
Engineering Structures 266 (2022) 114570

A
0

B
B
a

b

c

A

K
B
T
P
U
M
M

1

l
c
l
t
e
g
i
c
i
d

e
i
p
(
m
i
t
s
m

h
R

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

ayesian updating of tall timber building model using modal data
laž Kurent a, Noemi Friedman b, Wai Kei Ao c, Boštjan Brank a,∗

Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
Informatics Laboratory, Institute for Computer Science and Control (SZTAKI), Hungary
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK

R T I C L E I N F O

eywords:
ayesian model updating
all CLT building
olynomial Chaos surrogate
ncertainty quantification
ode pairing
odal data

A B S T R A C T

A framework for the probabilistic finite element model updating based on measured modal data is presented.
The described framework is applied to a seven-storey building made of cross-laminated timber panels. The
experimental estimates based on the forced vibration test are used in the process of model updating. First, a
generalized Polynomial Chaos surrogate model is derived representing the map from the model parameters
to the eigenfrequencies and the eigenvectors. To overcome the difficulties caused by mode switching, we
propose a novel approach to mode tracking based on partitioning an extended and low-rank representation of
the 𝑘 mode shapes resulting from different setups of the finite element model into 𝑘 clusters by the k-means
clustering algorithm. Second, the surrogate model derived with the help of mode pairing is used to efficiently
perform sensitivity analysis and uncertainty quantification of the first five frequencies and the corresponding
mode shapes. Finally, the surrogate-based Bayesian update of the model parameters is efficiently performed,
providing engineers not only with a finite element model that gives a good fit to the experimental modal
data, but also a stochastic model that represents the uncertainties originating from the initial model and the
uncertainties of measuring modal properties.
. Introduction

It has been demonstrated many times (even with the sudden col-
apse of bridges) that a lot about the actual performance of constructed
ivil engineering systems (e.g. tall buildings or bridges) under service
oading remains unknown. It is extremely difficult to predict a priori
he actual performance of a constructed civil engineering system. How-
ver, one can perform structural identification in order to narrow the
ap between the real system and its numerical model [1]. Structural
dentification is the process of creating and updating a model of a
onstructed system based on its measured response. Its basic ingredient
s model updating (e.g. [2,3]), which can be performed with either a
eterministic or a probabilistic approach.

The deterministic finite element (FE) model updating is well-
stablished, and there have been a number of successful applications
n civil engineering systems, see e.g. [4,5] among others. The idea is to
arametrize the FE model and use an optimization procedure to update
i.e. calibrate) the model parameters so that the numerical results
atch the measurements best. The selection of the updating parameters

s a key issue in the process, because they have to be directly related
o the quantity of interest that is being measured. For civil engineering
ystems, it is very common that the measurements are designed to esti-
ate modal data (i.e. natural frequencies, mode shapes, and damping
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ratios for a certain number of vibration modes). However, the modal
data identified from the measurements are sensitive to the source and
level of excitation, measurement errors, and environmental conditions
occurring during the tests. On the other hand, the FE models of civil
engineering systems contain unavoidable errors due to idealization,
simplification and discretization, as well as uncertainties associated
with geometry, material, boundary conditions, and connection details
between different elements of the system.

The more informative probabilistic approach to the model updating
based on the Bayesian inversion accounts for these errors and uncer-
tainties, see e.g. [6–11]. While with a classical optimization approach
we may only find a local minimum point of the chosen cost function,
with the probabilistic approach we can recover the posterior distribu-
tion of the model parameters given the measured modal properties.
In the Bayesian FE model updating, the model parameters are con-
sidered as uncertain. They are represented as random variables and
described by their posterior marginal distributions, obtained from prior
information and measured quantities of interest that depend on the
model parameters. The deviation between the measured quantities of
interest (i.e. natural frequencies and mode shapes) and the output of
the undamped FE modal analysis should be a realization of a random
vector predefined as an error model resulting from measurement errors,
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from the estimation of modal properties and from the modelling error
of the FE model. An improvement in computation time can be achieved
by using a surrogate model that approximates the solution of the FE
model analysis.

The modal data of a constructed civil engineering system can be
obtained from either output-only ambient vibration testing (AVT) or
input–output forced vibration testing. The AVT methods are based
on measured response due to unmeasured ambient excitations. In the
input–output testing, both the excitation force and the corresponding
dynamic response are measured, allowing estimation of the frequency
response functions (FRFs). The AVT-based estimated modal properties
are less reliable than their FRF-based counterparts, [12], yet FRFs have
very rarely been used for constructed civil engineering systems. One
of the reasons is practical difficulties related to forced excitation of a
building or a bridge during its operation. Another reason is a logis-
tical complication in measuring responses simultaneously throughout
the structure (which can be solved by using synchronized wireless
accelerometers [12]).

For civil engineering systems, there are several works related to
the application of Bayesian FE model updating based on modal data,
see e.g. [13–17]. In such a process, it is essential that mode pairing
is done correctly. The comparison of numerical and measured modal
characteristics should be performed only if they correspond to the
same eigenmode. In other words, it is essential to determine which FE
mode matches which measured mode. This is not an easy task, because
only a limited number of degrees of freedom of the mode shapes are
being measured. Also, when varying the FE model parameters within
the confidence interval, the order of the computed mode shapes may
change as well, which calls for a procedure capable of recognizing
these changes and correctly linking the FE modes to the corresponding
experimental ones. For this purpose, one can use the Modal Assurance
Criterion (MAC), see e.g. [13,17]. However, when dealing with spatial
aliasing of the experimental mode shapes (when sensors placement does
not allow for a clear distinguishing between the experimental modes,
e.g. [18,19]), the use of MAC fails and one has to search for another
suitable procedure (as is the case in this work).

The applications of modal-data-based Bayesian FE model updating
differ in how the error function (and the corresponding likelihood
function) is determined for the mode shapes. In some cases, the error
of the 𝑖th mode shape vector can be effectively defined by means of
the corresponding MAC𝑖 value (see e.g. [13,17]). In this work, we
ot only use the correlation of the experimental mode shapes and the
E modes as a regularization term expressed by the MAC value, but
e rather do the update in such a way that we try to fit both the
igenfrequencies and the eigenmodes. By defining an error term ex-
ressing our confidence in the measured frequencies and mode shapes,
e weigh the importance of accurately fitting the different elements
f the different modal properties. Let us also mention that there are
pdating procedures which do not require matching of experimental
nd numerical mode shapes, see e.g. [20,21], however, they demand a
arge number of model parameters.

In this work, we perform the probabilistic FE model updating of
tall timber building (TTB), which is located in Glasgow, UK, and is
ade completely of cross-laminated timber (CLT) panels. The design of
TBs is governed by the vibration serviceability limit state for the wind-
enerated vibrations that cause discomfort or annoyance to occupants.
urrent knowledge on the stiffness and damping of constructed TTBs is

imited, particularly with respect to the different types of connections
sed in different timber load-bearing systems [22,23]. As a result, the
nderstanding of the dynamic behaviour of constructed TTBs under
ind-induced vibrations is poor, leading to a lack of confidence by
esigners to use timber as construction material for new tall build-
ngs. In order to obtain more information about the performance of
onstructed TTBs under service loadings, a few studies have been
erformed, see [24–27], some of them including deterministic FE model
2

pdating. These and other studies on FE model updating of TTBs are r
very valuable because they provide insight on how different compo-
nents of a TTB affect the overall stiffness of the building. Moreover,
they provide insight into the as-built stiffness of different structural
components in TTBs, in particular shear walls and floors in tall CLT
buildings. Namely, in tall CLT buildings, the stiffness is not merely
related to the properties of the CLT panels but is also affected (in
an unpredictable way) by the joints between the CLT panels, which
are essentially steel connections. To the best of our knowledge, the
probabilistic FE model updating of TTB (in particular CLT building)
is performed for the first time in this work. Another novelty of the
presented work is a new procedure for pairing numerical and exper-
imental mode shapes, which is an essential ingredient of the FE model
updating based on modal data. It is proposed to use a clustering method
to keep track how the order of mode shapes changes with the change
of the values of the model parameters. In particular, the k-means
clustering method [28] (an unsupervised machine learning algorithm)
of an extended, low-rank representation of the mode shapes is applied.
The new procedure was designed, because the standard one, which
relies on the application of MAC, failed to correctly link the FE mode
shapes to the corresponding experimental ones.

