sample of input-output pairs. The method is distribution-free in
the sense that only very mild assumptions are needed about the
observation noises, such as they are distributed symmetrically
about zero. On the other hand, we assume that the distribu-
tion of the inputs is known, particularly, we assume uniformly
distributed inputs, as more general cases can often be traced
back to this assumption. First, the case without observation
noises is studied, then the ideas are extended to the general,
noisy case. The results are supported by both non-asymptotic
theoretical guarantees and numerical experiments.

II. KERNELS AND BAND-LIMITED FUNCTIONS

Kernel methods have an immerse range of applications in
machine learning and related fields [9]. In this section, we
review some of their fundamental theoretical concepts.

A. Reproducing Kernel Hilbert Spaces
A Hilbert space H of f : X → R functions with an inner

product 〈·, ·〉H is called a Reproducing Kernel Hilbert Space
(RKHS), if each Dirac functional, which evaluates functions
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at a point, δz : f → f (z), is bounded for all z ∈ X, that is
∀z ∈ X : ∃ κz > 0 with |δz(f )| ≤ κz ‖f ‖H for all f ∈ H.

Then, by building on the Riesz representation theorem, a
unique kernel, k : X × X → R, can be constructed encoding
the Dirac functionals satisfying 〈k(·, z), f 〉H = f (z), for all
z ∈ X and f ∈ H, which formula is called the reproducing
property. As a special case of this property, we also have for all
z, s ∈ X that k(z, s) = 〈k(·, z), k(·, s)〉H. Therefore, the kernel
of an RKHS is a symmetric and positive-definite function.

Furthermore, the Moore-Aronszajn theorem asserts that the
converse statement holds true, as well: for every symmetric
and positive-definite function k : X × X → R, there exists a
unique RKHS for which k is its reproducing kernel [10].

The Gram or kernel matrix of a given kernel k w.r.t. (input)
points x1, . . . , xn is Ki,j

.= k(xi, xj), for all i, j ∈ [n]
.=

{1, . . . , n}. Observe that K ∈ R
n×n is always positive semi-

definite. A kernel is called strictly positive-definite, if its Gram
matrix is positive-definite for all distinct inputs {xi}.

Archetypal kernels include the Gaussian kernel k(z, s) =
exp(−‖z − s‖2/(2σ 2)), where σ > 0; the polynomial kernel
k(z, s) = (〈z, s〉 + c)p, where c ≥ 0, p ∈ N; and the sigmoidal
kernel k(z, s) = tanh(a〈z, s〉 + b), for some a, b ≥ 0.

B. Paley-Wiener Spaces
Let H be the space of f ∈ L2(R, λ) functions, where λ is

the Lebesgue measure, such that the support of the Fourier
transform of f is included in [−η, η], where η > 0. It is a
subspace of L2 and thus we use the L2 inner product:

〈 f , g〉H .=
∫
R

f (x) g(x) dλ(x).

This space of band-limited functions, called the Paley-
Wiener space [10], is an RKHS. Its reproducing kernel is

k(z, s)
.= sin(η(z − s))

π(z − s)
,

for z �= s, where z, s ∈ R; and k(z, z)
.= η/π . Henceforth, we

will work with the above defined Paley-Wiener kernel.
Remark 1: Paley-Wiener spaces can also be defined on

R
d [11], but for simplicity we focus on the scalar input case.

III. NONPARAMETRIC CONFIDENCE BANDS

Let (x1, y1), . . . , (xn, yn) be a finite sample of i.i.d. pairs of
random variables with unknown joint distribution PX,Y , where
xk and yk are R-valued, and E[y2

k] < ∞. We assume that

yk = f∗(xk) + εk,

for k ∈ [n], where E[εk] = 0. Variables {εk} represent the
measurement or observation noises on the “true” f∗.

We call f∗ the regression function [1], as on the support
of {xk} it can also be written as f∗(x) = E[Y|X = x], where
(X, Y) is a random vector with distribution PX,Y .

