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Abstract: As a basic notion in algebra, closure operations have been successfully 

applied to many fields of computer science. In this paper we study dense family in the 

closure operations. In particular, we prove some families to be dense in any closure 

operation, in which the greatest and smallest dense families, including the collection 

of the whole closed sets and the minimal generator of the closed sets, are also pointed 

out. More important, a necessary and sufficient condition for an arbitrary family to 

be dense is provided in our paper. Then we use these dense families to characterize 

minimal keys of the closure operation under the viewpoint of transversal hypergraphs 

and construct an algorithm for determining the minimal keys of a closure operation. 

Keywords: Closure operation, dense family, minimal key, hypergraph, transversal 

hypergraph. 

1. Introduction 

Closure operations are popularly used in a variety of areas, such as databases, data 

mining, fuzzy sets, rough sets, matroids, logic programming, etc. [7, 8, 10-13, 15]. In 

recent years, many interesting research results have appeared concerning 

combinatorial problems in the closure operations, especially for minimal keys, 

antikeys and closed sets of the closure operations. It is well-known that the minimal 

keys of the closure operation have an essential role in the theory of databases. Under 

the impact of the minimal key, data will be determine the individual uniquely [7, 9, 

16, 18]. Besides, we are often interested in the antikeys of the closure operation, 

which are understood as maximal non-keys. The antikeys are widely applied in 

finding minimal keys as well as in some extremal problems of the closure operations 

[9, 16, 18]. Moreover, the closed sets are also important notions related to the closure 

operations see, e.g., [3, 4, 7]. The set of the wholly closed sets constitutes a meet-

semilattice.  

Hypergraphs are an undoubtedly useful tool for addressing many combinatorial 

problems [2, 9, and 17]. It is well known that the hypergraph theory is one of the very 
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important fields of discrete mathematics which is successfully applied in theoretical 

and applied computer science. In the hypergraph theory, the concept of transversals 

is vital. Under the viewpoint of the hypergraphs, the antikeys or the minimal keys of 

the closure operations can be organized as hypergraphs, even, as simple hypergraphs. 

In the present paper, we shall give a notion of dense family with respect to the 

closure operation h. We then point out that calculating minimal keys of h is equivalent 

to producing minimal transversals of the dense family in h. Based on this result, we 

will construct an effective algorithm based on the dense family approach to discover 

the minimal keys of the closure operation. 
The remainder of the present paper is organized as follows. In the next section, 

we recall several basic concepts as well as some results related to the closure 

operations and the theory of hypergraphs. Then, Section 3 introduces the concept of 

dense family of closure operations and then provides some dense families of any 

closure operation. This section also presents a condition for determining a family to 

be dense. Then, very interesting dense families based approach for finding the wholly 

minimal keys of the closure operation will be presented in Section 4. We also 

construct an effective algorithm for extracting the minimal keys of the closure 

operation. 

2. Preliminary 

We shall recall here basic definitions and results relative to meet-semilattice, closure 

operations and hypergraphs, which can be also found in [2, 4, 7, 9, 14, 16]. 

Let us consider a nonempty and finite set U (also called the universe). Then, we 

denote the power set of U as 2U
 which also means the set of the whole subsets of U. 

We will begin with first important concepts. 

A family 2 U  is called a meet-semilattice on the universe U if two following 

conditions are held: 

(M1) U , 

(M2) .2 ,      
U  

A map 2: 2 U Uh  is called a closure operation on the universe U if, for all

, ,X Y U  the map h satisfies three conditions: 

(L1) ( )X h X , 

(L2) ( ) ( )  X Y h X h Y , 

(L3) ( ( )) ( )h h X h X . 

Then, the collection of the whole closure operations on the universe U will be 

denoted as Cl( )U . Given Cl( )h U , we define a set hF  on h as follows: 

(1)  {( , ) : ( )},hF X Y Y h X   

where, hF  is called a f-family on U. 

