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Abstract—A new method for robust estimation, MAGSAC++, is proposed. It introduces a new model quality (scoring) function that

does not make inlier-outlier decisions, and a novel marginalization procedure formulated as an M-estimation with a novel class of

M-estimators (a robust kernel) solved by an iteratively re-weighted least squares procedure. Instead of the inlier-outlier threshold, it

requires only its loose upper bound which can be chosen from a significantly wider range. Also, we propose a new termination criterion

and a technique for selecting a set of inliers in a data-driven manner as a post-processing step after the robust estimation finishes. On a

number of publicly available real-world datasets for homography, fundamental matrix fitting and relative pose, MAGSAC++ produces

results superior to the state-of-the-art robust methods. It is more geometrically accurate, fails fewer times, and it is often faster. It is

shown that MAGSAC++ is significantly less sensitive to the setting of the threshold upper bound than the other state-of-the-art

algorithms to the inlier-outlier threshold. Therefore, it is easier to be applied to unseen problems and scenes without acquiring

information by hand about the setting of the inlier-outlier threshold. The source code and examples both in C++ and Python are

available at https://github.com/danini/magsac.

Index Terms—Robust model estimation, RANSAC, noise scale, M-estimator, marginalization
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1 INTRODUCTION

THE RANdom SAmple Consensus (RANSAC) algorithm
proposed by Fischler and Bolles [1] in 1981 has become

the most widely used robust estimator in computer vision.
RANSAC and its variants have been successfully applied to
a wide range of vision tasks, e.g., short baseline stereo [2],
[3], wide baseline matching [4], [5], [6], motion segmenta-
tion [2], detection of geometric primitives [7], pose-graph
initialization for structure-from-motion pipelines [8], [9],
image mosaicing [10], and to perform [11] or initialize
multi-model fitting algorithms [12], [13]. In brief, RANSAC
repeatedly selects random subsets of the input data points,
typically minimal, and fits a model, e.g., a 2D line to two
points, a fundamental matrix to seven 2D point correspond-
ences, or a 6D pose to three 2D-3D correspondences. The
quality of the model is then measured, for instance, as the
cardinality of its support, i.e., the number of inlier data
points. Finally, the model with the highest quality, polished,
e.g., by least-squares fitting or numerical optimization on all
inliers, is returned.

We propose a new robust loss, a randomized RANSAC-
like robust estimator (MAGSAC++) and a termination crite-
rion which eliminate the need for a hand-picked inlier-out-
lier threshold by marginalizing over a range of noise scales

when determining the model quality and the inlier proba-
bilities of data points.

Since the introduction of RANSAC, a number of modifi-
cations have been proposed replacing the components of
the original algorithm. For instance, improving the sampler
impacts the speed of the robust estimation procedure via
selecting a good sample early and, thus, triggering the ter-
mination criterion. The NAPSAC [17] sampler assumes that
inliers are spatially coherent and, therefore, it draws sam-
ples from a hyper-sphere centered at the first, randomly
selected, location-defining point. If this point is an inlier, the
points sampled in its proximity are more likely to be inliers
than the ones outside the ball. While NAPSAC exploits the
observation that inliers tend to be “closer” to each other
than outliers, the GroupSAC algorithm [18] assumes that
inliers are often “similar” to each other and, therefore, data
points can be separated into groups according to their simi-
larities. PROSAC [19] exploits an a priori predicted inlier
probability rank of each point and starts the sampling with
the most promising ones. Progressively, samples that are
less likely to lead to the sought model are drawn. P-NAP-
SAC [20] merges the advantages of local and global sam-
pling by drawing samples from progressively growing
neighborhoods. Gradually, the algorithm changes from the
fully localized NAPSAC to the global PROSAC sampling.

Regarding speeding up the robust estimation process,
one way of avoiding unnecessary calculations is via termi-
nation of verification of models which are unlikely to be
more accurate than the current so-far-the-best. There has
been a number of preemptive model verification strategies
proposed. For example, when using the Td;d test [21], the
model verification is first performed on d randomly selected
points (where d� n). The remaining n� d ones are evalu-
ated only if the first d points are all inliers to the verified
model. The test was extended by the so-called bail-out
test [22]. Given a model to be scored, a randomly selected
subset of d points is evaluated. If the inlier ratio within this
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subset is significantly smaller than the current best inlier
ratio, it is unlikely that the model will yield a larger consen-
sus set than the current maximum and, thus, is discarded.
In [23], [24], an optimal randomized model verification
strategy was described. The test is based on Wald’s theory
of sequential testing [25]. Wald’s SPRT test is a solution of a
constrained optimization problem, where the user supplies
acceptable probabilities for errors of the first type (rejecting
a good model) and the second type (accepting a bad model)
and the resulting optimal test is a trade-off between the
time to decision and the errors committed.

Observing that RANSAC requires in practice more sam-
ples than what theory predicts, Chum et al. [26] identified a
problem that not all all-inlier samples are “good”, i.e., lead to
a model accurate enough to distinguish all inliers, e.g., due
to poor conditioning of the selected randomall-inlier sample.
They address the problem by introducing the locally opti-
mized RANSAC (LO-RANSAC) that augments the original
approach with a local optimization step applied to the so-far-
the-best models. Lebeda et al. [14] showed that, for models
with many inliers, the local optimization becomes a compu-
tational bottleneck due to the iterated least-squaresmodel fit-
ting where the processing time is a function of the number of
used points. In [14], it is proposed to consider only a subset
of the inliers in the local optimization. Only the final model
polishing process is applied to thewhole inlier set.

To improve the accuracy by better modelling the noise in
the data, different model quality calculation techniques
have been investigated. For instance, MLESAC [27] esti-
mates the model quality by a maximum likelihood proce-
dure with all its beneficial properties, albeit under certain
assumptions about data point distributions. In practice,
MLESAC results are often superior to the inlier counting of
plain RANSAC, and they are less sensitive to the manually
set inlier-outlier threshold. In MAPSAC [28], the robust esti-
mation is formulated as a process that estimates both the
parameters of the data distribution and the quality of the
model in terms of maximum a posteriori.

