
 

 
The LTI state-space equations of a system generally applied in 
systems and control theory 
 

 

   

dx t( )
dt

= Ax t( ) + bu t( )
y t( ) = cT x t( ) + d cu t( )

 (1) 

 
Here  u  and  y  are the input and output signals of the process, 
respectively, and  x  is the state vector. The parameter matrices 
of the system are    A,b,cT ,d . Since this paper mainly treats 
SISO systems, in  n -order case, matrix  A  means a 

 
n × n( )  

square matrix, which is the so-called state matrix,  b  is a 
column vector of 

  
n ×1( )  size,   cT  is a row vector of 

  
1× n( )  

size, and   dc  is scalar. 
 
The classical model of the dynamic LTI processes, the transfer 
function 

 
P s( )  is defined by the ratio of the 

LAPLACE transforms of the output and input signals, which 
can be easily derived from the state equation (1) 
 

 
    
P s( ) = Y s( )

U s( ) = cT sI − A( )−1
b + dc =

B s( )
A s( )  (2) 

 
where  
 

 

     

A s( ) = det sI − A( ) = sn + a1s
n−1 +…+ an

B s( ) = bosm + b1s
m−1 +…+ bm

 (3) 

 

The roots of the equation 
   
A s( ) = 0  are called poles; the roots 

of 
   
B s( ) = 0  are called zeros. A continuous-time (CT) linear 

process is stable, if all roots of the polynomial 
  
A s( )  are 

located on the left-hand side of the complex plane. Concerning 
the order of the polynomials 

  
A s( )  and 

  
B s( )  it should be 

noted that the number of the state variables is  n ,  m  is the 
order of the polynomial 

  
B s( ) , and the relation  m ≤ n  exists. 

The difference between the order of the numerator and 
denominator   pT = n − m  is called pole access. If   pT >0  then 

 
P s( )  is strictly proper, if   pT =0  then the transfer function is 

proper. In the practice arbitrary relation   0 ≤ pT ≤ n  might 

occur. 
 

 
 

Figure 1. Linear regulator with state feedback 
 

 
Control loops with state feedback 
 
It was shown formerly how processes are represented in state-
space. In many cases this kind of description is available only 
and the transfer function of the controlled system is 
unavailable. This partly explains why control design 
methodology directly based on state-space description has 
been evolved. Let us consider the state-space representation of 
an LTI process to be controlled such as 
 

 

    

dx
dt

= x = Ax + bu

y = cT x

 (4) 

 
which corresponds to (1) for the case of   dc = 0 . This does not 
violate the generality, because it is very rare for the model to 
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contain a proportional channel directly affecting the output. 
The block scheme of (4) and the classical state-feedback is 
shown in Fig. 1, where the thick lines present vector variables 
and  r  denotes the reference signal. 
 
In the closed-loop the state vector is fed back with the linear 
proportional vector   kT  according to the expression below 
    u = kr r − kT x  (5) 
 
Based on Fig. 1 the state equation of the complete closed 
system can be easily written as 
 

 

   

dx
dt

= A − bkT( ) x + kr br

y = cT x

 (6) 

 
i.e., with the state feedback the dynamics represented by the 
original system matrix  A  is modified by the dyadic product 

  bkT  to 
  

A − bkT( ) . 

 
The transfer function of the closed-loop control is 
c 

    

Try s( ) = Y s( )
R s( ) = cT sI − A + bkT( )−1

bkr =

=
cT sI − A( )−1

bkr

1+ kT sI − A( )−1
b
=

kr

1+ kT sI − A( )−1
b

P s( ) =

=
kr B s( )

A s( ) + kTΨ s( )b (7)

 

 

which derives from the comparison of equations valid for the 
LAPLACE transforms, 

   
U s( ) = kr R s( ) − kT X s( ) (see (6)) and 

   
Y s( ) = cT X s( )  (see (4)) using the matrix inversion lemma. 

Note that the state feedback leaves the zeros of the process 

untouched and only the poles of the closed-loop system can be 

designed by   kT . 
 