We now consider Cl( )h U . We are often interested in a very special collection 

of subsets X of U where the set X will not be changed under the influence of the 

https://ludwig.guru/s/the+remainder+of+this+paper+is+structured+as+follows
https://ludwig.guru/s/the+remainder+of+this+paper+is+structured+as+follows
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closure operation h. Such subsets will be called closed set. Here, we shall denote the 

set of all closed sets by Closed( )h . Fortunately,  

(2)  Closed( ) { : ( )}.h X U X h X    

Obviously, Closed( )h  is a meet-semilattice on U. Therefore, we can also 

determine the closed set, as follows: 

(3)  Closed( ) { ( ) : }.h h X X U   

Proposition 2.1 [7]. 

1) If Cl( )h U , then Closed( )h  is a meet-semilattice on U;   

2) If  is a meet-semilattice on U, then the map : 2 2U Uh , in which for 

each , ( ) { :2 }   UX h X B X B  is a closure operation on U. 

In the following, we present some basic concepts in the hypergraph theory. 

Firstly, we consider a family  consisting of subsets of U, 

{ : ,2 1, 2, , }U

i iE E i m    . Then,  will be called a hypergraph on the 

universe U if iE  is not empty for each i (in [2] the union of 1, 2, , ,iE i m   must be 

equal to U, however, this condition is not required in our paper). Each element of U 

is called a vertex, while each iE  is called a hyperedge or edge of . We denote the 

set of all hypergraphs on U by HG( ).U  

For every ,i jE E   if i jE E  implies i jE E , then the hypergraph  is 

called simple hypergraph. The set of all simple hypergraph on U is denoted by

SH( ).U  

Given a HG( )U , we denote min( )  and max( )  are respectively the sets 

of minimal and maximal edges of  by using set inclusion. More specifically, 

(4)   min( ) { : , },i j j iE E E E      

and  

(5)   max( ) { : , }.i j j iE E E E      

It can be seen that both max( )  and min( )  are uniquely determined by , 

moreover, min( ),max( ) SH( )U . If a subset T of U meets all edges of , then 

T is called a transversal of the hypergraph . Formally, T is a transversal of  if 

 T E  for each E . We denote the set of all transversals of  by Trs( ) . 

Then, the transversal T is minimal if  S T , Trs( )S . The set of all minimal 

transversals of the hypergraph  will be denoted as Tr( )  and it is also regarded 

as a transversal hypergraph of . 

Proposition 2.2. [17] Let HG( )U . Then Tr( ) SH( )U  and 

Tr( ) Tr(min( )).  

From Proposition 2.2, it is clear that we can find the minimal transversals based 

on min( )  for decreasing the computational cost. Next, we shall consider several 

interesting properties related to the minimal transversal of the simple hypergraphs.  
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Proposition 2.3. [2] Let 1 2, SH( )U . Then 

1) 1 2Tr( )  iff 2 1Tr( ), . 

2) 1 2Tr( ) Tr( )  iff 1 2 ,  

3) 1 1Tr(Tr( ))  .  

We now provide an algorithm to calculate the minimal transversals of a given 

hypergraph. 

Algorithm 2.1 [9]. Extracting the Minimal Transversals 

Input: a hypergraph 21{ , , , }mE E E   on U. 

Output: the transversal hypergraph ( )Tr . 

Step 0. Set 1 1{{ }: }a a E  . 

Step k + 1 ( k m ). Suppose that 

1 2{ , , , },  
kkk tB B B  

where in which 1 , 1, 2, , ,i k kB E i t     and 1{ : }.kk kA A E      

For each 1, 2, , ki t  generate the set 1{ { }: } i kB a a E . Denote them by

1 2, , ,
i

i i i

rA A A , 

1 { : ,1 ,1 }.         
i i

k k k k il lA A A A i t l r  

Step m + 1. Return Tr( ) m . 

It is easy to determine that the computational complexity of the above algorithm 

is exponential in n. In many cases, however, the computational time is not greater 

than 
2 2( | Tr( ) | )mn  [9]. Then, if m is small, the algorithm is very effective. 

