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Abstract
In this paper we reconsider a known technique for constructing strong MIP formula-
tions for disjunctive constraints of the form x ∈ ⋃m

i=1 Pi , where the Pi are polytopes.
The formulation is based on the Cayley Embedding of the union of polytopes, namely,
Q := conv(

⋃m
i=1 Pi × {εi }), where εi is the i th unit vector in R

m . Our main contri-
bution is a full characterization of the facets of Q, provided it has a certain network
representation. In the second half of the paper, we work-out a number of applications
from the literature, e.g., special ordered sets of type 2, logical constraints, the cardi-
nality indicating polytope, union of simplicies, etc., along with a more complex recent
example. Furthermore, we describe a new formulation for piecewise linear functions
defined on a grid triangulation of a rectangular region D ⊂ R

d using a logarithmic
number of auxilirary variables in the number of gridpoints in D for any fixed d. The
series of applications demonstrates the richness of the class of disjunctive constraints
for which our method can be applied.
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1 Introduction

Disjunctive programming was introduced by Egon Balas [2,3] in the 1970s as an
extension of linear programming with disjunctive constraints. Disjunctive constraints
can express logical conditions that the feasible solutions must satisfy. A disjunctive
constraint can be represented as

x ∈
m⋃

i=1

Pi , (1)

where each Pi is a polyhedron. Suppose Pi = {x ∈ R
n : A(i)x ≤ b(i)}, where

A(i) is a rational matrix and b(i) is a rational vector of matching dimension. Balas [4],
and Jeroslow and Lowe [32] proved that if the Pi are bounded and nonempty, then x̄
satisfies (1) if and only if the following set of constraints admits a solution:

m∑

i=1

x (i) = x̄,

A(i)x (i) ≤ b(i)λi , i = 1, . . . , m
m∑

i=1

λi = 1,

λ ∈ {0, 1}m . (2)

More generally, a MIP formulation for (1) is a set of constraints

Ax + By + Cz ≤ b, z ∈ Z
k (3)

such that x̄ satisfies (1) if and only if (3) admits a feasible solution when x = x̄ (see
e.g. [26,32,44–46]). The Linear Programming (LP) relaxation of (3) is the polyhedron
Q determined by Ax + By +Cz ≤ b. For simplicity we assume that Q has at least one
extreme point. The formulation is ideal , if z is integral in all extreme points of Q, and
non-extended if it contains no y variables, and extended otherwise. Balas’ formulation
(2) is extended and ideal [32,45]. A lot of work has been done for devising (ideal)
formulations for disjunctive constraints that do only involve the original x variables
(in particular, no copies of them) as well as some additional integral z-variables, see
Sect. 2 for a brief overview, and it is the main topic of this paper.

For illustrating the benefits of such formulations in terms of the size of the formu-
lation, consider the n-dimensional cross-polytope

P =
⎧
⎨

⎩
x ∈ R

n :
n∑

j=1

|x j | ≤ 1

⎫
⎬

⎭
.
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Ideal, non-extended formulations for disjunctive… 833

In fact, P equals the convex hull of the union of polytopes Pi = {x ∈ R : −1 ≤ xi ≤
1, x j = 0 ∀ j �= i}, i = 1, . . . , n. A minimal linear representation of P consists of
2n linear inequalities (see e.g. Balas [9], page 146), that is,

−x1 − · · · − xn ≤ 1

x1 − · · · − xn ≤ 1

...

x1 + · · · + xn ≤ 1.

Now, an ideal, non-extended formulation for x ∈ ⋃n
i=1 Pi is

−λi ≤ xi ≤ λi , i = 1, . . . , n
n∑

i=1

λi = 1, λ ∈ Z
n≥0.

This system has 2n continuous variables, and 3n + 1 linear inequalities (including the
nonnegativity of the variables).

A further advantage of ideal, non-extended formulations for (1) is that they may
be more efficient computationally than (2), since they do not contain copies of the
original problem variables and constraints. This claim is supported by a recent study
of Anderson et al. [1], who compared ideal non-extended, and extended formulations
for expressing the maximum of affine functions on polyhedral domains, and showed
that the former formulations result much shorter computation times.

To derive ideal, non-extended formulations for (1), we focus on a particular tech-
nique, pioneered by Vielma [45], which is based on the Cayley Embedding of a finite
union of polyhedra. The Cayley Embedding of polyhedra was proposed byHuber et al.
[25] for studying the Minkowski sum of point configurations in R

n , see also [34,49],
and for the union of polyhedra in (1) it would be of the form

⋃m
i=1 Pi ×{εi }, where εi

is the i th unit vector in R
m . Vielma generalized the Cayley Embedding by replacing

the unit vectors with distinct binary vectors hi ∈ {0, 1}d for some d ≥ �log2 m	.
Under the conditions that all the Pi are non-empty, and pointed, Vielma proved that a
non-extended, ideal MIP formulation for (1) is given by

(x, λ) ∈ Q (P,H) := conv

(
m⋃

i=1

(
Pi × {hi }

)
)

, λ ∈ {0, 1}d , (4)

where P = (Pi )
m
i=1, andH = (hi )m

i=1 is a family of distinct binary vectors in {0, 1}d .
This formulation is implicit in the sense that it does not provide a description of
Q(P,H) in terms of linear inequalities. Neverthless, Vielma determined the non-
trivial facets1 of the convex hull Q(P,H) for the SOS2 constraints of [13], and also
for piecewise linear functions of two variables on grid triangulations of a square. In

1 Those beyond the non-negativity of the variables.
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834 T. Kis, M. Horváth

Fig. 1 Network N , and subgraph Gi

both cases, the number of binary variables and also that of the non-trivial facets were
bounded by O(log2 n).

These ideas were generalized to combinatorial disjunctive constraints by Huchette
and Vielma [27], which take the form

x ∈
m⋃

i=1

P(Si ) (5)

where the Si are subsets of V := {1, . . . , n} such that
⋃m

i=1 Si = V , P(S) := {x ∈
ΔV : x j = 0 ∀ j ∈ V \S}, and ΔV := {x ∈ R

n≥0 : ∑n
j=1 x j = 1} is the n–

dimensional standard simplex. Huchette and Vielma gave an explicit description of
Q(P,H) by linear inequalities, where P := (P(Si ))

m
i=1, and H is a set of m distinct

binary vectors, under some mild technical assumptions. However, the construction of
the inequalities may be computationally heavy in general, and the authors left open
the characterization of those inequalities which induce facets of Q(P,H).

In this paper we propose a new systematic way of constructing ideal, non-extended
formulations for disjunctive constraints (1), when the Pi are polytopes, and a certain
network representation exists. We will use the MIP formulation

(x, λ) ∈ Pemb := conv

(
m⋃

i=1

Pi × {εi }
)

, λ ∈ {0, 1}m (6)

of Vielma [45] restricted to the unit vectors εi . Nevertheless, if Pemb admits a network
representation of a given structure, to be defined next, then we can characterize the
facets of Pemb. Our method works not only for combinatorial disjunctions, but for a
much wider class of polytopes, which will be illustrated in Sect. 5.

