
Simulation-based Learning of the Peg-in-Hole Process Using
Robot-Skills

Arik Lämmle, Philipp Tenbrock, Balázs Bálint, Frank Nägele, Werner Kraus, József Váncza, Marco F. Huber

Abstract— Increasingly volatile markets challenge companies
and demand flexible production systems that can be quickly
adapted to new conditions. Machine Learning has proven to
show significant potential in supporting the human operator
during the time-consuming and complex task of robot pro-
gramming by identifying relevant parameters of the underlying
robot control program. We present a solution to learn these
parameters for contact-rich, force-controlled assembly tasks
from a simulation using hardware-independent robot skills.
We show that successful learning and real-world execution are
possible even under process deviation and tolerances utilizing
the designed learning system. We present learning skill param-
eters as high-level robot control, evaluation and comparison
of extensive simulations, and preliminary experiments on a
physical robot test-bed. The developed solution approach is
evaluated and discussed using the Peg-in-Hole process, a typical
benchmark process in force-controlled assembly.

Index Terms— Robot Skills, Deep Reinforcement Learning,
Simulation

I. INTRODUCTION

Many assembly operations pose a high potential for robot-
based automation but are not realized in industrial appli-
cations. One reason is the complex and time-consuming
programming of the required force control or vision systems
to automatically adapt to process deviations and product
tolerances. Thus, easy-to-use and efficient tools for robot
programming are highly desirable. A promising approach to
hide the complexity from the user is task-level programming
employing predefined robot skills. Skills provide reusable
position and force-controlled modules, encapsulating the
relationship between sensor observations and robot control,
and can easily be parameterized to fulfill the desired as-
sembly task. In contrast to standard teach-in methods, robot
skills can be transferred to other robots as they rely on
commands in the task-space and not the robot-specific joint-
space. Despite their advantages, it still takes some time to

All authors contributed equally.
The research presented in this paper has received funding from the

Bundesministerium für Bildung und Forschung in the Rob-aKademI project
(project number 01IS20009C) and from the European Union’s Horizon 2020
research and innovation programme in the EPIC research project (grant
agreement No 739592).

A. Lämmle, P. Tenbrock, B. Bálint, F. Nägele and W. Kraus are
with the department of Robot and Assistive Systems, Fraunhofer
Institute for Manufacturing Engineering and Automation IPA. E-mails:
{arik.laemmle, philipp.tenbrock, balazs.andras.balint, frank.naegele,
werner.kraus}@ipa.fraunhofer.de

J. Váncza is with the Research Laboratory on Engineering and Man-
agement Intelligence, Institute for Computer Science and Control SZTAKI.
E-mail: vancza.jozsef@sztaki.hu

M. F. Huber is with the Centre of Cyber Cognitive Intelligence, Fraun-
hofer Institute for Manufacturing Engineering and Automation IPA and with
the Institute of Industrial Manufacturing and Management IFF, University
of Stuttgart. E-mail: marco.huber@ieee.org

Fig. 1. Paper focus: Learning skill parameters from simulation.

parameterize and tune the skills manually on the physical
robot system, limiting their application for small lot sizes or
high variances. Another solution is simulation-based offline
programming. Compared to online methods, this does not
require an actual robot cell; however, the control programs
still have to be generated manually and adjusted afterwards
due to the differences between the digital and real world.

In this paper, we combine the strengths of robot skills
with the advantages of offline programming in a simulation
environment. The time-consuming parameterization of the
skills is compensated by a learning method that allows
the situation-specific adaptation of the robot to industry-
typical position tolerances. The robot agent uses Deep
Reinforcement Learning (DRL) to learn appropriate skill
parameters through continuous trial and error, similar to a
human learning a manipulation skill by interacting with their
environment. Thus, we employ DRL to train the complex
interactions between the multidimensional sensor inputs and
the situation-specific movements of the robot in order to
achieve targeted sequential decision making. Using a digital
simulation environment prevents damage to the robot or its
environment during the learning process. Numerous current
studies deal with the training of robots using DRL, either
requiring a physical robot cell or using a simulation but
training on the robot- and application-specific joint coor-
dinates [1]–[3]. We demonstrate the effectiveness of the
simulation-based training of robot skills using the force-
controlled Peg-in-Hole benchmark process. For the training,
three learning algorithms are compared: Soft-Actor-Critic
(SAC), Twin Delayed Deep Deterministic Policy Gradient
(TD3), and Proximal Policy Optimization (PPO). To test the
robustness of the trained robot controller, the position of the
hole is varied over industry-typical uncertainties. In addition
to the training in simulation, we present first experiments on
a physical robot test-bed.