Example 2.1. Consider the universe 1 2 3 4{ , , , }U a a a a  and the hypergraph  

1 3 2 3 4{{ , }, { },{ , }}a a a a a , we have. 

1 1 3{{ },{ }}a a , 

2 1 2 2 3{{ , }, { , }}a a a a , 

3 1 2 4 2 3{{ , , }, { , }}a a a a a . 

Therefore, 1 2 4 2 3Tr( ) {{ , , },{ , }}a a a a a .  

3. h-dense family of closure operations 

We will introduce in this section a concept of a dense family with respect to the 

closure operation h and its related results. 

First, let us consider a collection  consisting of subsets of U and a set F  on

, as below: 

(6)   {( , ) : , }.F X Y A X A Y A       

Then, we will say that the family  is h-dense (or dense in h) if hF F . It is 

easy to show that for every 1 2 2, U , if 1 2  then
2 1
F F .  

We now point out that dense families with respect to an arbitrary closure 

operation h always exist.  
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Proposition 3.1. Closed( )h  is the greatest h-dense family. 

Proof: First, we show Closed( )h  is a h-dense family.  

We treat ( , ) .hX Y F  Let ( ) Closed( )h Z h  satisfying ( )X h Z . From this, 

and according to properties of closure operation, we always have ( ) ( )h X h Z . By 

the definition of hF , we obtain ( )Y h Z . Consequently, 
Closed( )( , ) hX Y F . 

Conversely, let 
Closed( )( , ) hX Y F . Because ( )X h X  and ( ) Closed( )h X h , we 

have ( ).Y h X  Hence, ( , ) .hX Y F   

Now, assume that  is an arbitrary h-dense family. Note that  

{( , ) : , }.hF X Y A X A Y A        

Let A . Because ( , ( )) hA h A F  and A A , we have ( )h A A . On the other 

hand, we have ( ))A h A . Thus, ( ) h A A . This also means Closed( ).A h  

□ 

Thus Closed( )h  is a h-dense family and it is, moreover, the greatest one with 

respect to h. Interestingly, even when we remove several special elements,  and U, 

from Closed( )h , we still receive a h-dense family. Specifically, we define  

(7)    *Closed ( ) Closed( ) { , }.h h U    

Proposition 3.2. 
*Closed ( )h  is a h-dense family. 

Proof. According to Proposition 3.1, we have *Closed ( )h h
F F .  

Given *Closed ( )
( , )

h
X Y F , we consider two cases. First, if X is a key of h then 

( , ) hX Y F . Second, if X is not a key of h, 
*( ) Closed ( )h X h . Furthermore, 

( )X h X . Therefore, from the definition of *Closed ( )h
F , that is,  

*

*

Closed ( )
{( , ) : Closed ( ), },

h
F X Y A h X A Y A       

we imply ( )Y h X . Thus, ( , ) hX Y F  which means that *Closed ( ) hh
F F .  

In summary – *Closed ( ) hh
F F .                □ 

With respect to a given closure operation h, we will further show a very special 

dense family, which is the smallest one in h.  

Let us first consider a family 2 U . Then, the family  is called a generator 

of meet-semilattice  if   , in which { : }    . It is obvious that 

U is included in 


, but it is not included in . This is because it is the intersection 

of the empty collection sets. We next set { : { : }}    X X Y X Y . In 

[5] it is proved that  is the minimal generator of , and even it is unique. 

Therefore, for any generator Q  of , we always have Q . It can be seen that 

 consists of subsets which are not the intersection of two others in . Then, 

Gen( ) { Closed( ) : { Closed( ) : }}h X h X Y h X Y      will be the minimal 

generator of meet-semilattice Closed( )h . The following proposition is clear. 
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Proposition 3.3. Gen( )h  is the smallest h-dense family. 