A network representation for Pemb consists of a network N = (V , A, c) from the
following family. The set of nodes V comprises a source node s, and a sink node t ,
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Ideal, non-extended formulations for disjunctive… 835

the nodes Vs := {v1, . . . , vm} representing m alternatives, the nodes Vt := {1, . . . , n}
corresponding to the variables x1, . . . , xn in (6), and possibly some other nodes. We
assume that Vs ∩ Vt = ∅. The set of arcs A contains, among others, the arcs (s, vi )

for i ∈ {1, . . . , m}, and also the arcs ( j, t) for j ∈ {1, . . . , n}, and neither s, nor t has
other nodes adjacent to them. It is required that N\{t} decomposes into m directed
trees rooted at s, G1, . . . , Gm , where vi is a node of Gi , the leafs of each Gi lie in Vt ,
and V (Gi ) ∩ V (Gk) ⊆ Vt ∪ {s} for 1 ≤ i < k ≤ m (see Fig. 1). For each i and arc a
of Gi , the capacity of a is c(a) := kaλi for some rational number ka > 0. Moreover,
c( j, t) = x j for each j ∈ Vt .

We say that N represents Pemb, if for each i , when setting λi = 1, and the other
coordinates of λ to 0, and for any x ≥ 0, (x, λ) ∈ Pemb if and only if the network
N parametrized by x and λ as above, admits a feasible s − t flow of value

∑n
j=1 x j ,

and (x, λ) satisfies the valid equations for Pemb. Deciding whether a particular Pemb

admits a network representation from the above family is out of scope of this paper.
However, in several practical applications, the construction of N is easy, see Sect. 5.

In the sequelwe concentrate on two special cases only. Either the only valid equation
for Pemb is

∑m
i=1 λi = 1, or all (x, λ) ∈ Pemb also satisfy

∑m
i=1 αiλi = ∑n

j=1 x j ,

where αiλi = c(s, vi ). We distinguish these two cases by writing Pemb≤ , and Pemb= ,
respectively, for Pemb. To simplify the presentation, let Pemb∗ denote any of Pemb≤ and
Pemb= . We assume that each j ∈ Vt is reachable from s by a directed path. This implies
that x j = 0 is not a valid equation for Pemb∗ . The following assumption is without loss
of generality.

Assumption 1 For each i ∈ {1, . . . , m}, Pemb∗ contains a point (xi , εi ).

Main results of the paper. In the first part of the paper, we fully characterize the non-
trivial facets of Pemb∗ for any choice of the Pi , provided it has a network representation
N . At first, we prove that any s − t cut of the network N yields a valid inequality
for Pemb, and moreover, along with the non-negativity of the variables, and the valid
equation(s), they describe Pemb. Then, we fully characterize those s − t cuts of N , that
induce facets of Pemb. Briefly, some s − t cut (S, S̄) of N induces a facet of Pemb≤ if
and only if the subgraphs of N spanned by S̄\{t}, and by S, respectively, admit some
connectivity properties. In case of Pemb= , slightly stronger conditions must hold. These
results, along with (6) provide an explicit, ideal, non-extended MIP formulation for
(1).

In the second part of the paper, we demonstrate the richness of the class of problems
for which our machinery can be applied by deriving well-known formulations for
problems in the literature, and working out some new ones. The list of examples
include reformulation of SOS2 and SOSk sets, the Cardinality Indicating Polytope,
the EV E N n polytope, the polytope of small cliques, the union of simplices, and
some more complicated ones. In addition, based on the ideas of [28], we obtain a
new formulation for piecewise linear functions defined on a grid-triangulation of a
rectangular domain in R

d using O(d log2 n + 2dd!) auxiliary variables.
Our results complement those of Vielma [45] and Huchette and Vielma [26–28].

On the one hand, Vielma [45] was able to derive the facets of the generalized Cayley
embedding of SOS2 sets for any choice of the (distinct) binary vectors hi , but our
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836 T. Kis, M. Horváth

method works for a much wider class of disjunctive sets than SOS2, and we have
a full characterization of the non-trivial facets. On the other hand, in [26] a linear
representation is obtained for the convex hull Q(P,H) of the MIP formulation for
combinatorial disjunctive constraints (5) and any choice of distinct binary vectors
H = (hi )m

i=1, while our characterization of facets is valid for any choice of the Pi

provided that Pemb in (6) admits a network representation.
In Sect. 2 we review some previous work. After some preliminaries in Sect. 3,

we state and prove our main results in Sect. 4. In Sect. 5 we describe a series of
applications, and conclude the paper in Sect. 6.

1.1 Terminology

Let P = {x ∈ R
n | Bx ≤ b} be any convex polyhedron. A face F of P is a subset

of P obtained by setting some inequalities to equations in the system of inequalities
Bx ≤ b defining P . In particular, P is a face of itself, and also the empty set is a face
of P . A facet F is a face of P such that F �= P , and there exists no face F ′ of P
such that F ⊂ F ′ ⊂ P (the containments are proper). A vertex of P is a face which
consists of exactly one point of P .

The dimension of P , dim(P), is the maximum number of affinely independent
points in P minus one. Equivalently, dim(P) = n − m=, where m= is the maximum
number of linearly independent equations which are satisfied by all the points of P .

Let εi ∈ R
m be the i-th unit vector in R

m , i.e., εi
i = 1 and εi

k = 0 for all k ∈
{1, . . . , m}\{i}.

A network N = (V , A, c) is a directed graph with vertex set V , arc set A, and arc
capacities c. Let V1, V2 be disjoint subsets of the set of vertices V of the network N .
Then [V1, V2] ⊆ A is the set of those arcs (u, v) ∈ A such that u ∈ V1 and v ∈ V2.
Let s and t be distinct vertices of N . An s − t cut (S, S̄) is a partitioning of V into
subsets S and S̄ = V \S such that s ∈ S and t ∈ S̄. The associated cut-set is [S, S̄].
For any node u, let δout

u := [{u}, V \{u}], and Γ out
u = {v ∈ V : (u, v) ∈ δout

u }.
Recall the general network N defined above. For fixed x and λ, let Nx,λ denote the

network with arc capacities determined by x and λ.

2 Previous work

The ultimate reference on disjuntive programming is the recent book of Balas [9]. The
first results were summarized in a research report which got published only some 24
years later [6], but the first papers appeared in print already in the 1970’s, see [2] and
[3]. In these early works, extended formulations were obtained for general disjunctive
programs, the concept of duality was developed and a sequential convexification pro-
cedure was devised. Questions related to facets of general disjunctive programs were
raised and partially answered in [11].

Balas [2,3,6] investigated the convex hull of feasible points of a disjunctive program
by giving two distinct linear programming formulations: one involving only the orig-
inal problem variables, and another using additional continuous variables. We focus
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Ideal, non-extended formulations for disjunctive… 837

on the latter one. Let

P := cl conv

(
m⋃

i=1

Pi

)

,

where Pi := {x ∈ R
n | A(i)x ≤ b(i)} for some matrix A(i) and vector b(i) of matching

dimensions, for i = 1, . . . , m, and cl conv(·) is the closed convex hull operator. Balas
has shown that x̄ ∈ P if and only if the LP-relaxation of (2) admits a feasible solution
when x = x̄ , provided that the Pi are nonempty and bounded, or some additional
technical assumptions hold.

Jeroslow and Lowe [32] introduced the concept ofMIP–representable sets, namely,
S ⊆ Q

n is MIP–representable if there are rational matrices A, B, C , and a vector b
with the property that: x ∈ S if and only if, for some y, z ≥ 0 with z integer,
Ax + By +Cz ≤ b. They also pointed out the connection to disjunctive programming,
and in particular they showed that (2) is ideal. Basu et al. [12] gave an alternative
definition, and the concept was generalized to convex sets by Lubin et al. [37]. Vielma
[44] provided a broad overview of MIP formulations in mixed-integer programming,
including MIP representability of sets and functions.