The contributions of applying DRL over the parame-
ter space of a task-level force-based robot control policy
are several-fold. First, doing so results in inherent policy-



Fig. 2. Structure of the Peg-in-Hole task, used in the presented work consisting of a search and an insertion phase. The peg has a diameter of 39 mm,
the hole 40 mm. Initially, the robot positions the peg above the hole body and 45 mm from the ideal hole position at an angle of 45◦ in the (xy) plane.

robustness against process uncertainties and noise, making
the resulting program transfer more likely to the real world
out-of-the-box. Second, defining such a skeleton for the
resulting policy encapsulates a significant amount of the
expert knowledge required for robot programming, enabling
the straightforward generalization of the policy over robots
used, part variants, and other cell elements and its easy
adaptation to process uncertainties and tolerances.

The paper is structured as follows. Section II describes
the considered skill parameterization problem. Details of the
system design are described in Section III. Section IV fo-
cuses on simulation-based training, and presents first results
from real-world experiments. Finally, we conclude the paper
and provide an outlook on future work.

II. CONSIDERED PROBLEM AND RELATED RESEARCH

Instead of teaching the robot’s movement directly, robot
skills define relative motions and constraints between ob-
jects of the robotic system, mainly workpieces, tools, and
fixtures. Our work aims to train a model that selects feasible
relative motions, constraints, and controller parameters – in
contrast to learning methods for assembly operations that
train directly on the robot joint coordinates and implicitly
learn the robot kinematics and the force control. In this
field, most recent solutions [1]–[6] train policies that observe
the robot joint states and transform them into end-effector
movements or utilize fine-tuned trajectories. However, the
learned controllers are specific to the robot system and the
process and cannot be used without extensive retraining when
the system changes. In contrast, the skills used in this work
can be adapted to process changes, product variants, or even
changes to the robot and the periphery by simply adjusting
the parameters [7].

Regardless, these parameter adjustments are generally re-
quired when transferring such a skill-level robot control pol-
icy between platforms. While encapsulating the dependence
on the controlled robot’s dynamics, the configured skills still
rely on them implicitly through the skill’s parameter values.
Consequently, while such a policy runs on any suitable
platform, a performance drop is expected; parallel research

has developed solutions for this problem with good results
[8]–[10].

Nonetheless, similar recent frameworks or pipelines to the
one this paper presents do exist. For example, Sharma et al.
[11] use reinforcement learning to develop and compose task-
axis robot controllers in place of skills, and Liang et al. [12]
open up the skill sequence for the learning agent to solve
force-controlled manipulation tasks. While the structure and
sequence of skills remain fixed in our work, the framework
we present incorporates a formal layer of skill composition
that facilitates straightforward interchangeability and poten-
tially allows non-expert human access, both of which are de-
sirable for an industrial application. Nonetheless, automating
our skills’ composition and their sequencing is a part of our
ongoing work.