Example 3.1. We consider the mapping 2: 2 U Uh , with 1 2 3 4{ , , , }U a a a a , 

which is determined by: 
 

X h(X) X h(X) X h(X) X h(X) 

    4{ }a  1 2 4{ , , }a a a  2 3{ , }a a  2 3{ , }a a  1 2 4{ , , }a a a  1 2 4{ , , }a a a  

1{ }a  1{ }a  1 2{ , }a a  1 2 4{ , , }a a a  2 4{ , }a a  1 2 4{ , , }a a a  1 3 4{ , , }a a a  U 

2{ }a  2{ }a  1 3{ , }a a  1 3{ , }a a  3 4{ , }a a  U 2 3 4{ , , }a a a  U 

3{ }a  3{ }a  1 4{ , }a a  1 2 4{ , , }a a a  1 2 3{ , , }a a a  U U U 
 

Evidently, h is a closure operation, i.e., Cl( )h U . We then easily obtain some 

h-dense families as follows: 

1 2 3 1 3 2 3 1 2 4Closed( ) { ,{ },{ },{ },{ , },{ , },{ , , }, },h a a a a a a a a a a U    
*

1 2 3 1 3 2 3 1 2 4Closed ( ) {{ },{ },{ },{ , },{ , },{ , , }},h a a a a a a a a a a  

1 3 2 3 1 2 4Gen( ) {{ , },{ , },{ , , }}.h a a a a a a a  

Thus, we have proved several families to be h-dense. However, suppose a family 

is given. Then a more important issue is that how to determine whether the family 

 is dense in h. In order to deal with this problem, in what follows, we will establish 

a condition for determining a family to be h-dense.  

It can be easily seen that if we define {( , ) : , }F X Y X Y U   and 

( ) { : ( ,{ }) }Fg X a U X a F    for all X U , then 
hFg h . 

Theorem 3.1. Let Cl( )h U  and 2 U . Then  is h-dense if and only if for 

every X U , 

(8)    
if  : ,

( )
otherwise.

X E
E X E

h X
U

E


  
 



 

Proof: It is easy to see that hF F  if and only if 
hF Fg g . Hence, the proof 

of Theorem 3.1 is now transformed to proving that  

if  : ,
( )

otherwise,

X E
F

E XE E
g X

U


  

 



 

for every X U . 

We treat a set X satisfying for every E , X E . According to the definition 

of F , we can easily imply that ( , )X U F , and thus ( ) Fg X U . 

We always have  :  E E E . Besides, based on the definition of F  

we obtain  

 ( ) :  Fg E E . 

On the contrary, if X is non-empty and E  such that X E  exists. We then 

set  
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{ : , },E X E E    

and 

 : I E E . 

Evidently, , ( , )X I X I F   and ( ) FI g X . 

Let us now assume that there is a U  such that a I . It follows that E  

such that a E exists.  

Then by the definition of 
Fg ,  

( ) { : ( ,{ }) }.Fg X a U X a F    

We imply ( , )X I a F  . This means that ( ) Fg X I , or  

 ( ) : Fg X E E . 

 ■ 

4. Minimal keys of closure operations 

We will begin this section with the definitions relative to keys and minimal keys of 

the closure operations. 

Given Cl( )h U  and a subset K of U, we will say that K is a key of the operation 

h if h(K) = U. The key K is minimal if every proper subset of K is not a key, i.e.,

k K  , ( { }) h K k U . We shall denote Key( )h  the set of all minimal keys of the 

operation h.  

A subset 1K U   is called an antikey of h if 
1( ) h K U  and 1,k U K   

1( { })  h K k U . We will also denote Antikey( )h  the set of all antikeys of the 

operation h. 

It can be easily seen that Key( ), Antikey( ) SH( )h h U . In [16] we have proved 

the following relationship.  

Proposition 4.1. If Cl( )h U  then  

Key( ) Antikey( ).h U h   

In the previous section, we have introduced the dense families in the closure 

operations, as well as the way for determining a family to be dense. Next, we will 

observe the minimal keys of the closure operations from the viewpoint of the dense 

families. More specifically, we consider the dense family  in the closure operation 

h. We shall see that discovering all minimal keys of the operation h will be equivalent 

to producing the whole minimal transversals of the hypergraph { }  . 