The so-called calibration factor   kr  is introduced in order to 

make the gain of 
  
Try  equal to unity (

  
Try 0( ) = 1). The open 

loop is obviously not of type one, so it cannot provide zero 
error and unity static transfer gain. It can be ensured only if 
the condition 
 

 

   

kr =
−1

cT A − bkT( )−1
b
= kT A−1b −1

cT A−1b
 (8) 

 
is fulfilled. The above special control loop is called state 
feedback. 

Pole placement by state feedback 
 
The most natural design method of state feedback is the so-
called pole placement. In this case the feedback vector   kT  
needs to be chosen to make the characteristic equation of the 
closed-loop equal to the prescribed, so-called design 
polynomial 

  
R s( ) , i.e., 

 

     

R s( ) = sn + r1s
n−1 +…+ rn−1s+ rn =

= det sI − A+ bkT( ) = A s( ) + kTΨ s( )b
 (9) 

 
The solution always exists if the process is controllable. (It is 
reasonable if the order of  R  is equal to that of  A .) In the 
exceptional case when the transfer function of the controlled 
system is known, the canonical state equations can be directly 
written. Based on the controllable canonical form the system 
matrices are 
 

 

    

Ac =

−a1 −a2 … −an−1 −an

1 0 … 0 0
0 1 0 0
    
0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

    
    
cc

T = b1 ,b2 ,… ,bn⎡⎣ ⎤⎦    ;
    
bc = 1,0,… ,0⎡⎣ ⎤⎦

T
 (10) 

 
Considering the special forms of   Ac  and   bc , it can be seen 
that the design equation (9) results in 
 

 
    
kT = kc

T = r1 − a1 ,r2 − a2 ,… ,rn − an⎡⎣ ⎤⎦  (11) 
 

ensuring the characteristic equation (
   
R s( ) = 0 ), i.e., the 

prescribed poles. The choice of the calibration factor can be 
determined by simple calculation 
 

 
  
kr =

an + rn − an( )
bn

=
rn
bn

 (12) 

 
Based on equations (7), (8) and (9) it can be seen that in the 
case of state feedback pole placement the closed-loop transfer 
function results in 
 

 
   
Try s( ) = kr B s( )

R s( )  (13) 

 
The most common case of state feedback is when not the 
transfer function but the state-space form of the control system 
is given. It has to be observed that all controllable systems can 
be described in a controllable canonical form by using the 

transformation matrix 
  
Tc = Mc

c Mc( )−1
. This linear 

transformation also refers to the feedback vector 
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kT = kc
TTc = kc

T Mc
c Mc

-1

kT = bc
T Mc

-1R A( ) = 0,0,… ,1⎡⎣ ⎤⎦ Mc
-1R A( )  (14) 

 
The design relating to the controllable canonical form (10), 
together with the linear transformation relationship 
corresponding to the first row of the non-controllable form 
(14), is known as the BASS-GURA algorithm. The algorithm in 
the second row of (14) is called ACKERMANN method after its 
elaborator. 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 2. Equivalent schemes to the state feedback design 

using transfer functions and polynomials 
 
In the BASS-GURA algorithm, the inverse of the controllability 
matrix   Mc  needs to be determined by the general system 
matrices  A  and  b  on the one hand and the controllability 
matrix   Mc

c  of the controllable canonical form, on the other. 

Since this latter term depends only on the coefficients  ai  in 
the denominator of the process transfer function, the 
denominator needs to be calculated: 

    
A s( )=det sI − A( ) . Since 

    
0,0,… ,1⎡⎣ ⎤⎦ Mc

-1  is the last row of the inverse of the 

controllability matrix, and 
  
R A( )  also need to be calculated; 

the ACKERMANN method does not need the calculation of 

  
A s( ) . 
 
It is worth mentioning that the state feedback formally 
corresponds to a conventional PD control and therefore over-
actuating peaks are expected at the input of the process 
because the pole placement tries to make the process faster. In 
practice, however, the actuator usually limits the amplitude of 
the peaks, which needs to be taken into account during the 

design of the poles of the characteristic polynomial 
  
R s( ) . 