All of the above-mentioned scoring strategies require a
manually selected inlier-outlier threshold. Selecting a suit-
able threshold requires the user to acquire knowledge
about the problem and the actual scene, restricting the out-
of-the-box applicability of such algorithms. While there are
commonly used threshold values for a number of prob-
lems, e.g., 2-3 pixels for homography estimation, they
rarely lead to highly accurate solutions. Addressing this
issue, the dependency on the user-defined inlier-outlier
threshold is reduced by its adaptive selection during the
model parameter estimation. The MINPRAN [29] algo-
rithm, proposed in 1995, assumes that the outliers are dis-
tributed uniformly in the image. For each tested model,
MINPRAN tests a number of candidate thresholds and
chooses the one with inliers the least likely to have
occurred randomly. Moisan et al. [30] proposed a contrario
RANSAC, AC-RANSAC in short, which follows an
approach similar to MINPRAN, but the minimized proba-
bility models the consistency of data points with an
unknown rigid model. In [31], the best threshold is selected
using the Likelihood Ratio Test. While MINPRAN and AC-
RANSAC are shown to achieve accurate results, they
obtain their solutions using a single adaptively selected

threshold. This approach can fail when the background
model does not follow the assumed distribution, e.g., the
outliers are structured, and it ignores the additional infor-
mation that other candidate thresholds provide. Also, test-
ing multiple thresholds for each minimal sample model
often leads to a deterioration in the processing time. The
RECON [32] algorithm assumes that the noisy observations
of the sought model have a large amount of common
inliers with similar point-to-model residuals. Finding mul-
tiple models with similar inlier sets is interpreted as
finding the sought model. The RANSAAC [33] algorithm
follows a different strategy to eliminate the threshold from
the model fitting procedure. RANSAAC estimates models
from randomly selected minimal samples similarly as
RANSAC. It then converts the models to sets of 2D points,
and combines multiple models by averaging the point
coordinates used for representing them. Finally, the model
is fitted to the averaged point coordinates. Besides the
number of drawbacks of RANSAAC, e.g., non-robust
model-to-points conversion, it is shown by the authors that
it only works inside a local optimization process after a
reasonably good model is found. Thus, the inlier-outlier
threshold is still required.

As the main contribution of this paper, we propose an
approach, s-consensus++, that eliminates the need for a pre-
cise user-defined noise scale s when estimating the model
parameters in a robust manner. Instead of s, only a loose
upper bound smax is required defining the range of possible
threshold values. The s-consensus++ algorithm is in fact a
new M-estimator (a robust kernel), solved by an iteratively
re-weighted least squares procedure. This M-estimator mar-
ginalizes over the range of noise scales. As minor contribu-
tions, we propose a new termination criterion which does
not require a s value. Considering the fact that some appli-
cations, e.g., structure-from-motion [34], need to know
inliers, we propose a way to adaptively determine the set of
inliers after the robust estimation finishes. The inliers are
selected by thresholding, such that the model to which they
lead after least-squares fitting is similar to the model deter-
mined by the robust estimation procedure applied without
inlier-outlier decisions done.

Preliminary versions of MAGSAC++ with s-consensus+
+ were published at CVPR 2019 [35] and CVPR 2020 [20].
This paper extends and improves them by (i) combining
their “bells and whistles”, (ii) proposing a termination crite-
rion applicable for MAGSAC++, (iii) proposing an inlier
selection technique after the robust process is applied, (iv)
and providing a number of new experiments on homogra-
phy, fundamental matrix and relative pose estimation.
Example results are shown in Fig. 1.

2 NOTATION AND PRELIMINARIES

In this paper, the set of input data points is denoted P ¼
fp j p 2 Rn; n 2 N> 0g, where n is the dimension, e.g., n ¼ 2
for 2D points and n ¼ 4 for point correspondences. The
inlier set is I � P. The model to fit is represented by its
parameter vector u 2 Q, where Q ¼ fu j u 2 Rd; d 2 N> 0g is
the manifold, e.g., of all possible 2D lines, and d ¼ 2 is the
dimension of the model (angle and offset). Fitting function
F : D ! Q, where D � P� and jDj � m, calculates the model
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parameters from n � m data points, where P� ¼ expP is the
power set of P and m 2 N> 0 is the minimum point number
for fitting a model, e.g., m ¼ 2 for lines. Note that F is a
combined function applying different estimators based on
the input point set. For instance, for P0 2 P�

F ðP0Þ ¼ MinimalSolverðP0Þ if jP0j ¼ m;
LSQðP0Þ otherwise:

�
(1)

Function R : Q	 P ! Rþ calculates the point-to-model
residual. Function I : Q	Rþ 	 P� ! P� selects the set of
inliers given model u and noise standard deviation s. We
assume that the inlier-outlier threshold is calculated from the
noise s as tðsÞ ¼ ks, where k is some constant. For instance,
for the original RANSAC approach, IRANSACðu; s;PÞ ¼ fp 2
P j Rðu; pÞ < tðsÞg and tðsÞ ¼ s. The model quality func-
tion, measuring how much the actual model interprets the
scene, is Q : Q	Rþ 	 P� ! Rþ. Higher quality is inter-
preted as better model. Let fRðu; piÞgni¼1 be the point-to-
model residuals, ordered increasingly, such that 0 
 Rðu; p1Þ <
Rðu; p2Þ < � � � < Rðu; pnÞ. For RANSAC, QRANSACðu; s;PÞ ¼
jIðu; s;PÞj and forMSAC, it is

QMSACðu; s;PÞ ¼ jIðu; s;PÞj � 1

tðsÞ2
XjIðu;s;PÞj
i¼1

R2ðu; piÞ:

3 MAGSAC

First, we describe the idea and design choices of the original
MAGSAC [35] approach in brief. We will also discuss its
merits and drawbacks.

3.1 Marginalizing Sample Consensus

Idea. In the original marginalizing sample consensus
(MAGSAC) algorithm [35], the model quality is defined by
marginalizing over the noise scale s as follows:

Q�ðu;PÞ ¼
Z þ1

0

Qðu; s;PÞfðsÞds;

where the noise s is a random variable with density func-
tion fðsÞ, Q : Q	Rþ 	 P� ! Rþ is a quality function, e.g.,
the inlier counting of RANSAC, which depends on an input
model u 2 Q, the inlier-outlier threshold tðsÞ, and the set P
of n data points.

Having no prior information, s is assumed to be uni-
formly distributed within range ð0; smaxÞ, where smax is an
upper bound for the noise scale (smax > 0). Considering
this assumption, the quality calculation becomes

Q�ðu;PÞ ¼ 1

smax

Z smax

0

Qðu; s;PÞds: (2)

For instance, using the inlier counting of plain RANSAC
QRANSACðu; s;PÞ, where tðsÞ ¼ s is the inlier-outlier thresh-
old, we get marginalized quality function

Q�RANSACðu;PÞ ¼ jIðu; smax;PÞj � 1

smax

XjIðu;smax ;PÞj

i¼1
Rðu; piÞ:

Data Interpretation and Design Choices. In MAGSAC, the
choice of the marginalized quality function Q is motivated
by the assumption that the residuals are calculated as the
square root of a sum of squared normally distributed varia-
bles. Typically, the residuals of the inliers are calculated as
the euclidean-distance from model u in some n-dimensional
space (e.g., the re-projection error). In the case of assuming
the distances along each axis of this n-dimensional space to
be independent and normally distributed with the same
variance s2, value (residualsÞ2=s2 has x2- distribution with n

degrees of freedom. For a given s, the residuals of the inliers
are described by the trimmed x-distribution1 with n degrees
of freedommultiplied by s with density

gðr j sÞ ¼ 2CðnÞs�nexpð�r2=2s2Þrn�1;
for r < tðsÞ and gðr j sÞ ¼ 0 for r � tðsÞ. The normalizing
constant CðnÞ ¼ ð2n=2Gðn=2ÞaÞ�1 and, for a > 0

Fig. 1. Example image pairs from the datasets used for testing the robust
estimators. The inliers of MAGSAC++, selected adaptively by the pro-
posed procedure, are visualized.