The Peg-in-Hole task is a well-researched benchmark pro-
cess and describes the basic procedure of multiple assembly
processes in industry. The goal of the Peg-in-Hole is to insert
an often cylindrical body (peg) into its counterpart (hole).
The hole usually has a slightly larger diameter than the
peg (clearance). The robotic automation of the task requires
a force-controlled solution as the positioning errors in the
process exceed the assembly clearance. Visuomotor solutions
are also impractical for most applications, as occlusions can
easily occur during the process. Generally, the Peg-in-Hole
task consists of two subsequent phases building on each
other, 1) the search and 2) the insertion phases (Fig. 2).
Recent solutions achieve success rates of up to 100% in
executing the Peg-in-Hole task. For example, Inoue et al.
[1] first train their policy with 1 mm positional error of
the hole, then further with 3 mm, learning to handle even
sub-millimeter clearances. The solution of Fan et al. [3] can
handle clearance of 0.2mm, a positional error of 0.5mm on
the hole with a bounded exploration space of 3mm around it.
The trajectory-based approach of Park et al. [6] can handle
a clearance of 10 µm. Compared to the existing work of
the Peg-in-Hole tasks, we train the used robot controllers
entirely in a safe simulation environment. For the evaluation,
we consider industry-typical uncertainties of the actual hole
position. In general, to the best of our knowledge, no solution



exists for the offline training of position- and force-controlled
skills in robot-based assembly.

III. SYSTEM DESIGN

We adopt the skill model of Nägele et al. [7], where each
skill

S = (N ,KE , T ,SC,M, T R,Ssub) (1)

is a 7-tuple; N is the unique name of the skill, KE is a set
of kinematic elements that describe the robot’s and the task’s
kinematic model based on the iTaSC formalism [13], T is a
list of tasks that include the control variables and parameters,
SC is a collection of scripts for additional support functions,
the monitor M describes the stop conditions for terminating
the skill, T R defines the transition between the skill and its
subsequent skill, and lastly, Ssub is a list of sub-skills.

A. Skill Formalism for the Peg-in-Hole Task

The two phases of the Peg-in-Hole task (Fig. 2) can be
defined as the high-level skills Ssearch and Sinsert. The
skill for the search phase

Ssearch = (Sapproach,Sslide,1, ...,Sslide,N ) (2)

starts with approaching the hole body’s surface and continues
with up to N=15 consecutive slides, which apply a constant
contact force on the reached surface while moving along it.
Early simulation studies showed that this provides the agent
with a sufficient number of skills to explore its environment,
especially at the beginning of the training. At the same
time, the agent is trained to use as few skills as possible
through higher rewards. The reinforcement learning agent
learns a subset of the control variables and parameters Tslide,
which will be explained in Section III-B; the skill Sapproach

is not learned. Thus, the trained policies can adjust the
robot’s behavior in each consecutive slide skill adapting to
the sensor observations. Since the peg is directly mounted on
the robot flange, no additional scripts SCslide are needed to
control a gripper or other end-effector. The parameters for the
transition T Rslide were hand-crafted through experiments
both in simulation and on the real-world robotic test-bed
(see Section IV) to make sure that the criterion for finding
the hole in the search phase allows joining the peg in the
subsequent joining phase. The condition evaluates whether
the tip of the peg (i) is within the confidence interval of
2.5 mm in the (xy) plane around the center of the true hole
position and (ii) if it is dipped at least 2.0mm into the hole.
The stop conditions Mslide consist of (i) a timeout of 3.5 s
per skill, (ii) the agent reaching the predefined number N
of skill executions without fulfilling T Rslide, and (iii) the
forces measured on the robot’s flange exceeding a predefined
force threshold to protect the hardware.

The skill for the insertion phase

Sinsert = (Spivot,1,Sslide,1, ...,Spivot,N ,Sslide,N ) (3)

is defined similarly to that of the search phase. The agent
can choose to pivot the peg around the axes x or y or both
combined with a subsequent pushing movement along the

peg’s longitudinal axis. This alternation enables the agent to
learn a continuous threading movement and adapt to even
tight tolerances. The transition T Rinsertion is whether the
agent could insert the peg 20 mm deep into the hole, thus
solving the Peg-in-Hole task. Again, early simulation and
real world experiments showed that inserting the peg even
further into the hole with the previously set movements is
not a challenge for the robot.