Conforti andWolsey [19] generalized the idea of Balas [6] for expressing the union
of polyhedra in a higher dimensional space by first lifting each polyhedron in some
space where it admits an easy extended formulation. They applied this results to mixed
integer sets, like the continuous mixing set with upper bound, a mixing set with two
divisible capacities, and a divisible capacity single node flow model.

In the formulation (2), the original x variables are copied m times, which is com-
putationally unattractive. However, Conforti et al. [18] has recently shown that Balas’
extended formulation for conv(P1 ∪ P2) is optimal in the following sense. For any
polynomial σ , there exist polytopes P1 and P2 of size2 f1 and f2, respectively, such
that any formulation of conv(P1 ∪ P2) of size bounded by σ( f1 + f2)must haveΩ(n)

additional variables.
In the best case, neither variable copies, nor new λi variables are needed to get

an explicit linear description of the convex hull of the union of some polyhedra. For
instance, Balas et al. [10] considered upper monotone polytopes in [0, 1]n . A polytope
P = {x ∈ [0, 1]n | Ax ≥ 1} is upper monotone if A is a non-negative matrix. Among
other results, Balas and his co-authors derived the convex hull of the union of two
upper monotone polytopes P1 ⊆ [0, 1]n1 ×{0n2} and P2 ⊆ {0n1}× [0, 1]n2 in disjoint
spaces, and in partially overlapping spaces as well without using any extra variables.
They also obtained the facets of conv(P1 ∪ P2), and applied their characterizations
to the union of matroid polytopes, and to logical inference. The latter result extends
that of [50], see also [7]. These results were generalized to nonlinear and possibly
unbounded orthogonal disjunctive sets in [42].

The secondbest option is that novariable copies are used in a formulation, only some
new (binary) variables. Jeroslow [31] studied a special class of disjunctive constraints,
where Pi := {x ∈ R

n | Ax ≤ b(i)} for i ∈ {1, . . . , m}, that is, only the right-hand-
sides change in the definitions of the Pi . Let P := cl conv(

⋃m
i=1 Pi ) and Q the set of

2 Size of a (linear) formulation is measured by the number of inequalities.
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838 T. Kis, M. Horváth

those x ∈ R
n that have an extension (x, λ) ∈ R

n+m satisfying

Ax −
m∑

i=1

b(i)λi ≤ 0

m∑

i=1

λi = 1, λ ≥ 0.

(7)

While P ⊆ Q always holds, the converse inclusion is not true in general. Jeroslow
gave two sufficient conditions for Q = P . Blair [14] devised new necessary and
sufficient conditions for Q = P , and proved that deciding whether equality holds is
an NP-hard decision problem. Blair’s condition was later generalized by Vielma [46]
(Corollary 2). Balas [5] gave yet another sufficient condition for Q = P , and applied
it to multiple network polyhedra.

Vielma [45] developed ideal, non-extended MIP formulations for modeling dis-
junctive constraints based on the concept of Cayley Embedding, and applied it to
SOS2 constraints, and to piecewise linear functions on the grid. In [27], Huchette and
Vielma provided a very general ideal formulation for combinatorial disjunctive con-
straints based on the generalizedCayleyEmbedding of [45], and applied it to univariate
and bivariate piecewise linear functions. Lee and Wilson [36] studied the modeling of
piecewise linear functions on arbitrary triangulations of their domains. Their model
can be reinterpreted as the Cayley Embeddig of a union of polyhedra (one polytope
for each triangle) using the vectors εi . Vielma [46] generalized the Cayley Trick for
polyhedra to the union of convex sets. He obtained ideal, non-extended formulations
for

⋃m
i=1 Ci using the corresponding gauge functions, and applied them to a wide

range of disjunctive constraints. Vielma also characterized the boundary structure of
the Cayley Embedding of the union of convex sets, which in the polyhedral case is as
follows. Each face of Pemb is of the form conv(∪m

i=1(Fi × {εi })), where the Fi are
faces of the Pi with intersecting normal vectors, see also [51].

Branching schemes constitute another approach for deriving ideal, non-extended
formulations for (combinatorial) disjunctive constraints. Tomlin [43] proposed a new
modeling of SOS2 sets with binary variables, while Martin et al. [38] introduced
SOSk constraints and a branching scheme for modeling two-variable piecewise linear
functions. Vielma and Nemhauser introduced the concept of independent branching
schemes for modeling a constraint very similar to the combinatorial disjunctive con-
straint (5) of [26], the only difference being that ΔV = {x ∈ R

V≥0 : ∑
j∈V x j ≤ 1} is

the |V |–dimensional simplex in the definition of the Q(Si ), i = 1, . . . , m. An indepen-
dent branching scheme of depth d for (5) is given by pairs of disjoint sets Lk, Rk ⊂ V
for k = 1, . . . , d, such that

⋃m
i=1 Q(Si ) = ⋂d

k=1(Q(Lk) ∪ Q(Rk)). This yields the
formulation

x ∈ ΔV ,
∑

j /∈Lk

x j ≤ zk,
∑

j /∈Rk

x j ≤ 1 − zk, zk ∈ {0, 1}, k = 1, . . . , d. (8)

This formulation is ideal. Of course, the existence of a branching scheme of depth d
depends on the sets Si . For SOS1 and SOS2 constraints, the authors obtained formu-
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Ideal, non-extended formulations for disjunctive… 839

lations with �log2 n	 binary variables and twice as many additional constraints. They
also devised MIP formulations for 2-variable piecewise linear functions on a grid tri-
angulation of a square using a logarithmic number of new variables and constraints in
the number of triangles, see also [47]. When ΔV is replaced by [0, 1]V in the above
definitions, they obtained an independent branching scheme of depth d = m. In [26],
Huchette and Vielma gave a necessary and sufficient condition for the existence of an
independent branching scheme of depth d for a combinatorial disjunctive constraint.
The authors described a number of techniques for constructing independent branching
schemes of depth �log2 m	, and applied them to several well-known disjunctive con-
straints, including SOS2, SOSk, and Grid Triangulations. In [28], new methods are
described for constructing independent branching schemes for univariate and bivariate
piecewise linear functions (on grid triangulations), and the computational merits of
the various approaches are evaluated.

Ceria and Soares [16] generalized the formulation (2) to closed convex setsCi using
the perspective mappings of the convex functions defining the Ci . The authors also
described a primal procedure which converges to the optimum under mild conditions.
On/off constraints can be used to model disjunctive constraints and the description of
the set of feasible solutions in linear and nonlinear mathematical programs is the topic
of e.g., [15,22–24,42,46]. In particular, Hijazi et al. [24] considered a linear program
with a disjunctive constraint x ∈ P0∪ P1, where P0 is given by lower and upper bounds
for the variables, while P1 is specified by one linear inequality and another set of lower
and upper bounds on the variables. The authors provided a complete description of
conv(P0 ∪ P1) using one new binary variable only. Note that their description needs
exponentially many new constraints in the number of the variables, but the authors
left open which inequalities induce facets.

For more results on extended formulations in combinatorial optimization see the
review paper [17], and also [35,40].

3 Preliminaries

In this section we derive a (not necessarily minimal) linear representation of Pemb∗ .
Here and below, we always assume that Pemb∗ admits a network representation N =
(V , A, c). As we will see, the linear representation is closely related to the s − t cuts of
N . We will define a dominance relation between s − t cuts, and prove that dominated
s − t cuts are redundant in the linear representation.