Symbols used in this paper

P ¼ fp j p 2 Rn; n 2 N> 0g - Set of data points
P� - Power set of P
s 2 Rþ - Noise standard deviation
smax 2 Rþ - Noise std. upper bound
tðsÞ - Inlier-outlier threshold
Q ¼ fu j u 2 Rd; d 2 N> 0g - Model manifold
R : Q	 P ! Rþ - Point-to-model residual
F : P� ! Q - Model estimator function
I : Q	Rþ 	 P� ! P� - Inlier selector function
Q : Q	Rþ 	 P� ! Rþ - Model quality function

1. The square root of x2-distribution.
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GðaÞ ¼
Z þ1

0

ta�1expð�tÞdt;

is the gamma function, n is the dimension of the euclidean
space in which the residuals are calculated and tðsÞ is set to
a-quantile (e.g., a ¼ 0:99) of the non-trimmed distribution.

Note: the idea of model quality marginalization is general
and independent of the choice of the noise distribution,
here x2.

Model Polishing. The last step of RANSAC-like algorithms
is the re-fitting of the model to all inliers. However, due to
MAGSAC not making a strict inlier-outlier decision, the
standard model polishing step is not directly applicable.
Therefore, the s-consensus algorithm was proposed which,
first, assigns an inlier weight to each point and, finally,
applies weighted least-squares fitting.

Suppose an input point set P and model u estimated
from a minimal sample as in RANSAC. Let us ¼
F ðIðu; s;PÞÞ be the model estimated from the inlier set

Iðu; s;PÞ ¼ fp j p 2 P ^Rðu; pÞ < tðsÞg; (3)

selected using threshold tðsÞ around the input model u. Sca-
lar tðsÞ is the threshold which s implies; function F esti-
mates the model parameters from a set of data points;
function I returns the set of data points for which the point-
to-model residuals are smaller than tðsÞ.

For each possible s value, the likelihood of point p 2 P
being inlier is calculated as

Pðp j us; sÞ ¼ 2CðnÞs�nRn�1ðus ; pÞ exp �R
2ðus ; pÞ
2s2

� �
;

if Rðus; pÞ 
 tðsÞ, where Rðus; pÞ is the point-to-model resid-
ual. If Rðus; pÞ > tðsÞ, likelihood Pðp j us ; sÞ is 0. For each
point p, likelihood Pðp j us; sÞ is marginalized over s and
the obtained probability is used as an inlier weight in the
final weighted least-squares fitting. The objective function
Qðu; s;PÞ is the log-likelihood with inlier density gðr j sÞ
and outliers assumed uniformly distributed.

Issues.There are two main issues with the MAGSAC
approach, a practical and a theoretical one. In practice, the
procedure of marginalizing Pðp j us; sÞ over s calculates
Pðp j us ; sÞ a number of times with different s values. Each
calculation requires to select the set of inliers and obtain us
by LS fitting on them. This step is time consuming even with
the number of speedups proposed in the original paper [35].
The theoretical issue is that the objective function does not
have its maximum at zero. Consequently, in the case of hav-
ing perfect data, i.e., no noise, MAGSAC fails to return the
sought model parameters. As a minor issue, both the quality
function and the likelihood can only be calculated approxi-
mately for non piece-wise constant objective functions, e.g.,
x2-based or truncated L2 loss. The exact calculation can
only be done for the RANSAC-like inlier counting.

4 MAGSAC++

The MAGSAC++ algorithm is proposed here via reformu-
lating the previously described MAGSAC problem as an
iteratively re-weighted least-squares (IRLS) approach. To
do so, a new model quality function and a procedure to

polish the model parameters without making strict inlier-
outlier decisions and doing a number of LS fittings are
proposed.

The proposed MAGSAC++ is based on an iteratively
reweighted least squares (IRLS) approach where the model
parameters in the ðiþ 1Þth step are calculated as follows:

uiþ1 ¼ arg minu
X
p2P

wðRðui; pÞÞR2ðu; pÞ; (4)

where the weight of point p is

wðRðui; pÞÞ ¼
Z þ1

0

Pðp j ui; sÞfðsÞds; (5)

and u0 ¼ u, i.e., the initial model from the minimal sample.
Data Interpretation and Design Choices.Similarly as in

MAGSAC, the inlier residuals are euclidean-distances of
points assumed to be corrupted by Gaussian noise and,
thus, have x-distribution. The noise standard deviation s is
assumed to be uniformly distributed within ð0; smaxÞ. How-
ever, we make no assumptions about the outlier distribu-
tions. Note that the proposed quality and inlier weight
functions can be modified straightforwardly when consider-
ing differently distributed inliers.

4.1 Inlier Weight Calculation

The weight function defined in (5) is the marginal density of
the inlier residuals as follows:

wðrÞ ¼
Z þ1

0

gðr j sÞfðsÞds: (6)

Let tðsÞ ¼ ks be the chosen quantile of the x-distribution.
For residual 0 
 r 
 ksmax

wðrÞ ¼ 1

smax

Z smax

r=k

gðr j sÞds ¼ 1

smax
CðnÞ2n�12

G
n� 1

2
;

r2

2s2
max

� �
� G

n� 1

2
;
k2

2

� �� �

and, for r > ksmax, weight wðrÞ ¼ 0. Function

Gða; xÞ ¼
Z þ1

x

ta�1expð�tÞdt;

is the upper incomplete gamma function. Due to the design
choices, weight wðrÞ is positive and decreasing on interval
½0; tðsmaxÞ�. Thus there is a r-function of an M-estimator
which is minimized by IRLS using wðrÞ and each iteration
guarantees a non-increase in its loss function (chapter 9 of
[36]). Consequently, it converges to a local minimum. If dif-
ferent noise distribution is assumed, this property does not
necessarily hold. In those cases, a different algorithm should
be used to solve the problem, e.g., Levenberg-Marquardt
optimization [37].

IRLS (4) where wðrÞ is defined by (6) with tðsÞ ¼ 3:64s,
where 3.64 is the 0.99 quantile of the x-distribution with n ¼
4, will be called s-consensus++ for problems using point
correspondences. Parameter smax is the same user-defined
maximum noise level parameter as in MAGSAC, usually,
set to a fairly high value, e.g., 10 pixels for homography fit-
ting. The s-consensus++ algorithm is applied for fitting to a
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non-minimal sample and, also, as a post-processing to
improve the output of any robust estimator.