With the help of the mode tracking algorithm, a generalized Poly-
nomial Chaos expansion [29] of the natural frequencies and the mode
shapes can be computed allowing an efficient evaluation of the modal
properties for a given value of the model parameters. The Polyno-
mial Chaos expansion was first introduced by Norbert Wiener [30]
to describe stochastic processes with Gaussian random variables with
the help of Hermite polynomials. The description was generalized by
Xiu [31] to variables with other distributions in the form of what is
called generalized Polynomial Chaos (gPC) expansion.

Replacement of the computationally expensive FE modal analysis
with the gPC surrogate models allows for efficient computation of
the Bayesian inversion by the Markov Chain Monte Carlo (MCMC)
sampling method [32]. The surrogate model also allows for fast compu-
tation of global sensitivities [33] and statistics of modal properties [31].
The experimental modal data used for model updating were obtained
from the input–output testing, where both the excitation force and the
corresponding dynamic response were measured, see [12]. FRF-based
modal identification was applied to get experimental estimates of the
modal properties of the considered tall CLT building. The Bayesian
FE model updating of the considered tall CLT building yielded some
interesting results. It allowed for an estimation of the as-built stiffness
of shear walls and floors, showing the qualitative influence of connec-
tions on their stiffness. Moreover, it allows for a statistical evaluation
of the quantities of interest, i.e. natural frequencies as well as the mode
shapes.

The remainder of the paper is organized in the following way. Sec-
tion 2 describes the theoretical framework of the applied probabilistic
approach. In Section 3, the framework is applied to a seven-storey tall
CLT building, and the results of the adopted probabilistic procedure are
presented and discussed. In Section 4, the conclusions are drawn.

2. Probabilistic framework

Let 𝐩 ∈ R𝑁 be a vector of chosen uncertain input parameters of
he FE model. In the Bayesian framework, we model these parameters
s random variables denoted by 𝐏∶𝛺 ←←→ R𝑁 , with 𝛺 being the set
f all possible outcomes. We denote the vector of random variables
ith a capital letter and a certain realization of it with a small let-

er.1 Our uncertainty of the ‘true’ values of the chosen parameters is
eflected by the variance of the random variables. The prior uncertainty
hould reflect our prior knowledge about what values the parameters

1 E.g. 𝜩 denotes the random variable and 𝝃 denotes a realization of the
andom variable 𝜩.
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Fig. 1. Replacing the deterministic FE solver by a PCE surrogate model: the dashed
line shows the path without a surrogate model and the solid line shows the one when
a surrogate model is used.

can take with what probabilities. This is often based on experiments,
professional expertise and engineering judgement.

Let 𝜋𝐏(𝐩) be the joint probability distribution of the random vector
𝐏. When the uncertain parameters 𝑃𝑖 are mutually independent random
variables, this distribution is the product of the univariate distributions

𝜋𝐏(𝐩) =
𝑁
∏

𝑖=1
𝜋𝑃𝑖 (𝑝𝑖). (1)

Let us denote in an abstract way the operation of getting the
measurable outputs 𝐲 from a specific realization of the parameters 𝐩
with the forward operator ∶R𝑁 ←←→ R𝐿

𝐲 = (𝐩), 𝐲 ∈ R𝐿. (2)

We use measurements of modal features to calibrate the FE model. To
this end, we define a measurable quantity

𝐲 =
[

𝑓1, 𝑓2, … , 𝑓𝐾 , 𝝍𝑇
1 , 𝝍𝑇

2 , … , 𝝍𝑇
𝐾
]𝑇 , (3)

where 𝑓𝑖 ∈ R and 𝝍 𝑖 ∈ R𝐷 are the 𝑖th eigenfrequency and eigenvector,
respectively. 𝐷 is the number of measured degrees of freedom (dimen-
sion of the eigenvector) and 𝐾 is the number of the modes used in
the update procedure. These two constants give the dimension of the
measured quantity 𝐿 = (1 + 𝐷)𝐾. The measured counterpart 𝐳meas is
linked to the ‘true’ value of the input variables 𝐩meas as

𝐳meas = (𝐩meas) + 𝝐, (4)

where 𝝐 is one realization of the vector of random variables 𝐄∶𝛺 ←←→

R𝐿 representing the sum of the modelling error and the measurement
noise. We denote the probability density of the error model 𝐄 by 𝜋𝐸 .

2.1. Bayesian inversion

With a probabilistic identification, we wish to express the con-
ditional distribution of the input random variables given a specific
measured value 𝐳meas of the measurable quantity 𝐲. The updated,
posterior distribution of the parameters according to Bayes’ theorem
is

𝜋𝐏|𝐳meas
(𝐩)

⏟⏞⏞⏟⏞⏞⏟
posterior

=

likelihood
⏞⏞⏞⏞⏞⏞⏞
𝜋𝐳meas|𝐏(𝐩)

prior
⏞⏞⏞
𝜋𝐏(𝐩)

∫𝐼𝐏
𝜋𝐳meas|𝐏(𝐩)𝜋𝐏(𝐩)𝑑𝐩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
evidence

=
(𝐩)𝜋𝐏(𝐩)

𝜁
, (5)

where the numerator is the product of the likelihood and the prior
and the denominator, the evidence is just the normalization factor
3

assuring that the density function integrates to one. The likelihood
(𝐩) = 𝜋𝐳meas|𝐏(𝐩) of measuring a specific value of measurable quantity
𝐳meas given a certain value of parameter 𝐩 can be computed from the
determination of the probability that the measurement error takes the
value 𝝐 = 𝐳meas − 𝐲, i.e.,

(𝐩) = 𝜋𝐄
(

𝐳meas −(𝐩)
)

. (6)

The prior distribution can strongly influence the posterior distribution
and should therefore be carefully chosen based on engineering judge-
ment (see more on the potential influence of prior distribution on the
posterior in [11]).

Unfortunately, it would be difficult to write the posterior distri-
bution in a closed form. Therefore, we rather sample from the given
distribution using the Metropolis–Hastings algorithm [32,34]. The basic
idea of the algorithm is to generate samples by a random walk in the
parameter space, such that the stationary distribution of this process
equals the target distribution (in this case the Bayes posterior). That
is, after an initial transient phase (burn-in period) sampling from the
random walk is equivalent to directly sampling from the posterior.
The random walk is governed by what is called proposal density.
According to this conditional distribution, a new point of random walk
is proposed, depending on the current point of the walk. The proposed
point is then accepted at each step of the walk with a probability of the
ratio between posterior in the new proposed point and posterior in the
current point. Otherwise, it is rejected and a new point is proposed for
the next step from the current point. The algorithm that uses a surrogate
model is explained in detail in [35].