A. Objectives and Reliability
Our aim is to build a (simultaneous) confidence band for

f∗, i.e., a function I : D → R × R, where D is the support of
the input distribution, such that I(x) = (I1(x), I2(x)) specifies
the endpoints of an interval estimate for f∗(x), for all x ∈ D.
More precisely, we would like to construct I with

ν(I)
.= P(∀x ∈ D : I1(x) ≤ f∗(x) ≤ I2(x)) ≥ 1 − α,

where α ∈ (0, 1) is a user-chosen risk probability, and ν(I) is
the reliability of the confidence band. Let us introduce

I .= {(x, y) ∈ D × R : y ∈ [I1(x), I2(x)]}.
Based on this, the reliability is ν(I) = P(graphD(f∗) ⊆ I),
where we define graphD(f∗)

.= {(x, f∗(x)) : x ∈ D}.
For notational simplicity, we will use I(x) = ∅ to denote

I(x) = (1,−1), i.e., the endpoints of an empty interval.
Hence, we aim at building a confidence band that contains

the graph (w.r.t. domain D) of the “true” f∗ with a user-
chosen probability level. Moreover, we would like to have
a distribution-free method (w.r.t. the noises) and the region
should have finite-sample guarantees without a parametric
model of f∗, namely, we take a nonparametric approach.

Remark 2: We note here, as well, that in the IPMs [7], [8]
and in the conformal prediction framework [6], the aim is to
build a guaranteed prediction region for the next observation,
while here we aim at predicting the value of the regression
function instead. In this sense, our objective is similar to that
of the region estimates of Gaussian process regression [5],
however, without the assumption of joint Gaussianity.

B. Main Assumptions
Our core assumptions can be summarized as follows:
A0: The dataset, (x1, y1), . . . , (xn, yn) ∈ R × R, is an i.i.d.

sample of input-output pairs; and E[y2
k] < ∞, for k ∈ [n].

A1: Each (measurement) noise, εk
.= yk−f∗(xk), for k ∈ [n],

has a symmetric probability distribution about zero.
A2: The inputs, {xk}, are distributed uniformly on [0, 1].
A3: Function f∗ is from a Paley-Wiener space H; ∀ x ∈

[0, 1] : |f∗(x)| ≤ 1; and f∗ is almost time-limited to [0, 1]:∫
R

f 2∗ (x) I(x /∈ [0, 1]) dλ(x) ≤ δ0,

where I(·) is an indicator and δ0 > 0 is a universal constant.
Now, let us briefly discuss these assumptions. The i.i.d.

requirement of A0 is standard in statistics and supervised
learning [12]. The square-integrability of the outputs is
needed to estimate the L2 norm of f∗ based on the sam-
ple and to have a well-defined regression function. The
assumption on the noises, A1, is very mild, as most stan-
dard distributions (e.g., Gauss, Laplace and uniform) satisfy
this.

Our strongest assumption is certainly A2, which basically
amounts to the assumption that we know the distribution
of the inputs and it is absolutely continuous. The more
general case when the inputs, {x′

k}, have a known, strictly
monotone increasing and continuous cumulative distribution
function F, could be traced back to assumption A2, since
it is well-known that xk

.= F(x′
k) is distributed uniformly

on [0, 1].
Assumption A3, especially limiting the frequency domain

of f∗, is needed to restrict the model class and to ensure that we
can effectively generalize to unknown data points. We allow
the “true” function to be defined outside the support of the
inputs, cf. the Fourier uncertainty principle [13], but the part
of f∗ outside of D = [0, 1] should be “negligible”, i.e., its
norm cannot exceed a (known) small constant, δ0.