 
It can be clearly seen that state feedback formally corresponds 
to a serial compensation 

   
Rs = kr A s( ) R s( )  (Fig. 2a). The 

real operation and effect of the state feedback can be easily 
understood by the equivalent block schemes using the transfer 
functions shown in Fig. 2. The “regulator” 

  
Rf s( ) of the 

closed-loop is in the feedback line (Fig. 2b). The transfer 
function of the closed-loop is 
 

 

   

Try s( ) = kr B s( )
R s( ) =

kr B s( )
A s( ) +B s( ) =

kr P s( )
1+ Kk s( ) P s( ) =

=
kr A s( )
R s( )

B s( )
A s( ) = kr Rs s( ) P s( )

 (15) 

 
where 
 

 

    

Rf = Kk s( ) = K s( )
B s( ) =

R s( ) −A s( )
B s( ) =

=
kT sI − A( )−1

b

cT sI − A( )−1
b

 (16) 

 
and the calibration factor is 
 

 
   
kr =

kT A−1b −1
cT A−1b

=
1+ Kk 0( ) P 0( )

P 0( )  (17) 

 
Given the block schemes of Fig. 2 it can be stated that the 
state feedback also stabilizes the unstable terms, since due to 
the effect of the polynomial 

  
K s( ) =R s( ) −A s( )  there is a pole 

placement for any process, so with the stable 
  
R s( )  the 

stabilization is fulfilled. The feedback polynomial 
  
K s( )  

formally corresponds to   kT . The fact that the numerator 
  
B s( )  

of the process is present in the denominator of 
  
Kk s( )  needs 

special consideration. The regulator can be applied only for 
minimum phase (inverse stable) processes, where the roots of 

  
B s( )  are stable. As a consequence of this special character of 

the state feedback, however, here 
  
B s( )  is not substituted by 

its model 
  
B̂ s( ) , but the method itself realizes the exact 

   
1 B s( ) . 
 
Pole placement with pole cancellation  
 
Consider the closed control system shown in Fig. 3, where the 
regulator   C = A X  is used to place the poles of the closed 
control system according to the characteristic equation   R= 0 , 
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( R  is the design polynomial) by the cancellation of the 
process poles. To do this,  X  needs to be expressed by the 
equation  R=X+B . The complementary sensitivity function 
of the closed-loop is 
 

 

   

T =

A
X

B
A

1+ A
X

B
A

= AB
AX+AB

= B
X+B

= B
R

 (18) 

 
The regulator is 
 

 

   

C = A
X

= A
R−B

=

B
R

1− B
R

A
B

=
Rr

1− Rr
P−1  (19) 

 
and actually corresponds to an ideal YOULA regulator with 
reference model    Rr = Rn = B R . This regulator places the 
poles in  R  and leaves the zeros in  B  untouched, if they are 
inverse stable.  
 

 
Figure 3. Pole canceling regulator 

 
Pole placement with feedback regulator 
 
An other solution when the regulator is put in the feedback is 
shown in Fig. 4. 
 

 
 

Figure 4. Regulator in the feedback 
 
Now the task is again to place the poles of the closed system 
according to the characteristic equation   R= 0  (  R  is the 
design polynomial). To do this,  K  needs to be determined 
from the equation  R=K+A . The complementary sensitivity 
function of the closed system is 
 

 

   

T =

B
A

1+ K
B

B
A

= B
A+K

= B
R

 (20) 

and thus this regulator places the poles in  R  and leaves the 
zeros in  B  untouched, if they are inverse stable. 
 
The characteristic equation of the closed system has the form 
  R= 0  and it doesnot depend on the unstable property of the 
process. 
 
The block diagram in Fig. 5. can be redrawn as Fig. 2c. (The 
state feedback methods are discussed in detail in Section 2.1, 
and the same control principle is represented in Fig. 2c among 
the schemes showing the equivalent transfer function 
representations for state feedback.) 
 