The Metropolis–Hastings algorithm has the advantage that we can
ignore the computation of the normalization factor, the evidence, and
that, unlike some sampling-free methods, it does not impose any re-
quirements on the posterior distribution (e.g. to be Gaussian). Never-
theless, with such a sampling method a large number of evaluations
of the likelihood is needed. For one evaluation of the likelihood the
measurable quantity 𝐲 = (𝐩) (in our example here the frequencies
and the mode shapes) have to be computed from a specific value of the
input parameters. As we need a large number of evaluations, it is often
unaffordable to call the FE solver for each evaluation. In order to avoid
this cost and also for efficient sensitivity analysis and computation of
statistics, we first replace the FE model with a surrogate model, a gPC
expansion 𝐲gPC = gPC(𝐩) which approximates the modal properties 𝐲
in the form of multivariate polynomials of the input parameters 𝐩, as is
schematically presented in Fig. 1. The random walk using a surrogate
model is explained in detail in [35]. For computational convenience,
instead of directly using the random variables of the input parameter
for the expansion, we map them to some reference random variables

𝜩 = [𝛯1, 𝛯2,… , 𝛯𝑁 ]𝑇 , (7)

the components of which are mutually independent random variables
with some standard distribution. The map from the reference parameter
to the input parameter is denoted here by

𝐩 =  (𝝃). (8)

The gPC expansion takes the form

𝐲 = (𝐩) ≈ gPC(𝐩) = 𝐲gPC (−1(𝐩))
⏟⏞⏟⏞⏟

𝝃

=
𝑀
∑

𝑚=1
𝝊𝑚𝛷𝑚(𝝃) = 𝜰𝜱(𝝃), (9)

where 𝛷𝑚 are the orthogonal multivariate polynomials and 𝝊𝑚 ∈ R𝐿 are
the coefficients of the expansion corresponding to the 𝑚th polynomial,
𝜱 ∈ R𝑀 is a vector collecting all the polynomials and 𝜰 ∈ R𝐿×𝑀 a
matrix collecting the vectors of coefficients 𝝊𝑚 in its columns. With the
help of the expansion, the likelihood can be approximated by

(𝐩) ≈ 𝜋𝐸 (𝐳meas −gPC(𝐩)). (10)

With the given framework we can sample from the posterior distri-
bution and make a point estimate of the input parameters by estimating
the maximum a-posteriori (MAP) point – the mode of the samples – or
the mean of the posterior distribution.
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2.2. Generalized polynomial chaos expansion

The main idea of computing a surrogate model is to approximate the
dependence of the measurable variables 𝐲 on the reference variables 𝝃
with the help of a set of 𝑀 polynomial basis functions {𝛷𝑚}𝑀𝑚=1 that
are orthogonal with respect to the underlying probability space, that is

E[𝛷𝑚(𝝃)𝛷𝑛(𝝃)] = ∫R𝑁
𝛷𝑚(𝝃)𝛷𝑛(𝝃)𝜋𝜩 (𝝃)d𝝃 = 𝛾𝑚𝛿𝑚𝑛, (11)

where 𝜋𝜩 (𝝃) is the joint probability distribution of the reference random
variables 𝜩, 𝛿𝑚𝑛 is the Kronecker delta, and 𝛾𝑚 is the squared norm of
the polynomials, that is

𝛾𝑚 = E[𝛷𝑚(𝝃)𝛷𝑚(𝝃)] = ∫R𝑁
𝛷𝑚(𝝃)𝛷𝑚(𝝃)𝜋𝜩 (𝝃)d𝝃. (12)

The type of polynomials used for the expansion depends on the dis-
tributions of the reference random variables 𝛯𝑖. For example, when
all the reference parameters have a standard Gaussian distribution,
the polynomials that are orthogonal with respect to this probability
measure are the Hermite polynomials. With the help of the orthogonal
polynomials, the measurable modal properties 𝐲 can be written as a
linear combination of these polynomials 𝛷𝑚 with coefficients 𝝊𝑚,

𝐲 = (𝐩) = ( (𝝃)) ≈ gPC(𝐩) = 𝐲gPC(−1(𝑝))

=
𝑀
∑

𝑚=1
𝝊𝑚𝛷𝑚(𝝃) = 𝜰𝜱(𝝃). (13)

The gPC coefficients 𝝊𝑚 can be computed by different techniques,
e.g. interpolation, orthogonal projection, regression (see e.g. [29]).
Here, we only describe how to compute the coefficients by regression.
First, we write the error of the approximation at a sample point 𝝃𝑗 of
the reference random variables

𝐞(𝝃𝑗 ) = 𝐲(𝝃𝑗 ) − 𝐲gPC(𝝃𝑗 ) = 𝐲(𝝃𝑗 ) −
𝑀
∑

𝑚=1
𝝊𝑚𝛷𝑚(𝝃𝑗 ), (14)

and we compute the coefficients by requiring the mean squared error of
the approximation for all components 𝑙 at some chosen sample points
{𝝃𝑗}

𝑄
𝑗=1

𝑠𝑙 =
𝑄
∑

𝑗=1
([𝐞(𝝃𝑗 )]𝑙)2 𝑙 = 1…𝐿 (15)

to be minimized. The sum 𝑠𝑙 reaches its minimum, where the gradient
is zero, that is

𝜕𝑠𝑙
𝜕[𝝊𝑚]𝑙

= −2
𝑄
∑

𝑗=1
[𝐞(𝝃𝑗 )]𝑙

𝜕[𝐲gPC]𝑙
𝜕[𝝊𝑚]𝑙

= −2
𝑄
∑

𝑗=1
[𝐞(𝝃𝑗 )]𝑙𝛷𝑚(𝝃𝑗 ) = 0 ∀ 𝑙 = 1…𝐿.

(16)

Accordingly, coefficients 𝜰 can be computed by solving the system of
equations

−2 (𝐀 − 𝜰𝐅)𝐅𝑇 = 𝟎, (17)

where the elements of matrix 𝐀 ∈ R𝐿×𝑄 are the modal properties
computed at the different sample points 𝝃𝑗

[𝐀]𝑙,𝑗 = [𝐲(𝝃𝑗 )]𝑙 (18)

and the matrix 𝐅 ∈ R𝑀×𝑄 is the interpolation matrix, the basis functions
valuated at the sample points

𝐅] = 𝛷 (𝝃 ). (19)
4

𝑚,𝑗 𝑚 𝑗 s
.3. Eigenmode ordering

Even though matrix 𝐀 is only a collection of eigenfrequencies and
igenvectors computed at Q different values of the uncertain param-
ters, it is not straightforward to assemble it. The main difficulty in
omputing the 𝐲(𝝃𝑗 ) vectors is caused by the possible mode switching
hat can occur when the values of the input parameters are deviated.
hus, the main issue when generating the surrogate model is to order
he components of vector 𝐲 well, see Eq. (3).

The classical approach is to correlate the FE mode shapes with
he experimental ones and to use the order of the latter as a ground
rdering. This is usually done by the MAC criterion (for more see
ection 3.4). However, not only the frequencies but also the mode
hapes change with the changing values of the parameters. Due to the
hange of the shapes, the correlation with the right experimental mode
ecreases. Together with spatial aliasing where otherwise uncorrelated
odes show correlation, it is difficult to match the right mode pair. The

mbiguity of MAC matrix for the pairing of the modes can be observed
n the case studied in this paper, see Section 3.4.