Theorem 4.1. Let Cl( )h U  and 2 U . If  is dense in h, then  

Key( ) Tr( { }).h     

Proof: First, we consider the case when M is a minimal key of h. Then 

( , ) .hM U F  Now given { } A U , since  

{( , ) : ( ) },     hF X Y E X E Y E  
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this implies that if M A  then A U . It follows that in case A U  then 

 M A . Therefore, Trs( { })M    . Clearly, if there is a N M  satisfying 

Trs( { })N    , then ( , )N U F . Hence ( , ) hN U F . This contradicts the 

hypothesis Key( ).M h  Thus, Tr( { })M    holds. 

Conversely, assume that Tr( { })M    . Then 

{ }, .A U M A      

This implies that M A . According to the definition of F , we have 

( , ) ,M U F  or ( , ) hM U F . Thus, M is a minimal key of h. Furthermore, if 

Key( )N h  is a minimal key satisfying N M , then ( , ) hN U F . Since  is  

h-dense, we obtain 

{ }, .A U N A      

This conflicts with the hypothesis that M is a minimal transversal of { }  . 

Therefore, Key( )M h  holds.  □ 

Clearly, the collection of all minimal keys of the operation h can be computed 

based on the dense families in h. Note that Closed( )h , 
*Closed ( )h  and Gen( )h  have 

been proved to be h-dense families. As an immediate consequence of Theorem 4.1, 

hence, the corollary below is easily achieved. 

Corollary 4.1. Let Cl( )h U . Then: 

1) Key( ) Tr(min(Closed( ) { })),h h    

2) *Key( ) Tr(min(Closed ( ))),h h  

3) Key( ) Tr(Gen( )).h h  

Based on the obtained results, we will present an effective algorithm for 

extracting the minimal keys of the closure operation in terms of the dense families.  

Algorithm 4.1. Algorithm for extracting the minimal keys (DENKEY) 

Input: The operation Cl( )h U  and the universe 1 2{ , , , }nU a a a  . 

Output: Key( )h . 

Step 1. Compute the h-dense family Closed( ).h  

Step 2. Induce  a  directed  graph  ( , )G V E   where  Closed( )V h   and   

( , )X Y E  if X Y  and there does not exist Closed( )Z h  satisfying 

X Z Y  . 

Set the h-dense family Gen( ) { Closed( ) : ( ) 1},h X h d X    in which ( )d X  

is the number of directed edges incident to X.  

Step 3. Compute Tr(Gen( ))h .  

Step 4. Return Key( ) Tr(Gen( ))h h . 

It is easy to see from Corollary 4.1 that the DENKEY algorithm extracts exactly 

Key( )h . The computational time of DENKEY is exponential in n. However, it 

should be emphasized that Gen( )h  computed in Step 2 is the smallest h-dense family. 
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Hence, Gen( )h  has usually the quite small number of elements. Moreover, we recall 

that Algorithm 2.1 has been pointed out in [9] to be very efficient for finding all 

minimal transversals. Although the computational complexity of Algorithm 2.1 is 

exponential, in many cases Algorithm 2.1 can execute only in the polynomial time. 

Therefore, based on Algorithm 2.1, our proposed DENKEY algorithm is also very 

efficient for finding all minimal keys of the closure operations. 

Besides, an important point to remember is that in some cases when we need to 

find only one minimal key of the operation h, the computational process is very 

simple. Indeed, it can be easily seen that 1 2{ , , , }nU a a a   is a key of the operation 

h. If we set 0K U , and for each 1, 2, ,i n  ,  

(9)    
1 1

1

{ } if ( { }) ,

 otherwise,

i i i i

i

i

K a h K a U
K

K

 



  
 


 

then Key( )nK h . Hence, one minimal key can be extracted in polynomial time.  