B. Reinforcement Learning Framework

The reinforcement learning objective can be formulated as

π∗ = argmax
π

G(π)

= argmax
π

Eτ∼p(τ |π)

[
T∑

t=1

γt−1r(ot, at)

]
, (4)

finding the optimal policy π∗, which selects the agent’s
actions at to maximize the expected, discounted return over
a T-step trajectory τ and its probability distribution p(τ |π).
At each time step t, the agent receives an observation

ot = [pideal,t, ôt−i : ∀i ∈ {0, 4, 8, 12, 16}] ∈ R28

ôt−i = [Fe,t−i, pe,t−i] ∈ R5 (5)

of its environment that consists of the forces
Fe,t = (Fe,xy,t, Fe,z,t) ∈ R2 acting on the tip of the
peg, the peg tip’s position pe,t ∈ R3, and the ideal
hole position pideal,t ∈ R3. A history of four previous
observations is also provided to the agent. The type of the
observed data is the same during training and evaluation
in the simulation and policy execution on the real-world
robotic system to facilitate the policy transfer.

Two learnable action configurations T̂i ⊂ Tslide are tested
for Ssearch. In the first configuration

T̂1 = [ωt, ve,XY,t] , (6)

the agent can set the angle ωt ∈ [−45◦, 45◦] between its
linear movement and the ideal hole position, and the mag-
nitude of the peg tip’s velocity ve,XY,t ∈ [2.5 mm

s , 10 mm
s ]

in the world frame’s (xy) plane (see Fig. 2). In the second
configuration

T̂2 = [ωt, ve,XY,t, k, Fe,Z,t] , (7)

on top of the previous values, the agent can also adapt the
PD controller’s k∈ [0.0001, 0.001] factor and reference force
Fe,Z,t ∈ [1 N, 20 N] that regulates the contact force between
the hole body and the peg along the latter’s longitudinal axis.

Preliminary simulated training runs showed that enabling
the agent to set ωt and ve,XY,t for sliding instead of con-
straining its movements to either the axes x or y resulted in
better training results. The peg is also tilted from its upright
position in the direction of sliding, reducing the contact area
between the peg and the body with the hole from 3D to
2D. Experiments conducted on the real-world test-bed (see
Section IV) showed that tilting the peg by 15◦ is highly
favorable for applying a constant contact force on the body’s
surface with the hole compared to the angles 0◦, 30◦, or 45◦.



Furthermore, tilting the peg also resulted in smoother contact
forces in the simulation.

During training, the agent receives a scalar reward

r(ot, at) = e

(
−2·dxy

K

)
− 1 (8)

after each skill execution based on the distance dxy of the
peg’s tip and the hole’s center point. K = 70 mm is the
radius of an early termination zone around the hole’s center
point. If the agent leaves this zone, the current training epoch
is terminated and a new one is started. The optimization
problem defined in (4) is addressed by employing model-
free reinforcement learning approaches, the two off-policy
algorithms Soft-Actor Critic (SAC) [14] and Twin Delayed
Deep Deterministic Policy Gradient (TD3) [15] and the on-
policy algorithm Proximal Policy Optimization (PPO) [16].
We selected a negative reward and a discount rate of γ=0.99
for the agent to not only find the hole but to do so using as
few skills as possible.

One of the training’s primary goals is to develop control
policies that can handle the uncertainties resulting from
process-specific tolerances and inaccuracies. We made these
tolerances and inaccuracies present through perturbing the
hole’s ideal position according to a uniform distribution in
the range of [−10 mm, 10 mm] before every attempt at task
execution both on our real-world test-bed and in our digital
model. Typical deviations of the hole position in industrial
Peg-in-Hole tasks are ±5 mm. However, the modeled ran-
domization is deliberately chosen to be larger in order to
show the limits of simulation-based skill training. To prepare
the trained policies for their transfer from simulation to
reality, we applied additional randomizations in simulation.
The starting position of the peg is varied uniformly by
[−5 mm, 5 mm] in the (xy) plane around its initial position
(see Fig. 2). Also, the joint position signals that the robot
controller receives are randomized by adding a component
to them from the normal distribution N

(
0 rad, 0.022 rad2

)
to model the positioning inaccuracies and the sensor noise
of the robot.