For the task at hand, to cluster the 𝑄 ×𝐾 mode shapes into 𝐾 sets,
st, 2nd...𝐾th mode, the k-means unsupervised clustering can be used.
he idea is to partition the modes into 𝐾 sets

= {𝑆1, 𝑆2,… , 𝑆𝐾} (20)

n such way that each mode shape 𝝍 𝑗
𝑘 belongs to the set with the nearest

ean,

= arg min
𝑆

𝐾
∑

𝑘=1

∑

𝝍∈𝑆𝑘

‖𝝍 − 𝝁𝑘‖2, (21)

hat is, the sets are chosen such that the summed variances of the mode
hapes in between the clusters are minimized. In Eq. (21), 𝝁𝑘 is the
ean of the mode shapes that belong to set 𝑆𝑘. To improve the quality

f the clustering, not only the mode shapes but also their derivatives
an be included in the clustering procedure. If the original mode shape

was a vector of displacements in the 𝑥1 direction and in the 𝑥2
irection

=
[

𝝍𝑇
𝑥1
,𝝍𝑇

𝑥2

]𝑇
, 𝝍 ∈ R𝐷 (22)

the modified vector can be extended by the derivatives of the mode
shapes

�̃� =
[

𝝍𝑇
𝑥1
,𝝍𝑇

𝑥2
, (
𝜕𝝍𝑥1
𝜕𝑥3

)𝑇 , (
𝜕𝝍𝑥2
𝜕𝑥3

)𝑇
]𝑇

�̃� ∈ R�̃�. (23)

y extending the vector, the success of the clustering is increased,
specially when the number of sensor locations is limited. The k-means
lustering method, unfortunately, suffers from the curse of dimension-
lity. When the dimension of mode shapes 𝝍 is high, the performance
f the clustering decreases. To overcome this problem, a low-rank
epresentation can be used with the help of the proper orthogonal
ecomposition (POD) to compensate for the increased dimension �̃�
f the extended mode shape vector �̃� . If we collect all 𝐾 extended
igenvectors �̃�𝑘 for all the 𝑄 sample points in a big matrix 𝐔 with 𝐾 ⋅𝑄
olumns, the POD of this 𝐔 matrix reads

= 𝝁�̃� + �̃� = 𝝁�̃� + 𝐕𝐒𝐖 = 𝝁�̃� +
�̃�
∑

𝑚=1
𝜎𝑚𝐯𝑚𝑤𝑚, 𝐔, �̃� ∈ R�̃�×(𝐾⋅𝑄), (24)

here 𝝁�̃� is a matrix where each column is the mean of all the 𝐾 ⋅ 𝑄
xtended vectors �̃� , and �̃� is the fluctuating part of the columns,
∈ R�̃�×�̃� is a diagonal matrix with [𝐒]𝑚𝑚 = 𝜎𝑚. The orthogonal matrix
∈ R�̃�×�̃� of the decomposition of the fluctuating part can be computed

y the eigenvalue decomposition of the covariance matrix 𝐂, namely

= cov(𝐔) = E(�̃��̃�𝑇 ) = 𝐕𝐒2𝐕𝑇 . (25)

he columns of matrix 𝐕, vectors 𝐯𝑚, are representative for the de-

cription of the mode shapes in the sense that they can best capture
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Fig. 2. A photo of Yoker from November 2019.

their variance. The terms with smaller values of 𝜎𝑚 do not significantly
contribute to the variance, so they can be ignored in the expansion,
leading to a truncated set of basis functions {𝐯𝑚}𝐷

′

𝑚=1, where 𝐷′ < �̃�.
With this ideal set of basis vectors at hand, we cluster the extended
mode shape vectors described in the truncated basis, that is, instead
of clustering the vectors �̃� we cluster the vectors projected onto this
reduced dimensional basis

�̃�𝑘 = �̂�𝑇 �̃� , (26)

where �̂� ∈ R�̃�×𝐷′ is the truncated matrix of basis functions {𝐯𝑚}𝐷
′

𝑚=1.
Even though all the eigenvectors 𝝍 are normalized, there is still the

problem of flipped mode shapes. To tackle this problem, we can cluster
the mode shapes into twice as many clusters as there were modes in the
group, each cluster having its flipped version.

2.4. Uncertainty quantification and sensitivity analysis

Once the final surrogate model is constructed the evaluation of
the statistics and the sensitivities of the modal properties can be ef-
ficiently computed. The uncertainty of the outputs is estimated based
on the propagation of uncertainties of the input parameters (i.e. prior
distributions) through the model.

If we chose the first polynomial to be 𝛷1 = 1, the mean of the
modal properties 𝐘, for example, can be computed directly from the
gPC coefficients corresponding to the zeroth polynomial

E[𝐘] ≈ E[𝐘gPC] = E

[

∑

𝑚
𝝊𝑚𝛷𝑚(𝜩)

]

=
∑

𝑚
𝝊𝑚E[𝛷𝑚(𝜩)]

=
∑

𝑚
𝝊𝑚E[𝛷𝑚(𝜩) 𝛷1(𝜩)

⏟⏟⏟
=1

] = 𝝊1, (27)

because of E[𝛷1𝛷1] = 1 and E[𝛷𝑚≠1𝛷1] = 0 due to the orthogonality
condition (11). The variance of 𝐘 can be computed from the rest of the
coefficients by

cov[𝐘,𝐘] ≈ cov[𝐘gPC,𝐘gPC] = E

[( 𝑀
∑

𝑚=1
𝝊𝑚𝛷𝑚(𝜩) − E[𝐘gPC]

)

×

( 𝑀
∑

𝑚=1
𝝊𝑚𝛷𝑚(𝜩) − E[𝐘gPC]

)𝑇
⎤

⎥

⎥

⎦

=
𝑀
∑

𝑚=2
𝝊𝑚𝝊𝑇𝑚𝛾𝑚, (28)

again because of the orthogonality condition (11).
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The Sobol indices, the variance-based sensitivity measures, show
the ratio of the variance attributable to the uncertainties of a given
set of input parameters (or of one parameter in the case of the linear
indices) and the total variance. The partial variances can also be
directly computed from the coefficients of the gPC expansion [33].

3. Case study: tall CLT building

In this section, the above-presented probabilistic framework is ap-
plied for a seven-storey building in Glasgow, UK, called Yoker (see
Fig. 2). The application steps are illustrated in Fig. 3. The building
and its FE model were already described in [36]. Therefore, only basic
information is given hereinafter.

The floor plan of the building is of T-shape, with a ‘‘flange’’ and a
‘‘web’’ connected by a narrow corridor. Apart from a few steel beams
and frames that act as local reinforcements, the structure of the building
is made entirely of CLT panels with 3 or 5 layers and a thicknesses
of 100mm to 140mm. Almost all external walls are large (one storey
high) CLT panels with pre-cut openings. The majority of internal walls
are load-bearing CLT walls. The floor slabs are made of smaller CLT
panels connected with wood screws. The walls and the floor slabs are
connected by angle brackets and wood screws.

The FE model for computing eigenfrequencies and eigenvectors
of Yoker was prepared by Ansys [37]. The study [36] revealed that
modelling of the foundation and the soil is not necessary when dynamic
response with small vibration amplitudes is studied. For this reason,
only the above ground part of the structure was modelled, with degrees
of freedom restrained to zero at the bottom of the mesh. A fine mesh
(with 2.61 × 105 nodes) consisting of multi-layered shell elements was
used, with an orthotropic material model applied at each layer. As
for the material properties of the layers, the mean data provided by
the manufacturer (StoraEnso) [38] were considered, with the elastic
moduli of 12 000MPa and 370MPa in major and minor strength di-
rections, respectively, a shear modulus parallel to the fibre direction
of 460MPa, and a density of 470 kgm−3 (Poisson’s ratio 𝜈12 = 0.3
was assumed). Some of the elastic constants were chosen as uncertain
parameters, as described in Section 3.1. The joints between the panels
were not modelled as special entities, but an ideal bond was assumed.
The elements of the building that were considered as entities with
stiffness are the external and the internal load-bearing walls, floors, roof
and elevator shaft. The neglected building elements include steel beams
and frames, non-load-bearing partition walls, stairs and windows. The
mass of the timber part of the building, which is estimated at 515 t,
was applied through timber density. The mass of well-documented
non-structural elements (i.e. facade, insulation, screed, flooring, fireline
board, cladding, and non-load-bearing partition walls) that is estimated
at 685 t was distributed over the FEs modelling floor slabs and walls.
The estimate of the remaining mass (including doors, windows, stairs,
live load, etc.) was 70 t, which yielded 𝑞 = 25 kg∕m2 when smeared over
the FEs modelling floor slabs.