To start with, we describe some reduction rules for the arc capacities of N without
affecting any s − t flow of value

∑n
j=1 x j . Recall that for any i the arc capacities of

the subnetwork Gi of N are specified by c(a) = kaλi , for a ∈ E(Gi ). Let us define
kout
v := ∑

a∈δout
v

ka for any node v ∈ V (Gi )\Vt . Let v ∈ V (Gi )\{s}. The capacity

c(a) = kaλi of the unique arc a = (u, v) ∈ E(Gi ) can be reduced without affecting
the set of feasible s − t flows of value

∑n
j=1 x j in Nx,λ for any (x, λ) ∈ Pemb∗ if one

of the following two transformations can be applied to it:
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840 T. Kis, M. Horváth

– If v /∈ Vt and ka > kout
v , then ka can be reduced to kout

v , thus c(a) becomes kout
v λi .

– If v �= vi , and ka > ka′ for the unique arc a′ := (u′, u) ∈ E(Gi ), then ka can be
reduced to ka′ , thus c(a) becomes ka′λi .

Throughout the paper we assume that N is reduced , i.e., the above transformations
cannot be applied to it. Now, we express the capacity of the s − t cuts of Nx,λ in terms
of x and λ.

Observation 1 Let (S, S̄) be an s − t cut of Nx,λ. Then cx,λ([S, S]) = ∑
j∈Vt ∩S x j +

∑m
i=1 kiλi for some rational numbers ki ≥ 0.

In order to describe Pemb≤ by linear inequalities, we define the polytope

Q≤ :=
{

(x, λ) ∈ R
n × R

m |
m∑

i=1

λi = 1, x ≥ 0, λ ≥ 0,

cx,λ([S, S̄]) ≥
n∑

j=1

x j , ∀s − t cut (S, S̄)

⎫
⎬

⎭
,

(9)

while for Pemb= consider

Q= :=
{

(x, λ) ∈ R
n × R

m |
m∑

i=1

λi = 1, x ≥ 0, λ ≥ 0,

cx,λ([S, S̄]) ≥
n∑

j=1

x j , ∀s − t cut (S, S̄)

m∑

i=1

αiλi =
n∑

j=1

x j

⎫
⎬

⎭
.

(10)

Let Q∗ denote one of Q≤ and Q=.

Proposition 1 Pemb∗ ⊆ Q∗.

Proof By definition, for any i ∈ �m�, (x, εi ) ∈ Pemb∗ if and only if N(x,εi ) admits an
s − t flow of value

∑n
j=1 x j , x ≥ 0, and (x, εi ) satisfies the valid equations for Pemb∗ .

By the MAX-FLOWMIN-CUT Theorem of Ford and Fulkerson [20], N(x,εi ) admits
an s − t flow of value

∑n
j=1 x j if and only if all the s − t cuts have a capacity of

at least
∑n

j=1 x j . Now, observe that these are precisely the inequalities defining Q∗,
whence (x, εi ) ∈ Q∗. To finish the proof, take any point (x, λ) ∈ Pemb∗ , and notice
that it is a convex combination of some points with λ integral. Since Q∗ is a convex
polytope, the statement follows. ��
Our next goal is to prove the converse inclusion.
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Ideal, non-extended formulations for disjunctive… 841

Proposition 2 Q∗ has vertices, and in each vertex (x, λ) of Q∗, the λ is a 0/1 vector.

Proof By Assumption 1, and since Pemb∗ ⊆ Q∗, Q∗ is not empty. Since all variables
are non-negative in the definition of Q∗, it resides in the non-negative orthant of the
(n + m)-dimensional real vector space, and thus it has vertices.

Let Hi := {(x, λ) ∈ Q∗ : λi = 1} for each i ∈ {1, . . . , m}. By Assumption 1,
Hi �= ∅ for each i . Clearly, Hi is a face of Q∗. We claim that Q∗ = conv(∪m

i=1Hi ).
On the one hand, conv(∪m

i=1Hi ) ⊆ Q∗, since Hi ⊆ Q∗ for each i , and Q∗ is convex.
Conversely, consider anypoint (x, λ) ∈ Q∗, and consider any s−t flowof Nx,λ of value∑n

j=1 x j . Clearly, such a flowmust exist, since theminimum capacity of an s−t cut of

Nx,λ is
∑n

j=1 x j by the definition of Q∗. Let f i
e be theflowon arc e ofGi . Thenwehave

x j = ∑m
i=1

∑
e∈δin( j) f i

e , since a flow of value
∑n

j=1 x j must saturate all the ( j, t)

arcs of N . If λi = 0, thenwe pick the vector xi provided byAssumption 1, andwe have
(xi , εi ) ∈ Hi . Otherwise, we rescale the f i

e for each arc e of Gi , i.e., let gi
e = f i

e /λi .
Let xi

j = ∑
e∈δin

Gi ( j) gi
e for each j ∈ Vt ∩ V (Gi ), and 0 otherwise. Then (xi , εi ) ∈ Hi ,

since (gi , xi ) is a feasible flow of value
∑n

j=1 xi
j in Nxi ,εi , where the arc (s, vi ) and

all the arcs ( j, t) are saturated. Hence, (x, λ) = ∑m
i=1 λi (xi , εi ) ∈ conv(∪m

i=1Hi ). ��
Corollary 1 Pemb= = Q= and Pemb≤ = Q≤.

Definition 1 For any s − t cut (S, S̄) of N , the induced face of Pemb∗ is FS := {(x, λ)

∈ Pemb∗ | cx,λ([S, S̄]) = ∑n
j=1 x j }.

Observation 2 The vertices of FS are those vertices of Pemb∗ that are in FS.

Consequently, in all the vertices (x̂, λ̂) of FS , λ̂ = εi for some i .

Proposition 3 No facet FS of Pemb∗ induced by an s − t cut (S, S̄) of N equals the face
induced by x j = 0 for any j .

Proof We distinguish two cases. First suppose j ∈ Vt ∩ S. Since FS = {(x, λ) ∈
Pemb∗ : ∑m

i=1 kiλi = ∑
j ′∈Vt \S x j ′ }, the equation defining FS is linearly independent

from x j = 0, so FS cannot be induced by x j = 0.
Now suppose j ∈ Vt\S. Then x j = 0 is satisfied by all points (x, λ) ∈ FS if and

only if the source s is not connected to j ∈ Vt by a directed path, which we excluded.
��

In order to characterize those s − t cuts (S, S̄) of N that induce facets of Pemb∗ , as we
will see, the single most important parameter is the intersection of S with Vt .

Definition 2 Let U ⊆ Vt be fixed. C(U ) consists of all the s − t cuts of N such that
S ∩ Vt = U .

A cut (S, S̄) ∈ C(U ) induces an inequality of the following general form (cf. Obser-
vation 1):

m∑

i=1

kiλi ≥
∑

j∈Vt \U

x j (11)
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842 T. Kis, M. Horváth

We are only interested in the minimum capacity s − t cuts in C(U ). We can identify
these cuts without fixing λ and x as follows. Since N\{t} is the union of the directed
graphs Gi , where the Gi share only the nodes {s} ∪ Vt , we can determine separately
for each Gi which of its nodes belong to S in order to minimize the coefficients ki .

Observation 3 Let U ⊆ Vt be fixed. There exists an (S, S̄) ∈ C(U ) which minimizes
simultaneously all the coefficients ki in cx,λ([S, S]) = ∑

j∈U x j + ∑m
i=1 kiλi .

This observation motivates the following definition.