IV. SIMULATION-BASED TRAINING

The in-simulation training of robot skills is the focus of
the work presented. In the following section, the modeling of
the Peg-in-Hole task will be discussed first in the employed
physics engine MuJoCo [17]. Then, a physical robot test-
bed is presented to evaluate the modeling and the subsequent
execution of the trained policies.

A. Setup of Simulation and Robotic Test-Bed

The general parameters of the employed physics engine
MuJoCo (simulation time-step, contact stiffness, contact
damping) were tuned before deploying the training, appar-
ently tempering the claimed generalizability of the presented
approach. However, this tuning was only qualitative to ensure
the general physical plausibility of the contact forces from
the simulation and their rough correspondence to the values
recorded from the physical test-bed. We find that such an
initial configuration is usually necessary due to the engine’s

Fig. 3. Simulated digital twin and physical robot test-bed

nature; an auxiliary aspect of our ongoing complementary
research [18] is to develop a more formalized approach to
aid the user in doing so.

Our physical test-bed (Fig. 3) consists of a Universal
Robots UR10e, a cross table for positioning the hole body,
and the surrounding robot cell, including safety. The test-
bed is, thus, a replica of the digital model in the simulation.
The peg is made of plastic, was produced by selective laser
sintering (SLS), and is screwed directly onto the robot’s
force-torque sensor. The hole body was also manufactured
using the SLS process and is screwed to the mounting plate
of the cross table. The cross table is used for the hole’s
high-precision positioning and mapping the randomized hole
positions for the control policy evaluation. Before starting
each experiment, the cross table is calibrated to ensure
the internal digital angle encoders’ accuracy. The robot is
controlled through skills and a ROS interface. A randomized
component was added to the simulated force values from the
normal distribution N

(
0 N, 0.22 N2

)
to reproduce the force-

torque sensor’s noise.
MuJoCo relies on smooth dynamics in the model simu-

lated to produce stable, physically plausible data. Therefore,
directly writing the desired robot joint velocity signals pro-
vided by the controller into the simulation as joint velocities
of the digital robot proved insufficient by itself. It resulted in
"jumpy" robot movements and unrealistically high forces, so
a model of the low-level robot controller had to be considered
for simulation. The physics engine enabled the smooth
control of joints through per-joint PID controllers. While it
had long been possible to synthesize such a controller for
an industrial robot arm [19], doing so generally required
knowing parameters of the robot that are rarely available
from robot manufacturers. Hence, we decided to employ a
constraint-based controlling approach instead.

We defined soft equality constraints along the translational
Cartesian axes between the robot flange and the peg attached
to it, practically resulting in a compliant member in the
kinematic tree. MuJoCo allowed us to directly tune the
second-order dynamical error decay of such constraints,
which we could set so that the error disappeared fast enough
not to impact the controller’s observations. Consequently,
we assumed that the dynamical behavior of the controlled
robot arm was practically rigid while solving the Peg-in-



0 1 2
Training skills 1e5

−2.0

−1.5

−1.0

Av
er

ag
e 

re
tu

rn

0 1 2
Training skills 1e5

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

0 1 2
Training skills 1e5

2

4

6

8

10

12

Sk
ill

s p
er

 e
pi

so
de

SAC TD3 PPO

Fig. 4. Average return, success rate and number of used skills from the simulation-based training for T̂1

Hole task. Using this approach, we could apply the target
joint velocity signals directly in the simulation; their effect
on the peg’s movement was realized through a "compliance"
that implemented the smoothness that MuJoCo required for
physical plausibility.