The first five modes calculated by the FE model are presented in
Fig. 4. Mode 1 is a bending mode, modes 2 and 3 are torsion modes.
Modes 4 and 5 are more complex torsion and shear modes, respectively.

3.1. Uncertain parameters of the FE model

The originally deterministic FE model is transformed into a stochas-
tic one, by treating a chosen set of its input parameters as random
variables. In this way, the FE model depends on the actual realization
of the value of these parameters. The choice was based on professional
expertise and an educated guess established by an extensive one-at-the-
time sensitivity analysis, as well as on the conclusions drawn from the
deterministic FE model updating of Yoker presented in [36].

The parameters enter the FE model as elastic constants of different
segments of the structure, such as elastic moduli in major strength
direction (𝑒 , 𝑒 , 𝑒 ) and in-plane shear moduli (𝑔 , 𝑔 ), together with
1 2 3 1 2
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Fig. 3. Application of the proposed concept to Yoker building.
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Fig. 4. First five mode shapes of the initial model.
Fig. 5. Six uncertain parameters of the FE model.

Table 1
Chosen parameters and their bounds.

Parameter Prior
distribution

Property Application

𝑒1 [GPa]  (6, 12) 𝐸1 CLT panels in walls.
Only for layers with fibres in vertical
direction.

𝑒2 [GPa]  (10, 13) 𝐸1 CLT panels in walls.
Only for layers with fibres in horizontal
direction.

𝑒3 [GPa]  (6, 12) 𝐸1 CLT panels in floor slabs.
All layers.

𝑔1 [MPa]  (400, 750) 𝐺12 CLT panels in walls.
All layers.

𝑔2 [MPa]  (200, 500) 𝐺12 CLT panels in floor slabs.
All layers.

𝑞 [kgm−2]  (5, 100) Mass Additional distributed mass along all
floors.

one distributed mass parameter (𝑞). The assignment of stiffness and
mass parameters to the different segments is explained in Table 1 and
illustrated in Fig. 5. Although the parameters enter the FE model as
material and mass properties, they were selected to capture two types
of uncertainties. The first type is related to the stochastic nature of CLT
material data and a lack of knowledge about the mass of the building.
The second type is related to the influence of the joints (with steel
connections) between the CLT panels on the overall stiffness of the
building.

The vector of the uncertain parameters is now

𝐩 = [𝑒1, 𝑒2, 𝑒3, 𝑔1, 𝑔2, 𝑞]𝑇 , 𝐩 ∈ R6. (29)

Based on the above-described prior analysis we assigned bounds 𝑎𝑖 and
𝑏𝑖 to all 𝑝𝑖 parameters and we supposed an uninformative prior in be-
tween these bounds, i.e. a uniform marginal distribution 𝑃𝑖 ∼  (𝑎𝑖, 𝑏𝑖)
of these parameters. The assigned distributions with their bounds are
given in Table 1. Furthermore, we assume that the parameters are
independent random variables. The vector of the reference random
7

variables

𝜩 = [𝛯1, 𝛯2, 𝛯3, 𝛯4, 𝛯5, 𝛯6]𝑇 , (30)

has components with standard uniform distributions, that is, 𝛯𝑖 ∼
 (−1, 1). The mapping is given by shifting and scaling the random
variables

𝐩 =  (𝝃), 𝑝𝑖 = 𝑖(𝜉𝑖) = 𝑠𝑖𝜉𝑖 + 𝑚𝑖, 𝑖 = 1,… , 6, (31)

where 𝑠 = (𝑏𝑖 − 𝑎𝑖)∕2 and 𝑚𝑖 =
𝑎𝑖+𝑏𝑖
2 . The joint distribution of the new

set of random variables 𝜩 is

𝜋𝜩 (𝝃) =
6
∏

𝑖=1
𝜋𝛯𝑖 (𝜉𝑖) =

{

0.56 for 𝝃 ∈ [−1, 1]6

0 otherwise,
(32)

and the joint distribution of the original set of parameters is

𝜋𝐏(𝐩) =
6
∏

𝑖=1
𝜋𝑃𝑖 (𝑝𝑖), (33)

where

𝜋𝑃𝑖 (𝑝𝑖) =

{ 1
𝑏𝑖−𝑎𝑖

for 𝑝𝑖 ∈ [𝑎𝑖, 𝑏𝑖]

0 otherwise.
(34)

3.2. Eigenmode ordering and computation of the surrogate model

For the computation of the coefficients of the gPC surrogate model,
𝑄 = 10.000 quasi-Monte Carlo (QMC) sample points were generated by
the Halton sequence drawn from the uniform distribution 𝜋𝜩 (𝝃).

Each sample point 𝝃 was mapped by Eq. (31) into parameter vector
𝐩, which was further used to compute the vector of modal properties
𝐲. This is done by forward operator , which represents in an abstract
way the computation of the eigenfrequencies and eigenvectors for a
given 𝐩 using the FE software

𝐲 =
[

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5,𝝍𝑇
1 ,𝝍

𝑇
2 ,𝝍

𝑇
3 ,𝝍

𝑇
4 ,𝝍

𝑇
5
]𝑇 = (𝐩), 𝐲 ∈ R𝐿. (35)

Each eigenvector 𝝍𝑘 in (35) is defined by 13 points in the 𝑥1−𝑥2 plane,
as presented in Section 3.4. More precisely, 13 nodes of the mesh that
coincide with the 13 sensor locations during the experimental testing
are used to construct 𝝍𝑘,

𝝍𝑇
𝑘 =

[

𝜓1
𝑘,𝑥1

,… , 𝜓13
𝑘,𝑥1

, 𝜓1
𝑘,𝑥2

,… , 𝜓13
𝑘,𝑥2

]

, 𝑘 = 1,… , 5. (36)

The dimension of 𝝍𝑘 is 𝐷 = 13 ⋅ 2 = 26, and 𝐿 = 𝐾 +𝐾 ⋅ 13 ⋅ 2 = 135.
Before the results of the computations were applied to assemble

matrix 𝐀, the eigenvectors were normalized with the Euclidean norm in
order to adjust the experimental and the numerical results to the same
normalization. An illustration of the procedure used to construct the
surrogate model with the inherent mode ordering is given in point 2 of
Fig. 3.

When preparing the surrogates for the eigenvectors, we encountered
a difficulty with the consistent ordering of the eigenvectors. The usual
approach based on MAC resulted in incorrect ordering, as shown in
Fig. 6 (left). As natural frequencies greatly overlap (see Fig. 7), they
could not be used to determine the right ordering. In addition, there
was a problem of flipped eigenvectors that cannot be simply solved
with normalization. These issues were approached with the technique
of clustering and filtering described in Section 2.3.
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Fig. 6. Normalized eigenvectors with ordering based on the MAC values (left) and
after the clustering and filtering (right). On the horizontal axis, there are 𝑥1 and 𝑥2
values at 13 sensor locations.

Fig. 7. Distribution of the first six eigenfrequencies before the clustering.

We included six modes in the clustering process to obtain five well-
ordered modes. The computed modes were divided into three groups -
(i) the first three modes, (ii) the fourth mode and (iii) the fifth and the
sixth modes — that were clustered separately. Because the frequencies
of the first three modes were very close to each other (see Fig. 7) and
distinguishable from mode four, switching of the modes within this
three modes is very plausible, but a switch to mode four is not. Figs. 6
and 7 show that mode four is easily separable from the others. Finally,
modes five and six were expected to switch between each other (with
probable involvement of some higher modes).