4.2 Model Quality Function

In order to select the model interpreting the data, a quality
function has to be defined. Let

QM++ðu;PÞ ¼ n� 1

rðksmaxÞLðu;PÞ

¼ jIðu; smax;PÞj � 1

rðksmaxÞ
XjIðu;smax;PÞj

i¼1
rðRðu; piÞÞ;

where

Lðu;PÞ ¼
X
p2P

rðRðu; pÞÞ; (7)

is a loss function of the M-estimator defined by our weight
function wðrÞ. Function

rðrÞ ¼
Z r

0

xwðxÞdx ¼
Z þ1

0

Z r

0

xgðx j sÞdx
� �

fðsÞds;

for r 2 ½0;þ1Þ. For any point p with residual r, the loss
function is the mean of the residual values lower then r of a
random variable with x-distribution, i.e., the assumed dis-
tribution of the inlier residuals. Thus, the r-function is some
type of a reasonable distance. It can be formulated in the
same way for each s and then marginalized over s as in
MAGSAC.

Due to assuming that the s values are uniformly distrib-
uted within range ½0; smax� for 0 
 r 
 tðsmaxÞ

rðrÞ ¼
1

smax

Z smax

0

�
CðnÞ2nþ1

2 s

g

�
nþ 1

2
;
r2

2s2

�
� r2

2
gðksmaxjsÞ

�
ds

and the integral can be removed as follows:

rðrÞ ¼ 1

smax
CðnÞ2nþ1

2

�
s2
max

2
g

�
nþ 1

2
;

r2

2s2
max

�

þ r2

4

�
G

�
n� 1

2
;

r2

2s2
max

�
� G

�
n� 1

2
;
k2

2

���
:

For r > tðsmaxÞ

rðrÞ ¼ rðksmaxÞ ¼ smaxCðnÞ2n�1
2 g

�
nþ 1

2
;
k2

2

�
;

where

gða; xÞ ¼
Z x

0

ta�1expð�tÞdt;

is the lower incomplete gamma function. Weight wðrÞ can
be calculated precisely or approximately as in MAGSAC.
However, the precise calculation can be done very fast by
storing the values of the complete and incomplete gamma
functions in a lookup table. Then the weight and quality
calculation becomes merely a few operations per point.
MAGSAC++ algorithm uses (7) as quality function and
s-consensus++ for estimating the model parameters.

Function wðrÞ is visualized in Fig. 2 together with other
weightings which are often used for robust model fitting.

4.3 Termination Criterion

The number of inliers during the robust estimation is
unknown due to not making strict inlier-outlier decisions. It
is thus not possible to apply the standard termination crite-
rion of RANSAC [38]

kðu; s;PÞ ¼ lnð1� mÞ
ln 1� jIðu;s;PÞj

jPj
� �m� � ; (8)

where k is the iteration number, m is a manually set confi-
dence in the results (typical values are 0.95 or 0.99), m is the
size of the minimal sample needed for the estimation, and
jIðu; s;PÞj is the inlier number of the so-far-the-best model.

In order to determine k without using a particular value
for s, it is a straightforward choice to marginalize over the
noise scale s. Let us assume that the points are ordered by
their residuals as 0 ¼ tðs0Þ 
 Rðu; p1Þ ¼ tðs1Þ 
 Rðu; p2Þ ¼
tðs2Þ 
 � � � 
 Rðu; pkÞ ¼ tðskÞ 
 tðsmaxÞ < Rðu; pkþ1Þ ¼
tðskþ1Þ 
 � � � 
 Rðu; pnÞ ¼ tðsnÞ. The iteration number is cal-
culated as

k�ðu;PÞ ¼ 1

smax

Z smax

0

kðu; s;PÞds ¼ (9)

1

smax

Z smax

0

lnð1� mÞ
ln 1� jIðu;s;PÞj

jPj
� �m� � ds: (10)

Due to the fact that function jIðu; s;PÞj, measuring the num-
ber of inliers given a noise scale s, is piece-wise constant,
and that is the only part of (10) depending on s, the integral
can be replaced by a weighted summation. It is as follows:

k�ðu;PÞ ¼ 1

smax

Xk
i¼1

ðsi � si�1Þ lnð1� mÞ
ln 1� jIðu;si�1;PÞj

jPj
� �m� � : (11)

The function is, however, problematic when there are no
points with zero residual. In that case, the denominator
becomes lnð1Þ ¼ 0 and the iteration number 1. We, thus,
shift the inlier number by one and introduce a slight and
artificial approximation as

k�ðu;PÞ  1

smax

Xk
i¼1

ðsi � si�1Þ lnð1� mÞ
ln 1� i

jPj
� �m� � : (12)

Fig. 2. Weighting functions for robust fitting. For MAGSAC++, we use
smax ¼ 2s as an example and degrees-of-freedom n ¼ 2 (e.g., 2D line fit-
ting) and 4 (e.g., problems with point correspondences).
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Thus the number of iterations required for MAGSAC++ is
calculated during the procedure and updated whenever a
new so-far-the-best model is found, similarly as in RANSAC.

5 INLIER SELECTION

For some applications, the knowledge of what is inlier and
outlier is a requirement. For instance, in structure-from-
motion algorithms, the inlier correspondences are triangu-
lated in 3D after the relative pose estimation and used for
the reconstruction. Given the estimated model parameters u
after applying MAGSAC++, the objective is to find a reason-
able set of inliers without introducing new parameters, e.g.,
a threshold. The idea is to return the set of points on which a
least-squares fitting leads to a model which is similar to the
one determined by the robust estimator. The problem is for-
malized as follows:

I� ¼ arg
I�P

minjF ðIÞ � uj; (13)

where function F estimates the model parameters from
a set of data points, and norm j:j is some distance func-
tion defined over the model manifold. Note that this for-
mulation allows to consider as inliers points with large
point-to-model residuals. Besides, the problem intro-
duced in (13) is NP-hard. Therefore, we weaken (13) by
assuming that there exists a noise scale s� and, thus, an
inlier-outlier threshold tðs�Þ such that the points with
residuals smaller than tðs�Þ are the elements of I�. Con-
sequently, it is enough to find s�. The problem becomes
the following:

s� ¼ arg
s2S

minjF ðIðu; s;PÞÞ � uj; (14)

where S ¼ fsigki¼1 � ½0; smax� as introduced above (10). Note
that it is straightforward to see that there are no other
threshold values leading to different sets of inliers [29].

In the algorithm, we define the model-to-model distance
as the sum of L1 point-to-model residual distances as
follows:

ju1 � u2j ¼
X
p2P
jRðu1; pÞ �Rðu2; pÞj: (15)

Since the sought model should be of the same distance
from both the inliers and outliers as the initial one, dis-
tance ju1 � u2j can measured on all points without differ-
entiating inliers and outliers. Since we measure the L1

residual differences, outlier points with large residuals
do not have higher impact on the model-to-model dis-
tance than inliers with small residuals. Also, distance
ju1 � u2j is enough to be measured only on a subset of
points to speed up the procedure when needed. The
pseudo-code of the algorithm is shown in Algorithm 3.
Parameter nmin is the minimum number of points
required to return, depending on the current application.
If there is no requirement, nmin ¼ m, where m is the
minimal sample size. Note that for models which are
estimated from a larger-than-minimal sample by using
SVD decomposition, e.g., fundamental/essential matrix,
homography, using an incremental version of SVD, e.g.,

[39], speeds up the procedure significantly when a large
number of points falls closer than smax. Also, the proce-
dure is straightforwardly parallelizable on multiple
CPU cores.