B. Training Results in Simulation

For the learning agent, Soft-Actor Critic (SAC) [14], Twin
Delayed Deep Deterministic Policy Gradient (TD3) [15],
and Proximal Policy Optimization (PPO) [16] from Stable
Baseline3 [20] were used. Five short and five long training
runs were performed using five varying seeds for each of
the three algorithms; resulting in 150 training runs total,
each with up to 50.000 skill executions in the short and up
to 200.000 in the long runs. The policies in training were
evaluated after every 200 skill executions, leading to 250
policy evaluations for the short and 1.000 for the long runs.
Each policy evaluation itself consisted of five policy rollouts,
in which the hole position was randomly varied at the
beginning. We used the average return, success rate, and the
number of skills executions until successful task completion
as evaluation metrics. The results visualized in Fig. 4 show
the in-simulation evaluations of the long training runs with
SAC and TD3 in the action configuration T̂1. Both algorithms
converge towards comparable bounds, and the results of the
short training runs show lower returns and success rates and,
on average, used more skills to find the hole across the
board, hinting that the agent could leverage the additional
time for learning that the long runs provided. Using the
second action configuration T̂2, in which the agent could
also train the parameters of the force controller, did generally
not lead to significant changes in returns or success rates. An
overview of the training results is provided in Table I. In both
configurations, the average skill count converged towards 3.
The training with PPO did not yield any significant success,
which can be attributed in particular to the design of the
learning only after each individual skill execution.

TABLE I
SUCCESS RATES OF THE SIMULATION EXPERIMENTS

Maximum randomization radius rrnd

≤ 2.5 mm ≤ 5 mm ≤ 10 mm total
SAC, T̂1 short 100.0% 100.0% 98.36% 92.83%
SAC, T̂2 short 100.0% 98.77% 89.09% 78.28%
TD3, T̂1 short 100.0% 96.30% 78.68% 67.62%
TD3, T̂2 short 100.0% 99.51% 91.36% 83.95%
SAC, T̂1 long 100.0% 99.75% 99.43% 96.37%
SAC, T̂2 long 98.10% 99.01% 97.98% 94.33%
TD3, T̂1 long 100.0% 99.75% 98.68% 97.32%
TD3, T̂2 long 100.0% 100.0% 96.09% 92.83%

C. Discussion of Simulation Experiments

The policies trained with SAC achieve success rates up to
96.37%, while TD3 reaches 97.32%, even for a randomiza-
tion of the hole above 10mm. Only minor differences can be
observed between the two action configurations. Generally,
the policies trained with SAC outperform those trained with
TD3. A possible explanation for the differences in the two
algorithms’ performance is the stronger dependence of TD3
on the chosen training hyper-parameters. Similar results are
also reflected in the average number of skills used. The
success rates of the simulation-based skill-trainings are, thus,
less than 3% below the results of state-of-art solutions for
the Peg-in-Hole task. At the same time, the trained policies
are outstanding in particular for their higher generalization
capability and robustness to deviations in the hole position.
Our trained policies also perform with success rates of 100%
for a randomization radius rrnd ≤ 5mm of the hole position
around its ideal position. If the hole position is randomized
even over industry-typical values with more than 10 mm
(total), success rates up to 97.32% are still achievable. In
contrast, the remarkably small diameter differences between
peg and hole from the work of Inoue et al. [1] were
not verified, as they exceed the limits of the simulation
resolution.

In the short training runs, the success rates of the policies
with either action configuration are slightly apart, compared



to the long runs. Again, a reason behind this could be the
hyper-parameter-sensitivity of TD3, as no extensive tuning is
performed over them. The longer training runs generally give
better results, even with the extended action space T̂2. The
agent appears to leverage more interactions to better learn the
situation-specific adaptation of the skills. Overall, both off-
policy algorithms perform very well, which speaks for their
use for training skill parameters. Policy updates occur after
and not during the execution of a skill, which explains the
significantly poorer performance of the on-policy algorithm
PPO, as it can obtain states only at the end of skill execution,
which presents a non-smooth volatile behavior of the robot.
A possible solution could be to reduce the skills’ duration
or examine the possibility of learning while the skill is still
being executed, but this was not further investigated.