Definition 3 Let U ⊆ Vt be fixed. Let Cmin(U ) consist of all the s − t cuts
(S, S̄) ∈ C(U )which minimize simultaneously all the coefficients ki in cx,λ([S, S]) =∑

j∈U x j +∑m
i=1 kiλi . The members of Cmin(U ) are the minimum capacity s − t cuts

of N with respect to U .

Remark 1 For any (S, S̄), (Z , Z̄) ∈ Cmin(U ), cx,λ([S, S]) = cx,λ([Z , Z ]).
Proposition 4 Let U ⊆ Vt be fixed. There exists a unique (S, S̄) ∈ Cmin(U ) such that
Z ⊆ S for all the (Z , Z̄) ∈ Cmin(U ).

Proof We claim that if both of (Z1, Z̄1), (Z2, Z̄2) ∈ Cmin(U ), then (Z1 ∪
Z2, Z1 ∪ Z2) ∈ Cmin(U ), which proves the statement. Recall that the set function
which assigns to S the capacity of the s − t cut (S, S̄) is submodular, see e.g., Frank
[21]. Using this, we can derive

cx,λ

([
Z1, Z̄1

]) + cx,λ

([
Z2, Z̄2

]) ≥ cx,λ

([
Z1 ∩ Z2, Z1 ∩ Z2

]) + cx,λ

([
Z1 ∪ Z2, Z1 ∪ Z2

])

≥ cx,λ

([
Z1, Z̄1

]) + cx,λ

([
Z2, Z̄2

])

where the first inequality follows from the submodularity of the cut capacity function,
and the second from the assumption that both of (Z1, Z̄1), (Z2, Z̄2) ∈ Cmin(U ), which
implies that (Z1 ∩ Z2, Z1 ∩ Z2), (Z1 ∪ Z2, Z1 ∪ Z2) ∈ C(U ). Consequently, equality
holds throughout, and (Z1 ∪ Z2, Z1 ∪ Z2) ∈ Cmin(U ). ��
Definition 4 Let U ⊆ Vt . We call (S, S̄) ∈ Cmin(U ) dominating if Z ⊆ S for all
(Z , Z̄) ∈ Cmin(U ). If (S, S̄) ∈ C(U )\Cmin(U ), then we say that (S, S̄) is a dominated
s − t cut of N w.r.t. U , and any member of Cmin(U ) is a non-dominated s − t cut of
N w.r.t. U .

Remark 1 implies that in the following definition, the face FS does not depend on
which non-dominated s − t cut in Cmin(U ) is chosen.

Definition 5 The face induced by U ⊆ Vt is FS , where (S, S) is any non-dominated
s − t cut in Cmin(U ).

Observation 4 If FS is a facet of Pemb∗ induced by the s − t cut (S, S̄), then Vt\S is
not empty.

Proposition 5 Consider any U ⊆ Vt . For any non-dominated s − t cut (S, S) ∈
Cmin(U ), the face FS of Pemb∗ contains a point (x ′, εi ) for any i ∈ {1, . . . , m}.
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Proof Fix S and i , and we set λ = εi . Thus, the arcs of Gi have some positive
capacities, while all the arcs in the other Gk , k �= i , subgraphs of N have zero
capacity. We construct a vector x ′ such that (x ′, εi ) ∈ Pemb∗ , and (x ′, εi ) satisfies (11)
at equality.

First we consider Pemb≤ . We determine x ′ by constructing an s − t flow f i saturating
all the arcs in E(Gi )∩[S, S̄], and which has zero flow on any arc (u, v) ∈ E(Gi ) such
that u ∈ V (Gi )\S, and v ∈ V (Gi )∩ S. The total capacity of the arcs in E(Gi )∩[S, S̄]
is ki , when λ = εi . Since (S, S̄) ∈ Cmin(U ), we can send ki amount of flow in Gi

from s to the nodes Vt\U . If ki > 0, then this flow necessarily saturates the arcs
E(Gi )∩ [S, S̄]. Then, we just set x ′

j = f i
( j,t) for all j , and it is easy to verify that (11)

is satisfied by (x ′, εi ) at equality.
As for Pemb= , if the flow f i constructed above saturates the arc (s, vi ) (which

is of capacity αi ), then we are done, since then
∑n

j=1 x ′
j = f i

(s,vi )
= αi , by flow

conservation at the nodes. Otherwise, we have to augment f i with additional flow
restricted to the subgraph Gi (S) of Gi spanned by the nodes S ∩ V (Gi ). Consider
any s − j path in Gi (S) for some j ∈ U which consist of non-saturated arcs only.
We increase the flow along this path until some arc becomes saturated. We repeat this
until no more flow can be sent from s to some node in U in Gi (S). Let f̂ i be the
resulting flow. If the arc (s, vi ) is saturated by f̂ i , then we are done, since we can set
x ′

j = f̂ i
( j,t) for all j , and (x ′, εi ) ∈ FS . Otherwise, a subset of the arcs saturated by

f̂ i constitutes a cut-set separating vi from all the nodes in Vt having capacity smaller
than αi . But this contradicts Assumption 1. ��
Proposition 6 For any U ⊆ Vt , dominated s − t cuts in C(U ) cannot induce facets of
Pemb∗ .

Proof Let (S, S) and (Z , Z) be a dominating and a dominated s − t cut in C(U ),
respectively. We claim that FZ ⊂ FS , and FZ �= FS . Let cx,λ([S, S]) = ∑

j∈U x j +
∑m

i=1 kiλi , and cx,λ([Z , Z ]) = ∑
j∈U x j + ∑m

i=1 k′
iλi . Since (Z , Z) ∈ C(U ) is

dominated, ki ≤ k′
i for all i , and at least one of these inequalities is strict. Hence, any

point (x, λ) ∈ Pemb∗ satisfies

∑

j∈U

x j +
m∑

i=1

k′
iλi ≥

∑

j∈U

x j +
m∑

i=1

kiλi ≥
n∑

j=1

x j .

Consequently, if
∑

j∈U x j + ∑m
i=1 k′

iλi = ∑n
j=1 x j , then also

∑
j∈U x j +

∑m
i=1 kiλi = ∑n

j=1 x j , i.e., FZ ⊆ FS . Now let i∗ be an index such that k′
i∗ > ki∗ .

Then by Proposition 5, there is an x such that (x, εi∗) ∈ FS . Substituting (x, εi∗) into
the cut capacity functions we obtain

∑

j∈U

x j +
m∑

i=1

k′
iε

i∗
i =

∑

j∈U

x j + k′
i∗ >

∑

j∈U

x j + ki∗ =
∑

j∈U

x j +
m∑

i=1

kiε
i∗
i =

n∑

j=1

x j .

Hence (x, εi∗) ∈ FS\FZ . ��
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4 Main results

Theorem 1 The set U ⊂ Vt induces a facet of Pemb≤ if and only if

(i) for the dominating s − t cut (S, S) ∈ Cmin(U ), the subgraph N\(S ∪ {t}) is
connected, and

(ii) for each j ∈ U, there exists some vi ∈ S such that there is a directed path from
vi to j with all nodes in S, and αi > ki , where c(s, vi ) = αiλi , and kiλi is the
total capacity of those arcs of Gi in [S, S̄].

Proof Necessity : suppose that U induces a facet F of Pemb≤ , but the dominating s − t
cut (S, S) ∈ Cmin(U ) is such that N\(S∪{t}) is not connected. LetC1, . . . , Cq (q ≥ 2)
be the connected components of N\({t} ∪ S). Consider the face FZ induced by the

s − t cut (Z , Z̄) of N , where Z := S ∪
(⋃q

g=2 V (Cg)
)
. We claim that F ⊂ FZ and

F �= FZ , and thus F cannot be a facet, which contradicts our initial assumption.