A crucial property of Paley-Wiener spaces is that
their norms coincide with the L2 norm, which will
allow us to efficiently upper bound ‖f∗‖2

H based on the
sample.
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IV. CONFIDENCE BANDS: NOISE-FREE CASE

In order to motivate our solution, we start with a simplified
problem, in which we observe the regression function perfectly
at random inputs. In this noise-free case, we can recall the cele-
brated Nyquist–Shannon sampling theorem, which states that a
band-limited function can be fully reconstructed from the sam-
ples, assuming the sampling rate exceeds twice the maximum
frequency. On the other hand, if we only have a small num-
ber of observations, we cannot apply this result. Nevertheless,
we still would like to have at least a region estimate. In this
section we provide such an algorithm.

Recall that for a dataset {(xk, yk)}, where inputs {xk} are
distinct (which has probability one under A2), the element
from H that has the minimum norm and interpolates each
output yk at the corresponding input xk, that is

f̄
.= arg min{‖f ‖H : f ∈ H&∀k ∈ [n] : f (xk) = yk},

takes the following form [10] for all input x ∈ X:

f̄ (x) =
n∑

k=1

ᾱkk(x, xk),

where the weights are ᾱ = K−1y with y
.= (y1, . . . , yn)

T and
ᾱ

.= (ᾱ1, . . . , ᾱn)
T; we also used that the Paley-Wiener kernel

is strictly positive-definite, thus matrix K is invertible.
We will exploit, as well, that the norm square of f̄ is

‖f̄ ‖2
H = ᾱTKᾱ,

which is a direct consequence of the reproducing property.
Assuming we have a stochastic upper bound for the norm

square of the regression function, denoted by κ , the idea of
our construction is as follows. We include those (x0, y0) pairs
in the confidence band, for which the minimum norm interpo-
lation of {(xk, yk)} ∪ {(x0, y0)}, namely, which simultaneously
interpolates the original dataset and (x0, y0), has a norm square
which is less than or equal to κ . In order to make this approach
practical, we need (1) a guaranteed upper bound for the norm
square of the “true” data-generating function; and (2) an effi-
cient method to decide the endpoints of the confidence interval
for each potential input x0 ∈ D.

A. Bounding the Norm: Noise-Free Case
It is easy to see that in the noise-free case, if yk = f∗(xk),

for k ∈ [n], the norm square of f∗ can be estimated by

1

n

n∑
k=1

y2
k = 1

n

n∑
k=1

f 2∗ (xk) ≈ E

[
f 2∗ (X)

]
≈ ‖f∗‖2

2 = ‖f∗‖2
H,

since in the Paley-Wiener space the norm is the L2 norm, and
we also used that {xk} are uniform on domain D = [0, 1].

As the next lemma demonstrates, we can construct such a
guaranteed upper bound using the Hoeffding inequality.

Lemma 1: Assuming A0, A2, A3 and that yk = f∗(xk), for
k ∈ [n], we have for any risk probability α ∈ (0, 1),

P

(
‖f∗‖2

H ≤ κ
)

≥ 1 − α,

with the following choice of the upper bound κ:

κ
.= 1

n

n∑
k=1

y2
k +

√
ln(α)

−2n
+ δ0.

Proof: By using the notation R
.= 1/n

∑n
k=1 y2

k , we have

E[R] = ‖f∗ · ID‖2
2 ≥ ‖f∗‖2

H − δ0,

where ID is the indicator function of D = [0, 1]. That is, R is
a Monte Carlo estimate of the integral of this L2 norm.

Then, from the Hoeffding inequality, for all t > 0:

P(R − E[R] ≤ −t) ≤ exp(−2nt2).

According to the complement rule, we also have

P(E[R] < R + t) ≥ 1 − exp(−2nt2).

We would like choose a threshold t > 0 such that

1 − α ≤ P(E[R] < R + t).

This inequality is satisfied if we choose a t > 0 with

1 − α ≤ 1 − exp(−2nt2) =⇒ exp(−2nt2) ≤ α.