As described in Section 2.3, for a better clustering process we
worked with an extended vector �̃� 𝑖. However, for numerical conve-
nience, we did not compute the derivatives, but we extended the vector
by the differences in displacements between the subsequent points. This
resulted in the extended dimension �̃� = 26+25 = 51. To enhance the ef-
fectiveness of the approach to cluster the eigenmodes (see Section 2.3),
we initiated the mean of the clusters 𝝁 to be the mode shapes
8

�̃�

computed with the mean values of the prior input parameters, and their
flipped versions in the clustering procedure. For further analysis, we
flip back the mode shapes belonging to half of the clusters such that
the mode shapes have the same sign as the experimental eigenvector.
Also following Section 2.3, we used a low-rank representation of the
extended eigenvectors. The reduced dimension 𝐷′ was chosen so that
the captured variance divided by the total variance of the mode shapes
is greater than 99%, that is,

𝜌𝑙 =
∑𝐷′

𝑖=1 𝜎𝑚
∑�̃�
𝑖=1 𝜎𝑚

> 99.0%. (37)

For the first three modes the minimum reduced dimension is 𝐷′ = 4,
for the fourth mode 𝐷′ = 5 and for the fifth and sixth mode 𝐷′ = 10.

The clustering algorithm does not take into account an important
restriction. Clustering of the modes computed from one specific real-
ization of input parameters should be unique. This uniqueness criterion
was implemented after the clustering to check each sample point
whether it has two modes classified to the same cluster. In this case,
the sample point should be deleted or otherwise adjusted so that all
sample points meet the uniqueness criterion.

The clustering worked smoothly for the first three modes with no
samples failing in the uniqueness criterion. For mode four, the shapes
were only clustered to flipped and not flipped clusters, whereas the
shapes from the first one were multiplied by −1. The most problematic
was to cluster modes five and six. Here, roughly 1% of the sample
points failed the uniqueness criterion and were eliminated from fur-
ther analysis. The main problem was that some higher mode shapes
switched with any of these two modes. Unfortunately, even after fil-
tering sample points by the uniqueness criterion, the clustering fails to
give good results for modes five and six. This was observed from the
quality of the gPC surrogate model computed by cross-validation (it was
also visible when plotting the clustered mode shapes). The second stage
filtering for modes 5 and 6 was performed, so that the sample points
with the highest errors in the cross-validation process were identified as
outliers and filtered out. A similar procedure to 10-fold cross-validation
was selected for filtering. 90% of sample points were used to build a
surrogate model (gPC with different degrees) and the remaining 10%
of sample points were the basis for filtering. In each of 10 folds, 1%
of validation sample points with the highest errors were filtered out.
By repeating this process with varying degrees of the surrogate (up
to the 6th degree), we filtered out roughly 20% of all sample points.
The filtering was sufficient for mode 5, but not for mode 6, which still
showed too large an error of the surrogate model. Mode 6 was therefore
eliminated from further analysis.

From the procedure described above it can be concluded that more
degrees of freedom could be included for easier distinguishing between
the modes and better clustering results (even though they are not used
later for comparison with the experimental results). Even though this
would lead to higher dimension 𝐷, with the help of the low-rank
representation presented in Section 2.3, the increase of the reduced
dimension 𝐷′ would not be significant. Another conclusion is that it
would be beneficial to save more modes, to avoid problems when
higher modes change order. Another trick might be to include modal
mass in the vector used for clustering. This would make it easier to
distinguish between the modes, especially between local and global
modes, which are often similar given a limited number of degrees of
freedom.

Due to the fact that the reference parameters have standard uni-
form distribution, we used multivariate Legendre polynomials in the
expansion, because they are orthogonal with respect to this underlying
probability measure. Approximations with polynomials of different
degrees were tried and the final degree was chosen by validation. One
of the techniques for the validation of the surrogate model is a repeated
random sub-sampling validation, where the set of 𝑄 sample points
is divided randomly between the training set and the validation set.
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Fig. 8. Cross-validation results for (a) eigenfrequencies and (b) eigenvectors.
85% of the sample points, the training set, are used to fit a surrogate
model and the remaining 15% of the sample points, the validation set
with 𝑉 sample points, are used to estimate the error. The procedure
is repeated with 10 random splits. The mean relative error of the gPC
approximation of the 𝑘th eigenfrequency was estimated by

𝜖𝑟𝑒𝑙,𝑓𝑘 = 1
10

10
∑

𝑟=1

1
𝑉

𝑉
∑

𝑗=1

|𝑓 𝑟𝑡𝑘 (𝐩𝑉 𝑟,𝑗 ) − 𝑓𝑘(𝐩𝑉 𝑟,𝑗 )|
|𝑓𝑘(𝐩𝑉 𝑟,𝑗 )|

, (38)

where 𝑓𝑘 denotes the 𝑘th eigenfrequency computed by the FE model
and 𝑓 𝑟𝑡𝑘 is its gPC approximation of maximum total degree 𝑡 computed
from the training points of the 𝑟th split. The 𝐩𝑉 𝑟,𝑗 point is the 𝑗th
validation parameter point of the 𝑟th split. This mean relative error
of the gPC model for eigenfrequencies is shown in Fig. 8(a). The
mean relative error of the surrogate model of the eigenvector 𝝍𝑘 was
computed similarly as

𝜖𝑟𝑒𝑙,𝝍𝑘 = 1
10

10
∑

𝑟=1

1
𝑉

𝑉
∑

𝑗=1

‖�̂� 𝑟𝑡
𝑘 (𝐩𝑉 𝑟,𝑗 ) − 𝝍𝑘(𝐩𝑉 𝑟,𝑗 )‖2

‖𝝍𝑘(𝐩𝑉 𝑟,𝑗 )‖2
. (39)

The computed relative errors are shown in Fig. 8(b). Based on the
results of the cross-validation, a gPC expansion with maximum total
degree 4 is chosen for the eigenfrequencies (where all mean relative
errors are below 0.0003) and a maximum total degree 6 is chosen
for the eigenvectors (where all mean relative errors are below 0.003).
Once the surrogate model is determined, it produces modes not in the
order of the frequencies but in a predefined order corresponding to
the numbering of the different identified clusters that are also matched
with the suitable experimental mode shapes.

3.3. Sensitivity analysis and uncertainty quantification

With a surrogate model at hand, several stochastic analyses can be
performed relatively quickly. The analyses carried out are uncertainty
quantification and sensitivity analysis, presented in this section, and
Bayesian inference in Section 3.5.

To estimate the uncertainty of the model, one can perform uncer-
tainty quantification by analysing the probability distributions of the
quantities of interest (in our case eigenfrequencies and eigenvectors).
The mean value and the variance of the outputs can be calculated
using Eqs. (27) and (28). In this way, it is possible to evaluate the
confidence in the model based on the prior knowledge about the
uncertainty of the input parameters. Moreover, the uncertainty of the
model can also be estimated after the Bayesian update is complete
using the posterior distribution of the input parameters. The posterior
can be determined very efficiently by Monte Carlo sampling due to
computationally inexpensive surrogate model. The results are presented
in Section 3.6
9

Global sensitivity analysis can also be performed inexpensively to
find the influence of varying the input parameters (individually or in
combination) on the variance of the quantity of interest. The Sobol
indices are normally computed by Monte Carlo simulation, but with the
available gPC surrogate model they can be computed analytically [33].
The Sobol sensitivity indices of the eigenfrequencies and the eigen-
vectors are shown in Fig. 9. From the results it can be observed that
parameters 𝑒1, 𝑔1 and 𝑞 are the most influential parameters for modes
1 to 3. Other parameters (also higher-order interaction between the pa-
rameters) turn out to be more important for modes 4 and 5. Parameter
𝑔2 stands out as the most influential for mode 5. From Fig. 9 it can also
be observed that the components of the eigenvectors may be affected
differently by varying the different parameters (e.g. components 1 to
13 of mode 4 are not influenced by parameter 𝑔1, whereas components
14–26 are).