Let (x, λ) ∈ F , and suppose that the capacity of (S, S) is
∑

j∈U x j + ∑m
i=1 kiλi .

We can decompose the second term of this sum along the components of N\(S ∪ {t})
as follows:

m∑

i=1

kiλi =
q∑

g=1

m∑

i=1

kg
i λi ,

where
∑m

i=1 kg
i λi is the capacity of those arcs of [S, S] that lead from S to the com-

ponent Cg of N\(S ∪ {t}). But then (x, λ) satisfies the equation

m∑

i=1

k1i λi =
∑

j∈V (C1)∩Vt

x j .

However, this equation is equivalent to

∑

j∈Vt \V (C1)

x j +
m∑

i=1

k1i λi =
n∑

j=1

x j ,

which is the capacity of the s − t cut (Z , Z̄) of N . This shows that F ⊆ FZ . It remains
to construct a point in FZ\F . Since F is a facet, for each j ∈ Vt ∩ (

⋃q
g=2 V (Cg)),

there exist some x and i such that (x, εi ) ∈ F , and x j > 0, otherwise all points in F
satisfy x j = 0, and thus F cannot be a facet by Proposition 3. For each such j , we
define a vector x̃ as follows: x̃ j := 0, and x̃
 := x
 for all 
 �= j . Then (x̃, εi ) ∈ FZ\F .

As for (ii), suppose the condition does not hold for some j ∈ U . Then x j = 0 holds
for all (x, λ) ∈ F , which leads to a contradiction by Proposition 3.

Sufficiency : Assume that conditions (i) and (ii) of the Theorem hold. Let F := FS

be the face of Pemb≤ induced by the dominating s − t cut (S, S) ∈ Cmin(U ). It suffices
to prove that Pemb≤ does not admit any facet F ′ such that F is a proper face of F ′. By
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Fig. 2 The capaxity of the arcs
leaving S and Z

condition (ii), for each j there exists i and x such that (x, εi ) ∈ F and x j > 0, and
therefore, F cannot be a proper face of a facet induced by x j = 0. Furthermore, by
Proposition 5, F cannot be a proper face of a facet induced by λi = 0 for any i .

Consider any s − t cut (Z , Z̄) of N which induces a facet FZ �= F of Pemb≤ . By
Proposition 6,wemay also assume that (Z , Z) is a dominatingmember ofCmin(Z∩Vt ).
We distinguish two cases: U\Z �= ∅, and U ⊂ Z .

First suppose U\Z �= ∅, and we construct a point in F\FZ to show that F � FZ .
Let

∑m
i=1 k Z

i λi be the total capacity of those arcs directed from Z to some nodes of
N\(Z ∪ {t}). Clearly, all points (x, λ) ∈ FZ satisfy

∑
j ′∈Vt \Z x j ′ = ∑m

i=1 k Z
i λi . Let

Ri be the set of those nodes in Vt\Z that are reachable from vi along a directed path
in N . Then choose index i∗ such that Ri∗ ∩ U �= ∅, vi∗ ∈ S, αi > ki , and there is a
directed path with all nodes in S from vi∗ to some j ∈ Ri∗ ∩ U . If none of the sets Ri

satisfies these conditions, then S violates condition (ii) of the theorem.
Consider some j ∈ Ri∗ ∩ U such that there is a directed path from s to j ∈ Vt

in the subnetwork Gi (S) of Gi (such a node exists by the choice of Ri∗ ). Then there
exists a point (x̄, εi∗) ∈ F such that x̄ j > 0, since αi > ki . Consider the set of points
X j = {x | 0 ≤ x j ≤ x̄ j , x j ′ = x̄ j ′ for all j ′ �= j}. On the one hand, (x, εi∗) ∈ F for
all x ∈ X j . On the other hand,

∑
j ′∈Ri∗∩Vt

x j ′ is not a constant on X j . Hence, there

exists x ∈ X j such that (x, εi∗) /∈ FZ .
Finally, assume U ⊂ Z .
Claim S ⊂ Z .

Proof Suppose S\Z is not empty. We define the quantities Aλ, Bλ, Cλ, and Dλ as
follows. Let Aλ be the total capacity of those arcs (u, v) such that u ∈ S ∩ Z and
v ∈ S\Z . We have Aλ := cx,λ([S ∩ Z , S\Z ]) = ∑m

i=1 k A
i λi for some non-negative

rationals k A
i . Likewise, Bλ := cx,λ([Z\S, S\Z ]),Cλ := cx,λ([S\Z , Z\S]), and Dλ :=

cx,λ([S\Z , Z ∪ S\{t}]), see Fig. 2. Since S ∩ Z ⊆ S, and S ∩ Z ∩ Vt = U by
assumption, (S∩ Z , S ∩ Z) ∈ C(U ), and therefore its capacity is at least that of (S, S̄).
Consequently, Aλ ≥ Cλ + Dλ for all (x, λ) ∈ P (where we compare the coefficients
of the λi ). On the other hand, (Z , Z̄) is a dominating member of Cmin(Z ∩Vt ), whence
Aλ + Bλ < Dλ for some (x, λ) ∈ P . Combining the two inequalities, we obtain
Bλ + Cλ + Dλ < Dλ for some (x, λ) ∈ P , which is impossible, since Bλ, Cλ ≥ 0
always hold. ��
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846 T. Kis, M. Horváth

Fig. 3 Sets S ⊆ S′ ⊂ Z . Dashed
arcs do not exist

Indirectly, suppose F ⊆ FZ , and let cx,λ([S, S̄]) = ∑
j∈U x j + ∑m

i=1 kiλi

for some rationals ki ≥ 0, and cx,λ([Z , Z̄ ]) = ∑
j∈Vt ∩Z x j + ∑m

i=1 k Z
i λi for

some rationals k Z
i ≥ 0. Then, for all (x, λ) ∈ F ,

∑m
i=1 kiλi = ∑

j∈Vt \U x j ,

and
∑m

i=1 k Z
i λi = ∑

j∈Vt \Z x j . By condition (i), there is some i , and x such that

(x, εi ) ∈ F ,
∑

j∈Vt ∩Z\U x j > 0,
∑

j∈Vt \Z x j > 0, and Gi\S has a connected com-
ponent with non-empty intersection with Vt ∩ Z\U and also with Vt\Z . However,∑

j∈Vt \Z x j = k Z
i (λ is fixed to εi ). Hence, ki > k Z

i > 0. Therefore, for any x such

that (x, εi ) ∈ F , we cannot send less flow than k Z
i through the edges of [Z , Z̄\{t}] in a

feasible s − t flow of value
∑n

j=1 x j in Nx,εi . But this is only possible, if the maximum

amount of flow that can be sent in Gi from S to Z ∩ Vt\U is at most (ki − k Z
i )λi .

Claim There exists S′ ⊂ Z such that S ⊆ S′, S′\S ⊂ V (Gi )\Vt , and (a) cx,λ([S′ ∩
V (Gi ), Z ∩ V (Gi )\S′]) = (ki − k Z

i )λi , and (b) there is no arc (u, v) of Gi such that
u ∈ Z ∩ V (Gi )\S′ and v ∈ Z̄ .