D. Execution Results in Reality

The following part presents the results from a first policy
transfer to the physical robotic test-bed. The policies trained
with different algorithms and action configurations (see (6)
and (7)) that perform best in the simulation are selected for
the evaluation experiments. For each policy, 43 experiments
are performed by varying the position of the hole. 33
positions are chosen on a 2.5 mm grid and 10 randomly
around the ideal hole position. Each experiment consists of
5 episodes or policy rollouts, in which the agent has up to
N = 15 skills at its disposal to solve the Peg-in-Hole task.
The rollout is considered successful if the agent reaches the
hole within these N skills. In total, six different policies were
tested on the physical test-bed, resulting in 1290 executed
episodes. Fig. 5 shows the results using the policy trained
with SAC with action configuration T̂1 and in a short training
run. The position of each circle marks the hole position in
the experiment. Larger circles represent on average fewer
required skills, while the color scale represents the success
rate.

E. Discussion of Real-World Experiments

For our first experiments, we focused on executing the
policies from the short training runs. The results are pre-
sented in Table II. Remarkably, the success rates of 84% are
close to the simulated results for a hole randomization of
rrnd ≤ 5mm in the real world for executing policies trained
with SAC in action configuration T̂1. However, if we raise
the maximum distance to the total range of more than 10mm,
the success rates are with 57% significantly lower.

Admittedly, an adaptation of the slide phases’ success
criterion was needed: we had to increase the peg’s target
immersion depth to 5mm instead because the physical robot
would often stop "early" when passing the hole while using
the simulation’s 2mm criterion. I.e., the policy would trigger
the insertion phase even if the hole was only "partially"
found; the peg was not appropriately aligned for the insertion.
In light of this observation, we adapted and executed a few
training runs. However, the target immersion depth of 5mm
did not lead to any training progress in the simulation, which
is potentially due to the introduced "compliance" between the

−10.0−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
deviation along x / mm

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

de
vi

at
io

n 
al

on
g 

y 
/ m

m

mean number of skills / -
14.0 11.0 8.0 5.0

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e 

/ -

Fig. 5. Average success rate and mean number of skills in the real world

TABLE II
SUCCESS RATES OF THE PHYSICAL EXPERIMENTS

Maximum randomization radius rrnd

≤ 2.5 mm ≤ 5 mm ≤ 10 mm total
SAC, T̂1 short 83.33% 84.29% 61.49% 56.81%
SAC, T̂2 short 60.00% 64.29% 58.86% 51.16%
TD3, T̂1 short 63.33% 55.71% 46.86% 39.07%
TD3, T̂2 short 86.67% 80.00% 59.43% 52.56%

robot arm and the peg being too soft; the robot’s dynamical
behavior was made rigid with respect to its controller, but
not from a general mechanical perspective to save as much
computational power as possible.

Furthermore, the robot is observed to pass over the hole’s
side frequently while in policy execution. In such scenarios,
the peg submerges into the hole but not deeply enough
to trigger the transition to the insertion phase; then, it
reemerges, stops a distance away, and the robot continues
the searching motion in a direction away from the hole. This
behavior might indicate that the agent could benefit from
observing its intermediate states while executing a skill more.
The history of observations it gets upon skill completion
represents only the latter part of the execution; it is generally
not long enough to record the first part of a skill. A more
extended history could mitigate this issue, but it would not
scale well; instead, observing the intermediate states in the
frequency domain, aggregating them, or adapting the deep
neural network’s architecture would be worth investigating.

V. CONCLUSION AND FUTURE PROSPECTS

Our work presents an easy-to-use solution approach for
the simulation-based learning of reusable skills for high-
level robot control. We selected the Peg-in-Hole task as
a benchmark process for force-controlled assembly and



demonstrated the training in simulation and first results from
the subsequent transfer to a physical robot system. The
trained control policies showed up to 100% success rates
and high robustness towards tolerances of the hole position
exceeding even industrial-typical deviations.