After taking the natural logarithm, we get −2nt2 ≤ ln(α),
hence, the choice of t∗ = √

ln(α)/(−2n) guarantees

P

(
‖f∗‖2

H ≥ R + t∗ + δ0

)
≤ α,

which completes the proof of the lemma.

B. Interval Endpoints: Noise-Free Case
Now, we construct a confidence interval for a given input

query point x0 ∈ D, for which x0 �= xk, for k ∈ [n]. That is,
we build an interval [I1(x0), I2(x0)] that contains f∗(x0) with
probability at least 1 − α, where α ∈ (0, 1) is given.

First, we extend the Gram matrix with query point x0,

K0(i + 1, j + 1)
.= k(xi, xj),

for i, j = 0, 1, . . . , n. As {xk}n
k=0 are distinct (a.s.), this

Gramian can be inverted. Hence, for any y0, the minimum
norm interpolation of (x0, y0), (x1, y1), . . . , (xn, yn) is

f̃ (x) =
n∑

k=0

α̃kk(x, xk),

where the weights are α̃ = K−1
0 ỹ with ỹ

.= (y0, y1, . . . , yn)
T

and α̃
.= (α̃0, . . . , α̃n)

T. The norm square of f̃ is

‖f̃ ‖2
H = α̃TK0α̃ = ỹTK−1

0 K0K−1
0 ỹ = ỹTK−1

0 ỹ.

Since the output query point y0 in ỹ = (y0, yT)T is arbitrary,
we can compute the minimum norm needed to interpolate the
original dataset extended by (x0, y0) for any candidate y0.

Therefore, having a bound κ on the norm square (which is
guaranteed with probability ≥ 1 − α), we can compute the
highest and the lowest y0 values which can be interpolated
with a function from H having at most norm square κ .

This leads to the following two optimization problems:

min / max y0

subject to (y0, yT)K−1
0 (y0, yT)T ≤ κ (1)

where “min / max” means that we have to solve the problem
as a minimization and also as a maximization (separately).

The optimal values of these problems, denoted by ymin and
ymax, respectively, determine the endpoints of the confidence
interval for f∗(x0), that is I1(x0)

.= ymin and I2(x0)
.= ymax.
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TABLE I
PSEUDOCODE: CONFIDENCE INTERVAL FOR THE NOISE-FREE CASE

Problems (1) are convex, moreover, as we will show, their
optimal vales can be calculated analytically. First, note that
the only decision variable of these problems is y0, everything
else is constant (including the input x0, which is also given).

Let us partition the inverse Gramian, K−1
0 , as[

c bT

b A

]
.= K−1

0 ,

where c ∈ R, b ∈ R
n and A ∈ R

n×n; after which

(y0, yT)K−1
0 (y0, yT)T = c y2

0 + 2 bTy y0 + yTAy.

Then, introducing a0
.= c, b0

.= 2bTy and c0 = yTAy − κ , the
two optimization problems (1) can be written as

min / max y0

subject to a0y2
0 + b0y0 + c0 ≤ 0 (2)

in which a0, b0 and c0 are constants (w.r.t. the optimization).
Since these are (convex) quadratic programming problems

(with linear objectives), their optimal solutions must be on the
boundary of the constraint. This can be easily verified directly,
for example, by the technique of Lagrange multipliers.

There are at most two solutions of the quadratic equation
a0y2

0 + b0y0 + c0 = 0. The smaller one will be denoted
by ymin and the larger one by ymax (they are allowed to
be the same, if there is only one solution). Then, we set
I1(x0)

.= ymin, and I2(x0)
.= ymax; or I(x0)

.= ∅, in case there
is no solution. Finally, we define I1(xk) = I2(xk) = yk, for
all k ∈ [n], as the outputs are noise-free, that is yk = f∗(xk),
for k ∈ [n].