 
 

Figure 5. The regulator feeds back the internal signal of the 
process 

 
Pole placement with characteristic polynomial design 
 
The characteristic polynomial  R  of the closed-loop control 
can be directly designed by algebraic methods. In Fig. 6 the 
regulator   C = Y X  is the quotient of two polynomials. Under 
certain conditions, the DE  AX+BY=R  can be solved for  X  
and  Y . Thus from the characteristic equation   R= 0  the 
regulator can be directly determined. 
 

 
Figure 6. Direct control design on the basis of the 

characteristic polynomial 
 
The complementary sensitivity function of the closed system 
is  
 

 

   

T =

Y
X

B
A

1+ Y
X

B
A

= BY
AX+BY

= BY
R

 (21) 

 
and thus this regulator also places the poles in  R  and leaves 
the zeros in  B  untouched, but in the nominator  Y  appears, 
which depends on the desired properties and also on DE. 
 
Thus the characteristic equation of the closed system has the 
form   R= 0  and it does not depend on the unstable character 
of the process. 
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Regulators based on YOULA parameterization 
 
The YOULA parameter, as a matter of fact, is a stable (by 
definition), regular transfer function 
 

 
  
Q s( ) = C s( )

1+ C s( ) P s( )    or shortly   
  
Q = C

1+ CP
 (22) 

 

where 
 
C s( )  is a stabilizing regulator, and 

 
P s( )  is the transfer 

function of the stable process. 
 
It follows from the definition of the YOULA parameter that the 
structure of the realizable and stabilizing regulator in the 
YOULA-parameterized (sometimes called  Q -parameterized) 
control loop is fixed: 
 

 
  
C s( ) = Q s( )

1− Q s( ) P s( )    or shortly   
  
C = Q

1− QP
 (23) 

 
The sensitivity and complementary sensitivity functions linear 
in  Q  of the closed control systems were defined by (25). It is 
interesting to observe that the YP regulator of (23) can be 
realized by a simple control loop with positive feedback as 
shown in Fig. 7. 
 

 
 

Figure 7. Realization of a YP regulator 
 
A YOULA-parameterized (YP) closed-loop is shown in Fig. 8. 
 

 
Figure 8. YOULA-parametrized closed-loop 

 
The All-Realizable-Stabilizing (ARS) regulator has the form of 
(23). 
 
The closed-loop transfer function or Complementary 
Sensitivity Function (CFS) 
 

 
  
T = CP

1+ CP
= QP  (24) 

 
which is linear in the YOULA parameter  Q . It is well known 
that the YP regulator corresponds to the classical IMC 

(Internal Model Control) structure. 
 
The relationships between the most important signals of the 
closed system can be obtained with simple calculations 
 

 

  

u = Qr − Qyn

e = 1− QP( ) r − 1− QP( ) yn = Sr − Syn

y = QPr + 1− QP( ) yn = Tr + Syn

 (25) 

 
The effect of  r  and   yn  on  u  and  e  is completely 
symmetrical (not considering the sign). Thus the input of the 
process depends only on the external signals and 

 
Q s( ) . 

 
From the equation (24) it can be seen that the 
YOULA parameterization has the transfer function  QPr  
concerning the reference signal tracking. If the 
KB parameterization is introduced on the figure of Fig. 8, then 
the YOULA parameterization can be simply extended for 
TDOF control systems. To do this, let us simply apply a 
parameter   Qr  for the design of the tracking properties, and 
connect it in serial to the KB-parameterized loop, so the block 
diagram of Fig. 9 is obtained. 
 

 
 

Figure 9. Two-degree-of-freedom version of the YP control 
loop 

 
The overall transfer characteristics for this system are 
 

  

u = Qr yr − Qyn

e = 1− Qr P( ) yr − 1− QP( ) yn = 1− Tr( ) yr − Syn (26)

y = Qr Pyr + 1− QP( ) yn = Tr yr + 1− T( ) yn = Tr yr + Syn

 

 

where the tracking properties can be designed by choosing   Qr  

in   Tr = Qr P , and the noise rejection properties by choosing 

 Q  in  T = QP . These two properties can be handled 

separately. The reference signal of the whole system is 
denoted by  yr . The conditions for   Qr  are the same as for  Q . 