Ongoing and future work includes adapting the success
conditions in simulation and reality, as these represent the
only current difference in the system’s design. For this pur-
pose, both manually adapted conditions and trained models
are used, which observe and evaluate the robot’s progress
even during a skill execution to adapt the behavior of the
robot agent. In addition to applying and evaluating further
methods of sim-to-real transfer, this should lead to an in-
crease in the success rates in reality and a closer alignment
with the simulation results. Current research also focuses on
learning the skill sequence or even new skill compositions
and the task and controller parameters of the individual skills.
In parallel, simulation-based training and transfer of further
assembly processes, such as mounting terminal blocks in
electrical control cabinets, is also taking place.

REFERENCES

[1] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana,
“Deep reinforcement learning for high precision assembly tasks,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 819–825.

[2] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Sim-to-real transfer of robotic control with dynamics
randomization,” CoRR, vol. abs/1710.06537, 2017. [Online].
Available: http://arxiv.org/abs/1710.06537

[3] Y. Fan, J. Luo, and M. Tomizuka, “A learning framework for high
precision industrial assembly,” in 2019 International Conference on
Robotics and Automation (ICRA), May 2019, pp. 811–817.

[4] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A framework for
robot manipulation: Skill formalism, meta learning and adaptive con-
trol,” in 2019 International Conference on Robotics and Automation
(ICRA), May 2019, pp. 5844–5850.

[5] M. Kaspar, J. D. Muñoz Osorio, and J. Bock, “Sim2real transfer
for reinforcement learning without dynamics randomization,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct 2020, pp. 4383–4388.

[6] H. Park, J. Park, D.-H. Lee, J.-H. Park, and J.-H. Bae, “Compliant
peg-in-hole assembly using partial spiral force trajectory with tilted
peg posture,” IEEE Robotics and Automation Letters, vol. 5, no. 3,
pp. 4447–4454, July 2020.

[7] F. Nägele, L. Halt, P. Tenbrock, and A. Pott, “A prototype-based
skill model for specifying robotic assembly tasks,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 558–565.

[8] L. Halt, P. Tenbrock, F. Naegele, and A. Pott, “On the implementation
of transferable assembly applications for industrial robots,” in 50th
International Symposium on Robotics, 2018, pp. 1–7.

[9] L. Halt, F. Pan, P. Tenbrock, A. Pott, and T. Seel, “A transferable
force controller based on prescribed performance for contact estab-
lishment in robotic assembly tasks,” in 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE), 2019,
pp. 830–835.

[10] L. Halt, “Reglersynthese für aufgabenraumgesteuerte industrier-
oboter,” Dissertation, University of Stuttgart, Germany, 2022.
[Online]. Available: http://elib.uni-stuttgart.de/handle/11682/12272

[11] M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer,
“Learning to compose hierarchical object-centric controllers for
robotic manipulation,” CoRR, vol. abs/2011.04627, 2020. [Online].
Available: https://arxiv.org/abs/2011.04627

[12] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer,
“Search-based task planning with learned skill effect models for
lifelong robotic manipulation,” in 2022 International Conference on
Robotics and Automation (ICRA), 2022, pp. 6351–6357.

[13] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbe-
liën, K. Claes, and H. Bruyninckx, “Constraint-based task specification
and estimation for sensor-based robot systems in the presence of ge-
ometric uncertainty,” The International Journal of Robotics Research,
vol. 26, no. 5, pp. 433–455, 2007.

[14] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with
a stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online].
Available: http://arxiv.org/abs/1801.01290

[15] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” CoRR, vol. abs/1802.09477,
2018. [Online]. Available: http://arxiv.org/abs/1802.09477

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization algorithms,”
CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[17] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[18] A. Lämmle, Z. Xiang, and B. A. Bálint, “Extension of established
modern physics simulation for the training of robotic electrical cabinet
assembly,” Procedia CIRP, vol. 107, pp. 1317–1322, 2022.

[19] P. Rocco, “Stability of pid control for industrial robot arms,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 606–
614, 8 1996.

[20] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus,
and N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-
1364.html