Consider Example 3.1 again, we will compute the minimal keys of the operation 

h by using the DENKEY algorithm. First, we already know that  

1 2 3 1 3 2 3 1 2 4Closed( ) { ,{ },{ },{ },{ , },{ , },{ , , }, }.h a a a a a a a a a a U   

Then, we immediately get 

1 3 2 3 1 2 4Gen( ) {{ , },{ , },{ , , }},h a a a a a a a  

2 4 1 4 3Gen( ) {{ , },{ , },{ }},h a a a a a   

and 

1 2 3 3 4Tr(Gen( )) {{ , , },{ , }}.h a a a a a  

Thus, the set of the minimal keys of the operation h is  

1 2 3 3 4Key( ) {{ , , },{ , }}.h a a a a a  

As mentioned in the introduction section, the closure operations have been 

applied to many fields such as theories of rough sets and fuzzy sets, databases, etc. 

In the rest of the article, we shall provide an interesting application of our result to 

the attribute reduction problem in the rough set theory, which helps to enhance the 

efficient and effective of the classification problem by selecting important attributes 

and removing unnecessary attributes.  

First, we recall briefly some basic concepts in the rough set theory, which can 

find in [10-12]. We will begin with the concept of information systems introduced by 

Pawlak. An information system is a pair of ( , ) U A , where U  and A  are two 

finite, non-empty sets, also called the set of objects, and the set of attributes, 

respectively. Each attribute a A  determines a mappping :  aa U V , where each aV  

is a set of values of the attribute a . We can observe an example for an information 

system with  1 2 6, , ,U u u u  and  Temperature, Headache, Muscle_painA  , as 

follows: 
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U Temperature ( 1a ) Headache ( 2a ) Muscle_pain ( 3a ) 

1u  high no yes 

2u  high yes no 

3u  very high yes yes 

4u  normal no yes 

5u  high yes no 

6u  very high no yes 

 

Consider an information system ( , ) U A  and an attribute subset B A , and  

B-indiscernibility relation on U  is defined by  

IND( ) {( , ) : , ( ) ( )}B u v U U a B a u a v      . 

Then, if ( , ) IND( )u v B , then u and v are indiscernible on the subset of 

attributes B.  

An attribute subset B A  is called a reduct of A if IND(B) = IND(A) and 

, IND( { }) IND( )a B B a B    .  

Next, we define a map 2: 2 A Ah , in which for each 2 ,AX   ( )  h X Y X  

such that IND(X) = IND(Y) and for any ,a Y     IND } INDY a X  . Obviously,   

h  is a closure operation on A .  Consider the above information system ( , ) U A , 

the operation h  is represented in details, as follows: 
 

X h(X) X h(X) 

    1 2{ , }a a  A 

1{ }a  1{ }a  1 3{ , }a a  1 3{ , }a a  

2{ }a  2{ }a  2 3{ , }a a  2 3{ , }a a  

3{ }a  3{ }a  A A 
 

Then, we easily obtain 

1 2 3 1 3 2 3Closed( ) { ,{ },{ },{ },{ , },{ , }, },h a a a a a a a A   

1 2 1 3 2 3Gen( ) {{ },{ },{ , },{ , }},h a a a a a a  

2 3 1 3 2 1Gen( ) {{ , },{ , },{ },{ }},h a a a a a a  

and 

1 2Tr(Gen( )) {{ , }}.h a a  

Thus, the set of the minimal keys of the operation h is 1 2Key( ) {{ , }}.h a a  It is 

more interesting that Key( )h  is also exactly the set of all reducts of A in the 

information system ( , )U A . 

5. Conclusion 

We introduce the concept of dense family of closure operations and provide some 

dense families, such as the collection of all closed sets and the minimal generator of 
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the closure operation. For an arbitrary family, we also give an effective way for 

determining whether it is dense or not. Based on the dense families, we present an 

interesting approach for discovering all minimal keys of the closure operation and 

propose an effective algorithm for calculating these minimal keys. 
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