Table I summarizes the proposed algorithm for the case
without measurement noise. By observing that if κ satisfies
‖f ‖2

H ≤ κ , which has probability at least 1 − α, then the
construction guarantees that graphD(f∗) ⊆ I, as the region
contains all outputs that can be interpolated with a function
from H which also interpolates the original dataset and has
norm square at most κ . Hence, we can conclude

Theorem 1: Assume that A0, A2, A3 and yk = f∗(xk), for
k ∈ [n], are satisfied. Let α ∈ (0, 1) be a risk probability.
Then, the confidence band of Algorithm I guarantees

P(graphD(f∗) ⊆ I) ≥ 1 − α.

V. CONFIDENCE BANDS WITH MEASUREMENT NOISE

Now, we turn to the general case, when the observations of
f∗ are affected by noises , yk = f∗(xk) + εk, for k ∈ [n].

Since now we do not have exact knowledge of the func-
tion values at the sample inputs, we cannot directly apply our
previous approach. The main idea in this case is that first we
need to construct interval estimates of f∗ at some observed
inputs, {xk}, which then can be used to bound the norm and
to build confidence intervals for the unobserved inputs.

A. Confidence Intervals at the Observed Inputs
We employ the kernel gradient perturbation (KGP) method,

proposed in [14], to build non-asymptotically guaranteed,
distribution-free confidence intervals for f∗ at some of the
observed inputs. The KGP algorithm is based on ideas from
finite-sample system identification [4], particularly, it is an
extension of the Sign-Perturbed Sums (SPS) method [15].

The KGP method can build non-asymptotically guaranteed
distribution-free confidence regions for the RKHS coefficients
of the ideal representation (w.r.t. given input points) of f∗. A
representation f ∈ H is called ideal w.r.t. {xk}d

k=1, if it has the
property that f (xk) = f∗(xk), for all k ∈ [d].

The KGP construction guarantees [14, Th. 2] that the con-
fidence set contains the coefficients of an ideal representation
w.r.t. {xk}d

k=1 exactly with a user-chosen confidence probabil-
ity, assuming the noises satisfy regularity conditions, e.g., they
are symmetric and independent (cf. A0 and A1).

Note that KGP regions are only guaranteed at the observed
inputs. KGP cannot provide confidence bands directly.

The KGP approach can be used together with a number
of kernel methods, such as support vector regression and ker-
nelized LASSO. Here, we use it with kernel ridge regression
(KRR) which is the kernelized version of Tikhonov regularized
least squares (LS). It solves the following problem:

f̂KRR
.= arg min

f ∈H
1

n

n∑
k=1

wi(yk − f (xk))
2 + λ ‖f ‖2

H, (3)

where λ > 0, wk > 0, i ∈ [n], are given (constant) weights.
Using the representer theorem [16] and the reproducing

property, the objective of (3) can be rewritten as [14]

1

n
(y − Kθ)TW(y − Kθ) + λ θTKθ, (4)

where W
.= diag(w1, . . . , wn), K is the Gramian matrix, and

θ = (θ1, . . . , θn) are the coefficients of the solution.
Minimizing (4) can be further reformulated as a canonical

ordinary least squares (OLS) problem, ‖v − �θ‖2, by using

� =
[

(1/
√

n) W
1
2 K√

λ K
1
2

]
, v =

[
(1/

√
n) W

1
2 y

0n

]
,

where W
1
2 and K

1
2 denote the principal, non-negative square

roots of matrices W and K, respectively. Note that the square
roots exist as these matrices are positive semi-definite.

For convex quadratic problems (such as KRR) and sym-
metric noises (cf. A1), the KGP confidence regions coincide
with SPS regions. They are star convex with the LS estimate,
θ̂ , as a star center. Furthermore, they have ellipsoidal outer
approximations, that is there are regions of the form


̂β
.=

{
θ ∈ R

n : (θ − θ̂ )T 1

n
�T�(θ − θ̂ ) ≤ r

}
, (5)



CSÁJI AND HORVÁTH: NONPARAMETRIC, NONASYMPTOTIC CONFIDENCE BANDS WITH PALEY-WIENER KERNELS 3359

where 1 − β ∈ (0, 1) is a given confidence probability [15].
The radius of this confidence ellipsoid, r, can be computed by
semi-definite programming: see [15, Sec. VI.B].