3.4. Experimental modal testing

The testing of the building was performed by three synchronized
shakers with a total moving mass of 68.85 kg. Altogether 26 accelerom-
eters were installed at 13 sensor locations: 2 sensor locations on each
floor (no sensors were placed on the ground floor) and an additional
one on the 6th floor, with reference sensors near the shakers. Each
sensor location measured accelerations in two horizontal directions, 𝑥1
and 𝑥2, as shown in Fig. 10. Due to the restricted access, the sensors
were placed only on the corridors. This provided limited information
about the motion of the building and resulted in spatial aliasing. Two
sets of 30 min random vibration tests were carried out, one with shakers
exciting in the 𝑥1 direction and the other in the 𝑥2 direction. The
measured response was divided into 22 windows of 80 s, from which
FRFs were obtained. A single-input multiple-output modal identifica-
tion method, called complex mode indicator function (CMIF), was used
on averaged FRF to get eight eigenfrequencies. The first five are shown
in Table 2; see also point 4 in Fig. 3 for an illustration of the procedure.
For a description of experimental eigenvectors, we refer to [36], where
more details on testing are available.

The comparison of two eigenvectors is often performed with MAC
measure of correlation, see [39], which handles both real and complex
eigenvectors:

MAC(𝝍𝑘,𝑒𝑥𝑝,𝝍ℎ,𝑛𝑢𝑚) =
|

|

|

𝝍𝑇
𝑘,𝑒𝑥𝑝𝝍

∗
ℎ,𝑛𝑢𝑚

|

|

|

2

(

𝝍𝑇
𝑘,𝑒𝑥𝑝𝝍

∗
𝑘,𝑒𝑥𝑝

)(

𝝍𝑇
ℎ,𝑛𝑢𝑚𝝍

∗
ℎ,𝑛𝑢𝑚

) . (40)

Here, 𝝍𝑘,𝑒𝑥𝑝 and 𝝍ℎ,𝑛𝑢𝑚 are the 𝑘th experimental and the ℎth numerical
eigenvectors, respectively, and ∗ denotes the conjugation of complex
eigenvector. A MAC value of 1 indicates a strong similarity between
the two eigenvectors, whereas a value of 0 indicates no similarity.
Commonly, a pairwise comparison of the experimental and numerical
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Fig. 9. Sensitivity analysis of the (a) eigenfrequencies and (b) eigenvectors.
Fig. 10. Layout of shakers and sensors; 𝑥1 and 𝑥2 coordinates.

mode shapes is presented in the MAC matrix. From Fig. 11 it is
evident that the MAC matrix for the considered case study suggests a
correlation between too many mode shape pairs. This effect is called
spatial aliasing and is further discussed in [36]. Due to the ambiguous
choice of matching mode pair, the MAC criterion alone is not adequate
to be used for pairing numerical modes with the experimental ones.

3.5. Likelihood definition and Bayesian inversion

For model updating in the Bayesian framework, an estimate of the
error term in Eq. (4) is needed. The uncertainties of the measured
values of the frequencies and the mode shapes (due to the measurement
noise and plausible errors made when computing the frequencies and
mode shapes from the measured signals) need to be described in the
form of a distribution 𝜋𝐄. We assumed that all modelling errors in the
computation of the modal properties by the operator  are already
accounted for in the form of the selected uncertain parameters and
we ignored further forms of modelling errors. As a rough estimation,
a Gaussian error distribution was assumed

𝐄 ∼  (𝟎,𝜮), (41)
10
Fig. 11. MAC matrix comparing measured and computed mode shapes (by using mean
parameter values).

where the components of the error terms were presumed as indepen-
dent from each other. Thus, the covariance matrix of the error term
𝐄 is diagonal with elements [𝜮]𝑙𝑙 = 𝜎2𝐄,𝑙. The standard deviations
𝜎𝐄,𝑙 for the frequencies were computed from the above-mentioned 22
windows of 80 s and were transformed to FRFs for all 26 degrees of
freedom. The samples of the eigenfrequencies were obtained by the
peak picking method from a total of 1144 FRFs, see point 4 in Fig. 3
for illustration. The standard deviation of the samples was taken as the
standard deviation of the measurement error, see Table 2. The same
procedure could not be reliably applied to the eigenvectors. Thus, the
standard deviation of the corresponding error components was assumed
to be 0.05 based on an educated guess.

Likelihood function (𝐩) includes the differences between the FE
and experimental frequencies and eigenvectors, see (10). In order to
simplify the comparison between complex experimental 𝝍exp and real
FE eigenvectors 𝝍num, the transformation of the complex experimental
eigenvectors to real is performed. The procedure is called realiza-
tion or real-normalization of mode shapes. How far away a complex
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eigenvector is from a real one is characterized by the quantity often
named complexity [40], but sometimes also spatiality [41]. The cited
literature also provides measures of this quantity. Generally, the higher
the complexity, the more error is expected from the process of real-
ization. The complexity of the eigenvector is often associated with the
distribution of damping over the structure (highly non-proportional
damping corresponds to higher complexity), but this is far from being
the only effect. Closely spaced or double modes also contribute to
higher complexity as well as analysis and measurement errors. The
most common method of getting a real eigenvector is to simply take
the modulus of each component of a complex eigenvector and multiply
it by the sign of the real part of the component [42]. This works well for
low complexity structures with phase angles around 0° or 180°. Another
method, presented in [43], may be more widely used. It maximizes
the MAC correlation between the original complex vector and the
converted real vector. It turns out that this translates to a problem of
finding an angle of rotation 𝜙max of eigenvector that maximizes the
Euclidean norm of the real part of the vector, i.e. max ‖𝑅𝑒(𝝍𝑘𝑒𝑖𝜙)‖2.

he realized eigenvector is then computed as:

𝑘 =
𝑅𝑒(𝝍𝑘𝑒𝑖𝜙max )

‖𝑅𝑒(𝝍𝑘𝑒𝑖𝜙max )‖2
(42)

e used this approach for the realization of the experimental eigenvec-
ors 𝝍𝑘 that were then used in vector 𝐳meas.

Following Eq. (10) and the multivariate normal distribution, the
ikelihood in the Bayesian formula reads

(𝐩) ≈ 2𝜋−
(

𝐿
2

)

det(𝜮)−
1
2 𝑒−

1
2
(

𝐳meas−gPC(𝐩)
)𝑇𝜮−1(𝐳meas−gPC(𝐩)

)

. (43)

It should be noted that in the presented case study forced vibration tests
were used as a basis for likelihood, but the herein proposed procedure is
not limited to this experimental method. For instance, frequently used
AVTs can be applied in this method. However, it is important to note
that the estimation of the error term reflects the uncertainty of the
experimental eigenfrequencies and mode shapes, which depends on the
used measurement procedures (from applied method, execution to the
modal identification procedure).

The main objective of the Bayesian inversion is to obtain posterior
distribution given in (5)

𝜋𝐏|𝐳meas
(𝐩) =

(𝐩)𝜋𝐏(𝐩)
𝜁

,

hich can be achieved by sampling from it with the help of the
etropolis–Hastings random walk algorithm described in Section 2.1.

For the proposal density, we used a multivariate normal distribution
entred in the current standing point with a diagonal covariance matrix
hose diagonal elements we chose to be 0.2% of the prior variances of
ncertain parameters 𝐏’’.