Proof Suppose indirectly that any S′ ⊂ Z such that S ⊆ S′ and S′\S ⊂ V (Gi )\Vt ,
violates condition (a), see Fig. 3. If cx,λ([S′ ∩ V (Gi ), Z ∩ V (Gi )\S′]) > (ki − k Z

i )λi

for all S′ such that S ⊆ S′ ⊂ Z , then the total flow that can be sent from S to those
nodes j ∈ Vt ∩ V (Gi ) ∩ Z\U can be more than (ki − ki

Z ). Therefore, there exists
(x, εi ) ∈ F such

∑
j∈Vt ∩Z\U x j > (ki −k Z

i ), while
∑

j∈Vt \Z x j < k Z
i , which implies

(x, εi ) /∈ FZ , a contradiction.
Let S′ be a subset of nodes that satisfies condition (a). Indirectly, suppose it violates

(b). Then the cut-set [V (Gi ) ∩ Z , V (Gi ) ∩ Z̄ ] contains those edges (u, v) of Gi such
that u ∈ Z ∩ V (Gi )\S′ and v ∈ Z̄ . Then, in order to saturate all arcs of [V (Gi ) ∩
Z , V (Gi )∩ Z̄ ], the flow through the arcs of [S′ ∩V (Gi ), Z ∩V (Gi )\S′]must be split,
and less than (ki − k Z

i ) of it reaches the nodes j ∈ Z ∩ Vt\U for any (x, εi ) ∈ F . But
then

∑
j∈Vt ∩Z\U x j < ki − k Z

i , again a contradiction. ��
Using this claim, we can replace S by S2 := S′ ∪ (Z ∩ V (Gi )\S′). Then FS2 = F .

Therefore, if S2 �= S, then S is not dominating, a contradiction. Otherwise, Gi\S has
no connected component which contains some nodes j ∈ V (Gi ) ∩ Vt ∩ Z\U and
j ′ ∈ V (Gi ) ∩ Vt\Z simultaneously, again a contradiction. ��
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Now we turn to Pemb= . By definition,
∑m

i=1 λi = 1, and
∑m

i=1 αiλi = ∑n
j=1 x j are

valid for Pemb= . However, adding the latter equation to Q≤ may render some of the
inequalities induced by s − t cuts to implicit equations for Pemb= (for the same problem
data).

Example 1 Suppose P1 = {x ∈ R
3≥0 : x1 ≤ 1

3 , x2 ≤ 2
3 , x3 = 0}, and P2 = {x ∈

R
3≥0 : x1 = 0, x2 ≤ 1, x3 ≤ 1}. Then

Pemb≤ = Q≤ =
{

(x, λ) ∈ R
3≥0 × R

2≥0 : x1 ≤ 1
3λ1, x2 ≤ 2

3λ1 + λ2, x3 ≤ λ2
λ1 + λ2 = 1

}

.

Now we add x1 + x2 + x3 = 1 to Q≤ to obtain Q=. But then x1 = 1
3λ1 is a valid

equation for Q= and it is linearly independent of x1 + x2 + x3 = 1 and λ1 + λ2 = 1.
Thus, a minimal linear representation of Q= is

Pemb= = Q= =
{

(x, λ) ∈ R
3≥0 × R

2≥0 : x1 = 1
3λ1, x2 ≤ 2

3λ1 + λ2, x3 ≤ λ2
λ1 + λ2 = 1, x1 + x2 + x3 = 1

}

.

After these preliminaries, we determine the maximum number of linearly indepen-
dent valid equations for Pemb= .

Proposition 7 Let E1, . . . , Eκ be a maximum number of disjoint subsets of Vt such
that

⋃κ

=1 E
 = Vt , and for arbitrary (S
, S̄
) ∈ Cmin(E
), 
 = 1, . . . , κ ,

m∑

i=1

βi
λi =
∑

j∈E


x j , (12)

are all valid equations for Pemb= , where cx,λ([S
, S̄
]) = ∑m
i=1 ki
λi + ∑

j∈E

x j ,

and βi
 = αi − ki
. Then
∑m

i=1 λi = 1, and (12) are linearly independent, and imply
all valid equations for Pemb= . Moreover,

∑κ

=1 βi
 = αi for all i ∈ �m�, and the

partitioning is unique.

Proof First notice that (12) is obtained from cx,λ([S
, S̄
]) = ∑n
j=1 x j by subtracting

it from the equation
∑m

i=1 αiλi = ∑n
j=1 x j valid for Pemb= . Since

∑m
i=1 αiλi =

∑n
j=1 x j is a defining equation for Pemb= , the claimed partitioning exists and κ ≥ 1.

The linear independence of the given equations is straightforward. Now we turn to the
second part of the statement. Since a complete linear description of Pemb= is known, any
valid equation must correspond to some s − t cut (S, S̄) of N . Using the submodularity
of the cut capacity function cx,λ, we derive

2
n∑

j=1

x j = cx,λ

([
S
, S̄


]) + cx,λ

([S, S̄])

≥ cx,λ

([S
 ∩ S, S
 ∩ S]) + cx,λ

([S
 ∪ S, S
 ∪ S]) ≥ 2
n∑

j=1

x j .
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Hence, equality holds throughout, and in particular (S
 ∩ S, S
 ∩ S) induces a valid
equation for Pemb= . Now, if Vt ∩ S
 ∩ S �= ∅, and Vt ∩ S
\(Vt ∩ S) �= ∅, then E


can be further split, whence κ is not maximal, a contradiction. On the other hand, if
S ∩ Vt is the union of some of the E
, then the equation induced by (S, S̄) is implied
by (12). The same argument shows that the above partitioning is unique. Finally, by
substituting εi to λi , we immediately derive

∑κ

=1 βi
 = αi . ��

Corollary 2 Let κ be defined as in Proposition 7. Then dim(Pemb= ) = n + m − 1− κ .

To facilitate the presentation, we assume that the rooted trees Gi that constitute the
network N have the following additional structure. For each i ∈ �m�, let Ai ⊆ �κ�
be the subset of those indices such that βi
 > 0. If |Ai | ≥ 2, then Gi has exactly
|Ai | outgoing arcs at node vi , i.e., δout

vi
= {(vi , wi
) : 
 ∈ Ai }, and the capacity

of (vi , wi
) is βi
λi . Moreover, the subtree of Gi rooted at wi
 has all leafs in E
. If
Ai = {
} for some 
 ∈ �κ�, then all leafs of Gi are in E
, and no further assumptions
are needed. Let N 
 be the subnetwork of N spanned by the nodes {s, t} ∪ E
 along
with those nodes of Gi , i ∈ �κ�, which are on a directed path from vi to E
.

Due to the valid equations, the facets of Pemb= may have several equivalent forms.
We argue that there is a normal form, which is easy to construct.

Proposition 8 Any facet FS of Pemb= is induced by the dominating s − t cut (S, S̄) ∈
Cmin(U ) for some U ⊂ Vt such that U ⊂ E
 for some 
 ∈ �κ�.

Proof The facet inducing inequality induced by (S, S̄) is
∑m

i=1 kiλi ≥ ∑
j∈Vt \U x j . If

U is the union of some of the E
, then FS is not a proper face of Pemb= , a contradiction.
Hence, there exists some E
 such that E
\U �= ∅ and U ∩ E
 �= ∅. If U ∩ Eμ = ∅
for all μ �= 
, then U ⊂ E
 and we are done. Otherwise, there are two cases. First
suppose there exists Eμ ⊂ U . If we add the valid equation (12) for E
 to the inequality
induced by (S, S̄) we obtain

m∑

i=1

(ki + βi
) λi ≥
∑

j∈(Vt \U )∪E


x j .