The meaning of   Tr  is analogous to the meaning of the 

complementary sensitivity function  T  of the one-degree-of-

freedom control loop for tracking. 
 

 

 
Control loops with state feedback 

3. Comparision of the  

Previously Discussed Design Methods 
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The most important advantage of the state feedback regulator, 
is that the calculation of the feedback vector is very simple. 
The most important disadvantage is that the internal state 
variables, necessary for the feed-back are usually not available 
in the practical tasks. This is why the observer topology is 
generally necessary to this method. Unfortunately this 
topology is not so simply to compute. Another important 
disadvantage is that this regulator assigns the pole of the 
closed-loop system, unfortunately it leaves the numerator of 
the process untouched in  T . It is important to know that from 
the methods discussed in this paper this is the only method 
which is applicable for unstable processes. 
 
Pole placement with pole cancellation  
 
The most important advantage of this method that it is very 
simple to calculate the regulator. The disadvantage is that this 
regulator assigns the pole of the closed-loop system, 
unfortunately it also leaves the numerator of the process 
untouched in  T . 
 
Pole placement with feedback regulator 
 
This method practically can be evaluated on the similar way as 
the previous method. Unfortunately the most important 
disadvantage is that in a practical task it is very rare that the 
regulator is in the feedback line. 
 
Pole placement with characteristic polynomial design 
 
This method is a little bit more complex than the pole 
cancellation method, because the calculation of the regulator 
needs the solution of a DE. The disadvantage is that this 
regulator assigns the pole of the closed-loop system, 
unfortunately it also leaves the numerator of the process 
untouched in  T  and puts another polynomial in the numerator 
of  T . This polynomial comes from the solution of the DE, so 
it is not easy to design. 
 

Regulators based on YOULA parameterization 
 
This method is the simplest, because it needs only basic 
polynomial operations to calculate the regulator. A further 
advantage is that the result of the design is the best reachable 
 T  even for invariant process zeros, too. 
 
Except the state feedback regulator the other methods are 
applicable only for stable processes. 

 
Let us assume the transfer function of the process in the 
following factorized form 
 

 
  
P s( ) = P+ s( ) P s( )− = P+ s( ) P− s( ) e−sTd  (27) 

 
or shortly 

   P = P+P− = P+P− e−sTd  (28) 
 
where  P+  is stable, and its inverse is also stable (Inverse 

Stable: IS) and realizable (ISR). The inverse of  P−  is unstable 
(Inverse Unstable: IU) and not realizable (Non Realizable: 
NR), i.e., (IUNR).  P−  is inverse unstable (IU). Here, in 

general, the inverse of the dead-time part   e
−sTd  is not 

realizable, because it would be an ideal predictor. 
 
In polynomial form a delay free process is given by 
 

 
  
P s( ) = B s( )

A s( ) =
B+ s( )B− s( )

A s( )  (29) 

 

where 
  
B+ s( )  and 

  
B− s( )  contain the inverse stable and 

inverse unstable zeros, respectively. 
 
If the reference model, formulating our design goal is 
 

 
   
Rn s( ) = Bn s( )

An s( )  (30) 

 
then the optimal YOULA parameter is 
 

 
   
Q s( ) = Rn s( )B+

−1 s( )  (31) 
 
Using this parameterization the optimal YOULA regulator can 
be calculated as 
 

 

   

C s( ) = Q s( )
1− Q s( ) P s( ) =

Rn s( )B+
−1 s( )

1− Rn s( )B+
−1 s( )B+ s( )B− s( ) =

=
Bn s( )A s( )

B+ s( ) An s( )A s( ) −Bn s( )B− s( )⎡⎣ ⎤⎦
(32)

 

 
The transfer function of the closed-loop system is 
 

 
   
T s( ) = Rn s( )B− s( ) = Bn s( )

An s( )B− s( )  (33) 

 
which is the best reachable result for the case of inverse 
unstable zeros. This result explains the name: “uncancellable” 
for the inverse unstable factors of the numerator of the 
process. 
 