Hence, the construction guarantees P(θ̃ ∈ 
β) ≥ 1 − β,
where θ̃ is the coefficient vector of an ideal representation:

n∑
i=1

θ̃ik(xi, xk) = f∗(xk),

for k ∈ [n]. By defining ϕk
.= (k(x1, xk), . . . , k(xn, xk))

T, we
know that f∗(xk) = ϕT

k θ̃ , but of course θ̃ is unknown.
Since θ̃ is inside the ellipsoid 
̂β with probability ≥ 1−β,

we could construct (probabilistic) upper and lower bounds of
f∗(xk) by maximizing and minimizing ϕT

k θ , for θ ∈ 
̂β .
These problems (linear objective and ellipsoid constraint)

have known solutions: the minimum and the maximum are

νk = ϕT
k θ̂ − (ϕT

k Pϕk)
1
2 , μk = ϕT

k θ̂ + (ϕT
k Pϕk)

1
2 ,

where P = (nr)−1�T�, and θ̂ is the center of the ellipsoid,
i.e., the solution of the OLS formulation ‖v − �θ‖2.

Due to the construction of KGP confidence regions, there
is a (extremely small, but nonzero) probability of getting an
empty region. In this case, we define νk = 1 and μk = −1,
for all k ∈ [n]. That is, we give an empty interval for each
f (xk), using a similar representation as in Section III-A.

Finally, we introduced a slight modification to this construc-
tion. We can also construct confidence intervals just for the
first d ≤ n observations by redefining objective (4) as

1

n
(y − K1θ)TW(y − K1θ) + λ θTK2θ,

where K1 ∈ R
n×d is K having the last n−d columns removed,

and K2 ∈ R
d×d is K1 having the last n − d rows removed.

Hence, we search for θ̃ ∈ R
d ideal vector, such that for k ∈ [d],

we have (K1θ̃ )(k) = f∗(xk). For the error computation we still
use all measurements (K1 still has n rows). It is important
that in this case only the first d residuals are perturbed in
the construction of the KGP ellipsoid. This usually consider-
ably reduces the sizes of the intervals, but then we only have
guarantees at d ≤ n observed inputs.

B. Bounding the Norm With Measurement Noise
In the previous section, we built simultaneous confidence

intervals at the sample inputs for the first d ≤ n observations,
[νk, μk], for k ∈ [d]; that is, they have the property

P(∀k ∈ [d] : f∗(xk) ∈ [νk, μk]) ≥ 1 − β, (6)

for some (user-chosen) risk probability β ∈ (0, 1).
Recall that by Lemma 1, for any n, the variable

κ
.= 1

n

n∑
k=1

f 2∗ (xk) +
√

ln(α)

−2n
+ δ0, (7)

is an upper bound of ‖f∗‖2
H with probability at least 1 − α.

Using property (6), we also know that

d∑
k=1

f 2∗ (xk) ≤
d∑

k=1

max{ν2
k , μ2

k}, (8)

with probability at least 1 − β. By combining property (6),
formulas (7) and (8), the results of Lemma 1, as well as using
Boole’s inequality (the union bound), we have.

TABLE II
PSEUDOCODE: CONFIDENCE INTERVAL WITH MEASUREMENT NOISE

Lemma 2: Assume that A0, A2, A3 hold and that confi-
dence intervals [νk, μk], for k ∈ [d], satisfy (6). Then,

P

(
‖f∗‖2

H ≤ τ
)

≥ 1 − α − β,

with the following choice of the upper bound τ :

τ
.= 1

d

d∑
k=1

max{ν2
k , μ2

k} +
√

ln(α)

−2d
+ δ0.