For a faster convergence, 100 simultaneous random walks were
nitiated. A burn-in period of 1000 steps for each random walk was
ufficient and then further 10,000 steps were used for evaluation. A
otal 1,000,000 sample points were acquired and further analysed.
heir distribution is shown in Fig. 12. Mean values, standard deviations
nd the MAP estimate of the posterior parameter distributions are
isted in Table 3. Parameters 𝑒1, 𝑔1 and 𝑔2 narrowed their distribution

considerably in comparison to the prior, parameters 𝑒3 and 𝑞 narrowed
as well but not as much, whereas parameter 𝑒2 hardly changed its
distribution. The standard deviation of the posterior distribution is an
indicator of the confidence we have in the updated parameter values,
though they should not be taken as exact. From the presented results
it is clear that parameter 𝑒2 cannot be identified by the available
measurements of the modal properties. The lack of identifiability could
already be observed in the sensitivity analysis (see Fig. 9), as none of
the used measurements (first five frequencies and mode shapes) were
11

sensitive to this parameter.
Table 2
Uncertainty quantification of eigenfrequencies using prior and posterior parameter dis-
tributions together with the estimated mean and standard deviation of the experimental
eigenfrequencies.

Mode Prior Posterior Experimental

Mean st. deviation Mean st. deviation Mean st. deviation

1 2.774Hz 0.180Hz 2.842Hz 0.013Hz 2.85Hz 0.024Hz
2 2.850Hz 0.192Hz 2.953Hz 0.012Hz 2.93Hz 0.023Hz
3 2.937Hz 0.200Hz 3.083Hz 0.013Hz 3.13Hz 0.022Hz
4 3.772Hz 0.209Hz 3.741Hz 0.023Hz 3.63Hz 0.043Hz
5 7.276Hz 0.555Hz 6.621Hz 0.101Hz 6.73Hz 0.192Hz

Table 3
Statistics of the posterior distribution.

Parameter Mean Standard deviation MAP estimate

𝑒1 [GPa] 6.24 0.23 6.02
𝑒2 [GPa] 11.68 0.84 12.67
𝑒3 [GPa] 7.30 1.22 6.14
𝑔1 [MPa] 734.1 14.2 748.5
𝑔2 [MPa] 216.8 13.7 201.9
𝑞 [kg∕m2] 30.78 9.82 29.98

3.6. Discussion

Analysing the results, we should keep in mind the assumptions we
made for the prior and the likelihood. The bounds of the uniform prior
parameter distribution reflect the knowledge about material properties,
but also take into account any potential modelling error effects that
were identified prior to model updating. The second assumption that
needs to be considered was the choice of the error function used in
the definition of the likelihood function. It should be noted that the
posterior strongly depends on the probability description of the param-
eters and the error term. The magnitude of the assigned uncertainties
reflects the engineer’s degree of belief and an estimation of the lack
of knowledge, as well as an educated guess based on a comprehensive
examination of the experimental data and the model. In this way we
get an updated stochastic FE model that incorporates all our known
formal and informal knowledge about the system, which is unique in
terms of the structural details and solutions that are specific to this
building. Quantitative results should therefore not be generalized to
other buildings, but rather used for qualitative assessment of modelling
techniques and the associated model errors.

The results in Fig. 12 are compared with those from deterministic
model updating analysed in [36]. It is conclusive from both analyses
that there are effects that decrease the vertical stiffness of the walls
(i.e. parameter 𝑒1), effects that increase the shear stiffness of the walls
(i.e. parameter 𝑔1) and effects that decrease the shear stiffness of the
loor slabs (i.e. parameter 𝑔2). However, the current analysis gives
dditional confidence in the solution at hand. The posterior distribution
f those parameters suggests that the mentioned effects are strong,
hereas the effects described by parameters 𝑒2 and 𝑒3 are not signif-

cant. Furthermore, from the correlation between parameters 𝑒3 and 𝑔2
it can be observed that low values of parameter 𝑒3 might only compen-
sate for the effect captured by parameter 𝑔2. The correlation between
parameters 𝑒1, 𝑔1 and 𝑔2 is also informative. Finally, 𝑞 as a control mass
arameter, by being within the reasonable bounds, confirms that it
oes not compensate for unreasonable stiffness parameters. For further
iscussion about the effects that are captured within the parameters
ee [36].

Another added value of the presented approach to model updating
ith the surrogate model is the possibility to perform uncertainty
uantification before and after the update. From Fig. 13 it can be
bserved that uncertainty decreased significantly after the update for
oth (a) eigenfrequencies and (b) eigenvectors. Eigenfrequencies that
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Fig. 12. Samples, drawn from posterior distribution presented in (a) pairwise scatter plot matrix and (b) histograms for all 6 parameters. MAP estimates are compared with the
updated values obtained by the deterministic approach.
were predicted prior to the update overlapped considerably, see Fig. 7,
but are now easily distinguishable. Fig. 14 shows a relative error
between updated eigenfrequencies and experimental ones. Considering
the posterior distribution of eigenfrequencies it may be estimated that
the relative error for all five eigenfrequencies is below 6%. Results of
this study are compared with those from deterministic update [36],
where only point estimates are obtained and no confidence interval can
be estimated. It can be observed that the estimated eigenfrequencies
from deterministic update fall within the range of posterior distribution
of eigenfrequencies obtained by the probabilistic approach.

Clear advantages of the probabilistic approach would not be possi-
ble without the surrogate model due to the long computation time of
the FE model. Difficulties with eigenmode ordering were successfully
overcome using the k-means clustering and outlier filtering. The pre-
sented approach is particularly useful in cases where MAC proves to be
insufficient, i.e. when a high level of spatial aliasing is present or large
parameter space is considered.

4. Conclusion and outlook

We applied gPC-based Bayesian model updating on a seven-storey
timber (CLT) building. The inference was done by updating six selected
model parameters (material and mass properties), chosen to account for
a modelling error due to reduced stiffness in the connections and joints
between the CLT panels. The quantities of interest are 5 eigenmodes
(natural frequencies and mode shapes) measured with the help of a
forced vibration test. These measurements were used for the updating
of the FE model.

This is an extension of the work presented in [36], where the
updating was done by a deterministic approach. The herein presented
stochastic approach takes into account not only the expected value of
the measured modal properties but also our prior knowledge about the
possible values of the input parameters as well as the uncertainties
12
of the measured model properties. Moreover, the procedure not only
delivers local minima that yield an FE model providing a good match
to the experimental output, but it yields a stochastic FE model that also
represents our posterior uncertainties that we have after measuring the
modal properties.

To increase the efficiency of the update procedure, a surrogate
model is constructed for both eigenfrequencies and eigenvectors. We
propose a novel algorithm to handle the problem of eigenmode switch-
ing that occurs due to changing of the input parameter values. This
problem must be addressed before the computation of the surrogate
model. We introduce a low-rank representation of the mode shapes
and a machine learning clustering tool (k-means clustering) enhanced
with additional outlier filtering. Treating the problem with only the
MAC value could not track the mode switching well for this specific
application and would result in a faulty non-smooth behaviour of the
modal properties, leading to an inaccurate surrogate model. The given
procedure can be further improved by including more DOFs (storing a
higher resolution of the eigenmodes computed by the FE model, and
not only the values at the sensor locations) to improve the efficiency
of the clustering method. Facing the curse of dimensionality due to
the increment of resolution can be handled by the proposed dimension
reduction method of the modal properties. We concluded from the
analysis that it is beneficial to store not only the modes intended to
be used in the analysis but also higher modes in a preliminary analysis
to ensure an efficient mode tracking algorithm.

The surrogate model was used to perform uncertainty quantifica-
tion, the Sobol sensitivity analysis and finally to carry out the Bayesian
update using experimental modal properties. An error term accounting
for experimental and modelling errors was estimated based on the
variance of eigenfrequencies throughout the duration of the modal
testing and engineering expertise. A more accurate estimation of the
error of the mode shapes could be achieved by increasing the duration
of the vibration tests.
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Fig. 13. Uncertainty quantification of (a) eigenfrequencies and (b) eigenvectors.
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