Algorithm 1. The MAGSAC++ Algorithm

Input: P – data points; �max – max. threshold
m – confidence;

Output: u� – model parameters; I� – inliers (optional)
1: q�  0.
2: while : Terminateðm; q�Þ do " Section 4.3
3: S  Sample(P). " default: P-NAPSAC sampler [20]
4: if : TestSample(S) then " Degen. and cheirality tests
5: continue

6: u EstimateModel(S)
7: if : TestModel(u) then " Degen. and cheirality tests
8: continue

9: u0  s-consensus++(P, u, t�1ð�maxÞ) " Algorithm 2
10: if : TestModel(u0) then " Degen. and cheirality tests
11: continue

12: q Scoring(P, u0, t�1ð�maxÞ) " Eq. (7)
13: if q > q� then
14: q�; u�  q; u0

15: I�  SelectInliersðu�;PÞ " Section 5 (optional)

Algorithm 2. The s-Consensus++ Algorithm

Input: P – data points; smax – max. noise scale
u – initial model;

Output: u� - model parameters
1: u0; i u; 0.
2: repeat
3: frjgjPjj¼1  fRðui; pÞ j p 2 Pg
4: fbrjgjPjj¼1  SortðfrjgjPjj¼1Þ
5: fwjgjPjj¼1  fwðbrjÞgjPjj¼1 " Eq. (6)

6: uiþ1  WLSðP; fwjgjPjj¼1Þ " Weighted least-squares

7: if : TestModel(uiþ1) then " Degen. and cheir. tests
8: break

9: i iþ 1
10: until Terminateðui�1; ui; iÞ
11: u�  ui

6 ALGORITHMIC CHOICES

To achieve state-of-the-art results, we combine the pro-
posed MAGSAC++ with the components discussed in
USAC [40]. We consider three popular vision problems,
i.e., fundamental matrix, homography and relative pose
(i.e., essential matrix) estimation. The included compo-
nents for each problem are as follows: 1. Sample degener-
acy. The degeneracy tests of minimal samples are for
rejecting clearly bad samples to avoid the sometimes
expensive model estimation. For homographies, samples
consisting of collinear points are rejected. 2. Sample cheir-
ality. The test is for rejecting samples based on the
assumption that both of the cameras observing a 3D sur-
face must be on its same side. For homography fitting,
we check if the ordering of the four point correspond-
ences – along their convex hulls – in both images are the
same. If not, the sample is rejected. 3. Model degeneracy.
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The purpose of this test is to reject models early to avoid
verifying them unnecessarily. For fundamental matrices,
DEGENSAC [41] is applied to determine if the epipolar
geometry is affected by a dominant plane. For relative
pose estimation, improper rotation matrices [42], i.e., the
ones with negative determinant, are rejected. We
observed that, for epipolar geometry estimation, symmet-
ric epipolar distance tends to be more robust to degener-
ate models. In contrast, Sampson distance leads to
higher accuracy – when using Sampson distance some
degenerate models have lots of inliers. Therefore, we use
Sampson distance as residual function when estimating
fundamental and essential matrices and reject all models
where the inlier number is significantly lower with sym-
metric epipolar distance. In practice, we found that a
model can be rejected if it does not have at least half as
many inliers with symmetric epipolar distance as with
Sampson distance. 4. Model cheirality. The test is for
rejecting models considering that the cameras must be
on the same side of the observed surface. For fundamen-
tal and essential matrix estimation, we apply the ori-
ented epipolar constraint [43]. 5. Sampling. We use the P-
NAPSAC sampler [20]. It requires an a priori determined
ordering of the input data points for its PROSAC [19]
part. We used the scoring coming from the ratio-
test [44]. The neighborhoods were determined by a
multi-layer grid as proposed in [20] to minimize the
computational overhead. 6. Solvers. One of the most
time-sensitive parts of RANSAC-like robust estimation is
the solver estimating the model parameter from a mini-
mal or larger-than-minimal sample. It is time-sensitive
since it runs at least once in every iteration. In many
popular vision problems, e.g., homography estimation,
the solution includes homogeneous or inhomogeneous
linear systems. We thus tested the ways of solving such
systems by the algorithms implemented in the Eigen
library and chose the actual solvers in our MAGSAC++
implementation accordingly. Homographies are esti-
mated by the standard normalized 4PT algorithm [38]. In
the minimal case, the correspondences were not normal-
ized since the system is not over-determined – the

solution is exact. For fundamental matrices, the 7PT
algorithm [38] runs to estimate from a minimal sample.
In the over-determined case, we applied the normalized
8PT algorithm [45]. Essential matrices are estimated by
the solver of Stewenius et al. [46]. When selecting the
actual method applied to solve a linear system, our strat-
egy was the following.

Table 1 reports the accuracy in pixels and processing
time in milliseconds of methods solving the linear systems
in the solvers for homography, fundamental and essential
matrix estimation. Each test is repeated 100 000 times on
randomly generated point correspondences. In each test,
the size of the larger-than-minimal sample is selected uni-
formly randomly from range ½mþ 1; 1000�, where m is the
sample size.

In the minimal case, we chose the fastest methods from
Table 1 since the accuracy is not crucial – the model is
always improved later on more inliers. Also, this solver
runs the most times. For fitting homographies to minimal
samples, we solve the normal equations of the implied lin-
ear system via the Cholesky decomposition (LLT in the
table). For estimating fundamental matrices, the null-space
from the coefficient matrix is calculated by the LU decom-
position with complete pivoting since that is one of the fast-
est solutions when we are given a 7	 8 coefficent matrix
(FullPivLU). For essential matrices, we chose the LU decom-
position with complete pivoting (FullPivLU).

In the over-determined case, we selected the methods
leading to the lowest errors. If there are multiple ones
leading to the same error, the fastest one is applied. For
fitting homographies, we apply the QR decomposition
with column pivoting (ColPivHouseholderQR) – all
tested types of QR decomposition lead to similarly low
error, but column pivoting is the fastest. For estimating
fundamental matrices, the null-space from the coefficient
matrix is calculated by the QR decomposition with full
pivoting (FullPivHouseholderQR). For essential matrices,
we chose the QR decomposition with column pivoting
(ColPivHouseholderQR).