Remark 3: Although we only used the first d observations
for estimating the norm (square), the intervals [νk, μk], for
k ∈ [d], incorporate information about the whole sample. The
“optimal” choice of d leading to small intervals is an open
question, in practice d = O(

√
n) often works well.

C. Interval Endpoints With Measurement Noise
The final step is to construct a confidence interval for a

given input query point x0 ∈ D with x0 �= xk, for k ∈ [d].
We extend the Gram matrix with query point x0,

K̃0(i + 1, j + 1)
.= k(xi, xj),

for i, j = 0, 1, . . . , d; but we only use the first d data points.
We have to be careful with the optimization problems, as

now we do not know the exact function values, we only have
potential intervals for them. Therefore, all function values are
treated as decision-variables, which can take values from the
given confidence intervals. Hence, we have to solve

min / max z0

subject to (z0, . . . , zd)K̃
−1
0 (z0, . . . , zd)

T ≤ τ

ν1 ≤ z1 ≤ μ1, . . . , νd ≤ zd ≤ μd (9)

where “min / max” again means that the problem have to be
solved as a minimization and as a maximization (separately).

These problems are convex, therefore, they can be solved
efficiently. The optimal values, denoted by zmin and zmax, are
the endpoints of the confidence interval: I1(x0)

.= zmin, and
I2(x0)

.= zmax. If (9) is infeasible, e.g., we get an empty KGP
ellipsoid, we set I(x0) = ∅, i.e., we use I(x0) = (1,−1).

Table II summarizes the algorithm to construct the endpoints
of a confidence interval at a given query point, in case of
having measurement noises. Its theoretical guarantee is.
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Fig. 1. Nonparametric confidence bands for the noise-free setting.

Fig. 2. Nonparametric confidence bands with measurement noise.

Theorem 2: Assume that A0, A1, A2, A3 are satisfied. Let
α, β ∈ (0, 1) be given risk probabilities. Then, the confidence
band built by Algorithm II described above guarantees

P(graphD(f∗) ⊆ I) ≥ 1 − α − β.

Remark 4: Applying the KGP approach in Algorithm II is
optional. One could use any other construction that provides
simultaneous confidence intervals for a subset of {f∗(xk)},
cf. (6). Another approach could be to assume sub-Gaussian or
sub-exponential noises and use their tail bounds to ensure (6).

VI. NUMERICAL EXPERIMENTS

The algorithms were also tested numerically. We used a
Paley-Wiener RKHS with η = 30. The “true” function was
constructed as follows: first, 20 random input points {x̄k}20

k=1
were generated, with uniform distribution on [0, 1]. Then
f∗(x) = ∑20

k=1 wkk(x, x̄k) was created, where each wk had a

uniform distribution on [−1, 1]. The function was normalized,
in case its maximum exceeded 1. Then, n random observations
were generated about f∗. In the noisy case, {εk} had Laplace
distribution with location μ = 0 and scale b = 0.4 parameters.

In the noise-free case, we used n = 10 observations, and
created confidence bands with risk α = 0.1 and 0.5. Figure 1
demonstrates that in the noise-free setting a very small sample
size can lead to informative nonparametric confidence bands.

In case of measurement noises, n = 100 sample size was
used with d = 20 (orange points). Confidence bands with risk
α + β = 0.1 and 0.5 are illustrated in Figure 2. We simply
used α = β in these cases. The results indicated that even
with limited information, adequate regions can be created.

VII. CONCLUSION

In this letter a nonparametric and distribution-free method
was introduced to build simultaneous confidence bands for
bounded, band-limited functions. The construction was first
presented for the case when there are no measurement
noises, then it was extended allowing symmetric noises.
Besides having non-asymptotic theoretical guarantees, the
approach was also demonstrated numerically, supporting its
feasibility.
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