For the two-degree-of-freedom version of the YOULA 
regulator (see Fig. 9) an additional reference model 
 

 
   
Rr s( ) = B r s( )

Ar s( )  (34) 

 
must also be calculated. 

4. Computation of the  
Optimal Youla Regulator 
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It can be well seen in this section that the computation of the 
YOULA regulator requires only very simple polynomial 
operations (additions and multiplications). 
 
Example 4.1. Let the CT process be given by a non-minimum 
phase transfer function 
 

 
  
P s( ) = 1+ sτ1( ) 1− sτ2( )

1+ sT1( ) 1+ sT2( ) 1+ sT3( )  (35) 

 
where   T1 = 10sec  ;   T2 = 5sec  ;   T3 = 2sec  ;  τ1 = 6sec  and 

 τ2 = 4sec , where 
   
B+ = 1+ sτ1( )  and 

   
B−= 1− sτ2( ) . 

 
The selected reference model is 
 

 
   
Rn s( ) = Bn s( )

An s( ) =
1+ sτn1

1+ sTn1
= 1

1+ sTn1
 (36) 

 
where   Tn1 = 5sec  ;  τn1 = 0 . 
 
The optimal YOULA regulator can be calculated as 
 

   

C s( ) = Bn s( )A s( )
B+ s( ) An s( )A s( ) −Bn s( )B− s( )⎡⎣ ⎤⎦

= (37)

1+ sT1( ) 1+ sT2( ) 1+ sT3( )
1+ sτ1( ) 1+ sTn1( ) 1+ sT1( ) 1+ sT2( ) 1+ sT3( ) − 1− sτ2( )⎡⎣ ⎤⎦

 

 
Using the numerical values the regulator is 
 

 

  

C s( ) = 1+17s + 80s2 +100s3

s 1+ 6s( ) 1+ 2.273s + 4.454s2( )  (38) 

 
The overall transfer function of the closed-loop system is 
 

 
   
T s( ) = Rn s( )B− s( ) = 1− sτ2

1+ sTn1
= 1− 4s

1+ 5s
 (39) 

 
Because usually the reference model has unity gain, i.e. 
 

 
  
Bn 0( ) =An 0( )  (40) 

 

it follows, that 
  
T 0( ) = 1  has also unity gain. 

 
The usual normalization of the process polynomial means that 

  
A 0( ) = 1  and 

  
B− 0( ) = 1  (while 

  
B+ 0( ) ≠ 1 ) it can be easily 

checked that the YOULA regulator is always an integrating 
regulator for (40). 
 
Example 4.2. Investigate now a discrete-time (DT) case, when 
the pulse transfer function of the process is a second order 
system 

 
  
P z( ) = −0.32 z −1.25( )

z − 0.8( ) z − 0.6( )  (41) 

 
and the reference model is 
 

 
  
Rn z( ) = 0.6

z − 0.4
 (42) 

 
The optimal YOULA regulator can be computed now as 

 
  
C z( ) =

−0.624 1− 2.917z + 2.083z2( )
1+ 0.027z −1.248z2 + 0.693z3

 (43) 

 

It was shown that the YOULA regulator design is a very simple 
procedure, which is applicable for all kind of (minimum or 
non minimum phase) CT and DT processes. The computation 
of the regulator is very simple, requires only polynomial 
operations. 
 
For reasonable design goal this design results in an integrating 
regulator. 
 
This regulator ensures the theoretical best reachable closed-
loop property of the control system. 
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P.S.: Professor Youla died two weeks ago. He was 95 years 
old. So our paper can be considered a good memorial of the 
two famous scientests: Athens and Youla. 
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