The pseudo-code of MAGSAC++ and s-consensus++ are
shown in Algorithms 1 and 2, respectively. In the algorithm,

TABLE 1
The Average Processing Times (in Milliseconds) and Errors (in Pixels) in the Estimated Homographies (H), Fundamental (F) and

Essential (E) Matrices Using Different Methods for Solving the Linear Systems in Their Solvers When Estimating the
Model Parameters From a Minimal (m) or a Larger-Than-Minimal (> m) Sample. Each test is repeated 100 000 times. The size of
the larger-than-minimal sample is selected uniformly randomly from range ½mþ 1; 1000�. For error calculation, the re-projection was
used for homographies, and Sampson-distance for fundamental and essential matrices. The tested methods solving linear systems

are the ones implemented in the Eigen library.

Average processing time (milliseconds) Average error (pixels)

H F E H F E

m > m m > m m > m m > m m > m m > m

LLT 0.002 – – – – – 10�8 – – – – –
LDLT 0.003 – – – – – 10�8 – – – – –
PartialPivLU 0.003 – – – – – 10�11 – – – – –
FullPivLU 0.003 – 0.011 – 0.060 – 10�11 – 10�12 – 10�14 –
HouseholderQR 0.005 0.099 0.014 0.028 0.067 0.081 10�11 10�7 10�9 10�7 10�12 10�6
ColPivHouseholderQR 0.006 0.085 0.015 0.027 0.069 0.077 10�10 10�7 10�10 10�7 10�13 10�8
FullPivHouseholderQR 0.006 0.103 0.014 0.026 0.066 0.075 10�11 10�7 10�12 10�7 10�14 10�3
JacobiSVD 0.023 22.356 0.028 0.039 0.079 0.088 10�6 10�6 10�4 10�6 10�13 10�7
BDCSVD 0.024 27.954 0.028 0.040 0.080 0.089 10�6 10�6 10�4 10�6 10�13 10�7
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TestSample refers to the degeneracy and cheirality checks
applied to minimal samples. Function TestModel is the
degeneracy and cheirality checks applied to the estimated
models.

Algorithm 3. Inlier Selection

Input: P – data points; u – initial model
nmin – min. # of required points " default: sample size
Output: I� – inliers
1: frjgkj¼1  SortðfRðu; pÞ j p 2 P ^Rðu; pÞ 
 tðsmaxÞgÞ
2: ��  1.
3: for i ¼ nmin . . . k do
4: u0  LSðfrjgij¼1Þ " Least-squares fitting
5: � ju � u0j " Eq. (15)
6: if � < �� then
7: ��; I�  �; frjgij¼1

7 EXPERIMENTS

For testing the proposed methods, we used the problems
and datasets from CVPR tutorial RANSAC in 2020 [47]. The
datasets and codes used are available at https://github.com/
ducha-aiki/ransac-tutorial-2020-data. The hyper-parameters
of all comparedmethods were tuned on the provided training
set to maximize the accuracy. The reported errors were then
calculated on the set which was not used when setting the
hyper-parameters.

The error metric used is the mean Average Accuracy
(mAA). This metric was originally introduced in [48], where
it was called mean Average Precision (mAP). Later, Jin et al.
[49] argued that “accuracy” is the correct terminology, due
to simply evaluating how many of the predicted poses are
accurate, as determined by thresholding the acceptance
threshold, i.e., the threshold which decides if a particular
result is accurate or not.

In order to determine which method is the least sensitive
to the setting of either s or smax, we also measure the insen-
sitivity to the inlier-outlier threshold (or upper limit in the
case of MAGSAC, MAGSAC++ and AC-RANSAC). The
methods were run multiple times using different threshold
values from t1; . . .; tn. For fundamental matrix and relative
pose estimation, t1::8 ¼ ð0:1; 0:25; 0:5; 1:0; 1:5; 3:0; 5:0; 10:0Þ.
For homography estimation, the following threshold values

are used tH1::12 ¼ ð0:1; 0:25; 0:5; 1:0; 1:5; 3:0; 5:0; 10:0; 25:0; 50:0;
75:0; 100:0Þ. For each run, we calculated the mAA score of
the results. The insensitivity of a method is measured as the
weighted average of the mAA scores as follows:

Pn
i¼1ðti � ti�1ÞmAAðtiÞPn

i¼1ðti � ti�1Þ ¼ 1

tn

Xn
i¼1
ðti � ti�1ÞmAAðtiÞ; (16)

where t0 ¼ 0 andmAAðtiÞ is themAA score of amethod after
running it with threshold ti. Formula (16) approximates the
area under the mAA curve when plotted as the function of
the inlier-outlier threshold used for the estimation.

In the rest of the paper, we call (16) the insensitivity mea-
sure. Note that measuring purely the insensitivity without
including the accuracy of a method would require normal-
izing (16) by the maximum mAA value. We avoid this to
make the insensitivity scores interpretable on their own. For
example, (16) equals to 1 only if the method returns the per-
fect solution independently of the threshold.

7.1 Fundamental Matrix Estimation

The methods compared for fundamental matrix estimation
are OpenCV RANSAC [1], OpenCV LMedS [50], LO-RAN-
SAC [26], LO-RANSAC + DEGENSAC [41], GC-RAN-
SAC [51], GC-RANSAC + DEGENSAC, USAC [40], AC-
RANSAC [30], MAGSAC, MAGSAC++, and GC-RANSAC
with MAGSAC++ quality function and DEGENSAC. AC-
RANSAC is a method setting the threshold adaptively. We
tested two settings, i.e., with (AC-RANSAC) and without
(AC-RANSAC1) an upper bound on threshold. The upper
bound was tuned on the test set similarly as the parameters
of the other tested methods.

The data are from the CVPR IMW 2020 PhotoTourism
challenge. Correspondences were obtained using RootSIFT
features and mutual nearest neighbour matching. We used
all scenes from the test set, i.e., Sacre Coeur, St Peters Square,
Brandenburg Gate, BuckinghamPalace, Colosseum Exterior,
Grand Place Brussels, Notre Dame Front Facade, Palace of
Westminster, Pantheon Exterior, Prague Old Town Square,
Taj Mahal, Temple Nara Japan, Trevi Fountain, Westminster
Abbey. From the validation set, we used only scene British
Museum to tune the hyper-parameters of the methods. Each
scene contains 4950 image pairs. The reported accuracy is

Fig. 3. The mean Average Accuracy of the tested robust estimators on fundamental matrix, relative pose and homography estimation. For each prob-
lem, the methods are ordered according to their scores. We used all scenes from the test set of the CVPR IMW 2020 PhotoTourism challenge. For F
and E estimation, the methods were tested on a total of 54450 image pairs. Abbrevations used: OpenCV RANSAC (RANSAC), GC-RANSAC +
DEGENSAC (GC + DEG), GC-RANSAC + DEGENSAC + MAGSAC++ scoring (GC + DEG + M++). Higher value is better.
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calculated on the total of 54450 image pairs from the test set
using the parameters tuned on scene BritishMuseum.

The results on the test set are shown in Fig. 3a. It can
be seen that MAGSAC, MAGSAC++, GC-RANSAC, GC-
RANSAC + DEGENSAC, and GC+RANSAC + DEGENSAC
with MAGSAC++ quality function leads to similar accuracy.
The maximummAA difference between their results is 0.007.
The most accurate results are obtained by GC-RANSAC with
DEGENSAC and the proposedMAGSAC++ quality function.
The other methods which do not need to a set a single thresh-
old value, i.e., AC-RANSAC and LMeDS, are significantly
less accurate. AC-RANSAC when applied without an upper
bound (AC-RANSAC1) fails to return reasonable solutions
in most of the cases. With an upper bound, it is more accurate
than the RANSAC implemented inOpenCV.

The first row of Fig. 4a plots the mAA scores on scene
BritishMuseum as the function of the inlier-outlier threshold
used for the estimation.We chose this scene since it is the first
one in the validation set when the scene names are ordered
alphabetically. All methods expect for MAGSAC and MAG-
SAC++, have a similar trend, i.e., their results increase
slightly in the beginning while the threshold approaches its
optimal value – for example, 0.75 px for USAC. Then their
accuracy starts dropping dramatically. The trend of MAG-
SAC andMAGSAC++ is different. If themaximum threshold
is set to a too low value, e.g., < 1 px, the results are inaccu-
rate as it is expected. Between 1 and 10 pixels, the results are
reasonably stable. This range is much wider than for the

other methods which are only stable in-between 0:5� 1:5
pixels. Graph-Cut RANSAC with DEGENSAC and the pro-
posedMAGSAC++ scoring shows an interesting trend, since
it leads to almost constant mAA score in-between 0:1� 1:5
px threshold, then it starts deteriorating, however, less sig-
nificantly thanmost of the other methods. The second row of
Fig. 4a shows the processing time as the function of the
threshold. It can be seen that MAGSAC++ is faster than
MAGSAC as it is expected. It leads to similar processing
time to its other less accurate alternatives.

Fig. 4. The mean Average Accuracy (top row; higher is better) and average processing time (bottom; in seconds; lower is better) plotted as the
function of the inlier-outlier threshold (or its upper limit; horizontal axis) parameter. For fundamental matrix and relative pose estimation, only scene
British Museum was used. Homographies were estimated from both the EVD and HPatches datasets. The threshold (horizontal axis) is shown on a
logarithmic scale – the right half of the plots covers a significantly larger area than the left one.

TABLE 2
The Insensitivity (16) to the Inlier-Outlier Threshold (or its Upper

Bound) is Shown on Fundamental Matrix (F), Essential
Matrix (E), and Homography (H) Fitting. The best values are

shown in red, the second best ones are in blue.

F E H AVG

OpenCV RANSAC 0.076 0.342 0.358 0.259
OpenCV RHO – – 0.329 –
USAC 0.096 0.590 0.452 0.379
GC + DEG 0.113 – – –
AC-RANSAC 0.118 0.670 0.421 0.403
GC-RANSAC 0.125 0.489 0.261 0.292
GC (+ DEG) + M++ 0.170 0.564 0.275 0.336
MAGSAC 0.215 0.797 0.519 0.510
MAGSAC++ 0.273 0.776 0.514 0.521
MAGSAC++ + DEG 0.279 – – –
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The first column of Table 2 reports the threshold-insensi-
tivity score on scene British Museum calculated as proposed
in (16). MAGSAC++ combined with DEGENSAC yields the
highest score and, thus, that method is the least sensitive to
the setting of the inlier-outlier threshold – it is the easier to be
usedwhen applying robust estimation to a yet unseen scene.

7.2 Essential Matrix Estimation

The methods compared on relative pose (i.e., essential
matrix) estimation are OpenCV RANSAC [1], OpenCV
LMedS [50], LO-RANSAC [26], GC-RANSAC [51], USAC
[40], AC-RANSAC [30], MAGSAC, MAGSAC++, and GC-
RANSAC with MAGSAC++ quality function. DEGENSAC
is not included in these tests since it is for recovering the
fundamental matrix from scenes with dominant planar
structures. For the five-point algorithm [46], planar scenes
are not degenerate. Since the datasets used for fundamental
matrix estimation contain the intrinsic camera parameters
as well, we used the same scenes.

Fig. 3b shows that the most accurate essential matrices
are clearly obtained by MAGSAC++ which achieves 4%
higher mAA score than the second best MAGSAC. The
other methods which do not need to a set a single threshold
value, i.e., AC-RANSAC and LMeDS, are significantly less
accurate, however, they are better than for fundamental
matrix estimation. AC-RANSAC without an upper bound
(AC-RANSAC 1) fails to return reasonable solutions in
most of the cases. With an upper bound, it is more accurate
than OpenCV RANSAC and USAC.

The top row of Fig. 4b shows similar trend as for funda-
mental matrix estimation. All methods but MAGSAC and
MAGSAC++ have a clear “best” threshold. If it is exceeded,
their accuracy deteriorates dramatically. The results of MAG-
SAC and MAGSAC++ are almost constant throughout the
range of thresholds. Interestingly, MAGSAC++ is the most
accurate when the threshold upper bound is set to a small
value, e.g., 0.1. Its results are just slightly less accurate for
other threshold values. AC-RANSAC performs better here
than for fundamentalmatrix estimation. The processing times
are shown in the bottom row of Fig. 4b. MAGSAC++ is signif-
icantly faster for most of the threshold values than the other
robust estimators. While AC-RANSAC leads to reasonable
accuracy, it is significantly slower than the othermethods.

7.3 Homography Estimation

For homography estimation, we used the Extreme-

View [14] (EVD) and HPatches [16] datasets partitioned
into test and validation sets as done in [47]. They consist of
image pairs of different sizes from 329	 278 up to 1712	
1712 with point correspondences provided. The pairs of
EVD undergo an extreme view change, i.e., wide baseline or
extreme zoom. The HPatches scenes are extracted from a
number of image sequences, where each sequence contains
images of some planar object, e.g., a painting or a wall
with graffiti. Since the datasets contain significantly fewer
images then the ones used for epipolar geometry estimation,
we repeated every method 100 times on each image
pair. Besides the methods used for epipolar geometry esti-
mation, we included the RHO [52] method implemented in
OpenCV. The validation set was used to tune the hyper-

parameters of the methods. The accuracy is measured on
the test set.

It can be seen in Fig. 3c that the most accurate results are
estimated by GC-RANSAC, MAGSAC++ and LO-RANSAC
with a marginal difference of 0.002 – 0.005 in their mAA
scores. The same trend can be observed for AC-RANSAC
and LMeDS as before. AC-RANSAC with its threshold
upper bound tuned works reasonably well. LMeDS fails to
return accurate results. The mAA scores on the test set using
varying threshold values are shown in the top row of
Fig. 4c. Since the methods do not seem to be as sensitive to
the inlier-outlier threshold as when fitting epipolar geome-
try, we tested a much wider range 0.1 – 100 than previously.
The performance of MAGSAC and MAGSAC++ is very sta-
ble if smax is chosen from interval ½5; 100�, where the accu-
racy difference is small. They achieve their maximum
accuracy at smax ¼ 25, however, the accuracy drops only
marginally for higher values. The bottom plot of Fig. 4c
shows the processing time in seconds as the function of the
inlier-outlier threshold. If the threshold is set to a small
value (
 1) all methods, except RHO, gets slow. However, if
tðsÞ or tðsmaxÞ is greater than 3 the proposed MAGSAC and
MAGSAC++ is similarly fast as the other methods running
at real-time speed. While RHO is extremely fast for all set-
tings, it is reasonably accurate only for a narrow range of
thresholds, where all the other methods are similarly fast.

7.4 Iteratively Re-Weighted Least-Squares on
2D Lines

We compare the proposed iterative re-weighting strategy
without the other components of MAGSAC++. To do so, we
generated 100 2D points stemming from a 2D line and outliers.
The outliers were generated uniformly randomly within a
window of size 1000	 1000. A 2D line passing through the
middle of the window is generated with a random normal.

Fig. 5. The inliers of the estimated homography selected by the pro-
posed adaptive strategy with varying the parameter nmin which controls
the minimum number of required inliers.
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Points were sampled from the line uniformly randomly and,
then, zero-mean Gaussian-noise was added to their coordi-
nates. We tested the following parameters: noise s 2
f0; 5; . . .; 50g; outlier ratio m 2 f0:0; 0:1; . . .; 0:9g; threshold
multiplier t 2 f1; 2; 5; 10; 25g. The actual inlier-outlier thresh-
old is calculated by multiplying t with the noise scale s. For
each configuration, 10000 testswere run.

Fig. 6 plots the average angular errors (in degrees) as the
function of the tested parameters. The compared robust
weighting techniques are the proposed MAGSAC++;
MSAC, assigning weight 1 if the point is closer than the
threshold and, otherwise 0; Tukey bi-square weighting;
Huber weights and re-descending Huber weights. It be seen
that the MAGSAC++ weights guide the IRLS more success-
fully than the other compared techniques. Thus, the final
errors of MAGSAC++ are smaller if threshold is set reason-
ably large. Also, it is the least sensitive to over-estimating the
threshold value – its results are just slightly affected even if
the actual threshold is 25 times the noise scale. Note that the
offset errors of the estimated lines show a similar trend.

7.5 Inlier Selection

To test the proposed inlier selection, we generated a syn-
thetic scene similarly as in the previous section. We com-
pared the proposed technique with MINPRAN [29] and a
contrario RANSAC [30]. We measured the average model
error (15), in pixels, and the number of returned inliers. All
algorithms got the ground truth line as input to select the
inliers. Each test was repeated 10000 times. The results are

shown in Fig. 7. The average model accuracy (left) and the
number of inliers returned (right) of the compared adaptive
threshold selection techniques are plotted as the function of
the image noise, in pixels. From the left plot, it can be seen
that the proposed technique returns inlier sets which lead to
significantly more similar models, to the input one, than the
other algorithms. The average model error of the proposed
method for inlier ratio 0.1 is lower than the error of the other
method for inlier ratio 0.9. For the fair comparison, it is
important to note that MINPRAN and AC-RANSAC solve a
different problem, i.e., selecting the noise scale which mini-
mizes the randomness of the points which fall closer than
the threshold. Their objective function is designed to select
both the model and noise scale together. In our case, the
input model is accurate and, therefore, we only need a set of
inliers leading to a similarly accurate model.

From the right plot of Fig. 7, it can be seen that the pro-
posed inlier selection usually returns fewer points than the
other methods if the inlier ratio is higher than 0.1. The num-
ber of points that suffices depends on a particular

Fig. 6. The average results of iteratively re-weighted least-squares fitting using different robust weights (i.e., the proposed MAGSAC++, MSAC, Tukey
bisquare, Huber and redescending Huber weights) when fitting 2D lines. The methods were repeated 10000 times using each parameter setting.
(Left) The angular error, in degrees, of the estimated lines are plotted as the function of inlier-outlier threshold multiplier. The actual threshold is calcu-
lated by multiplying the noise s by the values shown on the horizontal axis. (Middle) The angular error is plotted as the function of the noise s added to
the point coordinates. (Right) The angular error is plotted as the function of the outlier ratio.

Fig. 7. The avg. model error (left) and the number of returned inliers
(right) of adaptive threshold selection techniques are plotted as the func-
tion of the image noise (in pixel). Synthetic scene: points from a 2D line
with zero-mean Gaussian-noise and uniformly distributed outliers (in
total, 100 points), 10000 runs on each setting.

Fig. 8. The inliers of the estimated fundamental matrix selected by the
proposed adaptive strategy with varying the parameter nmin which con-
trols the minimum number of required inliers.
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application where the proposed method is used. For exam-
ple, for doing a cheirality check after decomposing an essen-
tial matrix, a few correspondences are usually enough,
while a scene reconstruction might need many points. Set-
ting the minimum number of points required to nmin is
straightforward by initially including the nmin points with
the lowest residuals. The algorithm starts adding new
points from the (nmin þ 1)th closest one. The upper bound of
nmin is the number of points with residuals smaller than
tðsmaxÞ.

Example scenes showing the proposed adaptive inlier
selectionwith different values for nmin in the cases of homog-
raphy and fundamental matrix estimation are shown in
Figs. 5 and 8, respectively. Three different values are tested
for nmin which arem (4 for homographies; 8 for fundamental
matrices), jPj=8 and jPj=4. In these examples, all the selected
inliers are correct. Moreover, a reasonable number of inliers
are returned even when nmin ¼ m. Note that even if the
ground truth inlier number is lower than, e.g., jPj=4, the
algorithm is guaranteed to return the inliers which lead to an
as similar model as possible to the input one.

8 CONCLUSION

We formulate a novel marginalization procedure as an itera-
tively re-weighted least-squares (IRLS) approach. We intro-
duce a new model quality (scoring) function, that is
increased by this IRLS approach, and a termination criterion
for RANSAC-like robust estimation that does not require a
crisp inlier-outlier decision. Also, a new method for adap-
tive inlier selection is proposed assuming that an accurate
model is known. Combining the proposed techniques, the
“bells and whistles” of USAC [40], e.g., pre-emptive verifi-
cation, degeneracy testing, and a number of technical
improvements, we propose MAGSAC++.

To the experiments, MAGSAC++ leads to the most accu-
rate relative pose estimation. When all methods are tested
using their “best” inlier-outlier thresholds, the most accu-
rate fundamental matrices are obtained by combining the
proposed quality function with GC-RANSAC [51]. For
homography estimation, MAGSAC++ is the second most
accurate method with only marginally higher errors than
first one, i.e., GC-RANSAC. In practice, this “best” thresh-
old is usually unknown. In those cases, both MAGSAC and
MAGSAC++ are significantly less sensitive to the setting of
the noise scale or its upper limit than the other state-of-the-
art robust estimators. The source code and examples imple-
mented both in C++ and Python are available at https://
github.com/danini/magsacand in OpenCV.
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