This inequality corresponds to the dominating s − t cut (S1, S̄1) ∈ Cmin(U\E
), and
FS = FS1 . Finally, suppose U ∩ Eμ �= ∅ for some Eμ �= E
. Since E
 ∩ Eμ = ∅ by
definition, it means that a proper subset of Eμ is contained in U . We will show that
then FS is not a facet of Pemb= , a contradiction. For any (x, λ) ∈ FS , consider a feasible
flow of value

∑n
j=1 x j . This flow saturates the arcs of Gi in the cut-set [S, S̄] for any

i ∈ �m�, and it is split between the nodes Eμ\U and Vt\(U ∪ Eμ). Hence, there exists
β1

iμ ∈ [0, βiμ], independent of (x, λ), such that the amount of flow toward Eμ\U

is β1
iμλi , since the total flow toward the nodes of Eμ is βiμ for any (x, λ) ∈ Pemb= .

Therefore, the dominating s − t cut (Z , Z̄) ∈ Cmin(U ∪ Eμ) is such that FS ⊆ FZ .
Moreover, FS �= FZ , otherwise Eμ could be further split, and FZ �= Pemb= , since
Z ∩ E
 = S ∩ E
 �= ∅, and Vt ∩ Z\E
 = Vt ∩ S\E
 �= ∅. Then, FS is not a facet of
Pemb= . ��
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Theorem 2 For any 
 ∈ �κ�, the set U ⊂ E
 induces a facet of Pemb= if and only if

(i) for the dominating s − t cut (S, S) ∈ Cmin(U ), the subgraph N 
\(S ∪ {t}) is
connected, and

(ii) if |U | ≥ 2, then for any partitioning of U into non-empty subsets U1 and U2,
there exist i ∈ �m�, and a connected component C of (V (Gi )∩S, E(V (Gi )∩S))

which contains vi , and at least one point from each of U1 and U2, such that for
λ = εi , the minimum capacity of a cut in C separating vi from V (Gi ) ∩ U is
larger than αi − ki , where ki is the total capacity of those arcs of Gi which are
in [S, S̄], and αi − ki > 0.

Proof Necessity : Suppose that the dominating s − t cut (S, S̄) ∈ Cmin(U ) induces a
facet of Pemb= . Observe that condition (i) coincides with Theorem 1(i). Since Pemb= ⊂
Pemb≤ (for the same data), it is enough to verify thatU satisfies condition (ii). Indirectly,
suppose this is not the case, and there exists a partitioningU1∪U2 ofU into nonempty
subsets along with non-negative numbers β i

1, β
i
2 for all i ∈ {1, . . . , m} such that

∑m
i=1 β i

kλi = ∑
j∈Uk

x j is satisfied by all (x, εi ′) ∈ FS for k = 1, 2. Therefore, FS

cannot be a facet of Pemb= .
Sufficiency: Suppose conditions (i) and (ii) are satisfied by U , and we have to prove

that F := FS is a facet of Pemb= for the dominating s − t cut (S, S̄) ∈ Cmin(U ). As in
the proof of Theorem 1, we may assume that F is not contained in the faces of Pemb=
induced by x j = 0 for any j , or by λi = 0 for any i . So, suppose (Z , Z̄) induces
a facet FZ of Pemb= and F ⊂ FZ . Since FZ is a facet, by Proposition 6, (Z , Z̄) is
a dominating s − t cut in Cmin(Z ∩ Vt ). We distinguish two cases: U\Z �= ∅, and
U ⊂ Z .

First suppose U\Z �= ∅, and U ∩ Z �= ∅. We construct a point (x, λ) in F\FZ

to show that F � FZ . By condition (ii), there exist i and a connected component
C of (V (Gi ) ∩ S, A(V (Gi ) ∩ S)) such that vi ∈ C , C has non-empty intersection
with U\Z and also with U ∩ Z , and for λ = εi , the minimum capacity of a cut
separating vi from V (Gi ) ∩ U is larger than αi − ki , where αi − ki is the remaining
quantity to be covered by a flow from vi . Since this minimum capacity is larger than
the amount of flow to be sent from vi to the nodes V (Gi )∩U , the flows on the arcs of
component C are not fixed. Therefore, there exist points (x1, εi ), (x2, εi ) ∈ F such
that

∑
j∈U\Z x1j �= ∑

j∈U\Z x2j , while
∑

j∈Vt \(U∪Z) x1j = ∑
j∈Vt \(U∪Z) x2j . But then∑

j∈Vt \Z x1j �= ∑
j∈Vt \Z x2j , whence it is impossible that both of (x1, εi ) and (x2, εi )

are in FZ .
Now suppose U ∩ Z = ∅. Let k Z

i be the coefficient of λi in the linear expression
for the capacity of (Z , Z̄) as in Observation 1. Consider the partitioning Vt = U ∪
(Vt ∩ Z) ∪ (Vt\(U ∪ Z)). We argue that for any i , and any (x, εi ) ∈ F , the sum of
the x j in the three subsets equals αi − ki , αi − k Z

i , and ki + k Z
i − αi , respectively.

For any (x, εi ) ∈ F ,
∑

j∈Vt \U x j = ki by definition, and thus
∑

j∈U x j = αi − ki .

Since F ⊂ FZ , x also satisfies
∑

j∈Vt ∩Z x j = αi − k Z
i . Since

∑n
j=1 x j = αi , we

get that
∑

j∈(Vt \(U∪Z) x j = αi − (αi − ki ) − (αi − k Z
i ) = ki + k Z

i − αi . Therefore,

if U ∪ (Vt ∩ Z) = Vt , then ki + k Z
i = αi , and thus FZ ⊆ F , a contradiction. Now

supposeU ∪(Vt ∩ Z) ⊂ Vt . Then, by condition (i), there exists vi ∈ Vs\S, such that vi

is connected to some j1 ∈ Vt ∩ Z , and also to some node j2 ∈ Vt\(U ∪ Z). Moreover,
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the capacity of the cut (in Gi ) separating vi from these two sets must be greater than
ki , since (S, S̄) is a dominating s − t cut. Clearly, there must exist (x, εi ) ∈ F such
that x j2 > 0, say. Let δ > 0 be small enough such that increasing x j1 by δ, while
decreasing x j2 by δ yields a vector x ′ such that (x ′, εi ) ∈ F . But x ′ does not satisfy
the equation

∑
j∈Vt ∩Z x ′

j = αi − k Z
i , hence (x ′, εi ) /∈ FZ , a contradiction.

Finally, if U ⊂ Z , then we can proceed as in the proof of Theorem 1. ��

5 Applications

In this section we present a number of applications where we apply Theorem 1 or
Theorem 2 in order to derive the non-trivial facets (different to the non-negativity of
the variables) of the corresponding formulations. For each application we will present
a MIP formulation, then a network representation, and finally derive the dominating
and facet defining inequalities, but we abandon straightforward technical details such
as the network correctly represents the feasible solutions of the MIP formulation in a
higher dimensional space. If not stated otherwise, the formulations contain no implicit
equations.

5.1 Special ordered sets of type 2

A special ordered set of type 2 (SOS2) consists of vectors x ∈ R
n≥0 such that

∑n
j=1 x j = 1, and x has either one nonzero coordinate, or two consecutive nonzero

coordinates, see [13].
Let 2 ≤ n ∈ Z and consider the polytope (P SO S2

n )emb ⊆ R
2n−1
≥0 defined as the

convex hull of points

{
(x, λ) ∈ R

n × {0, 1}n−1 : ∑n
j=1 x j = 1,

∑n−1
i=1 λi = 1,

x1 ≤ λ1, x j ≤ λ j−1 + λ j for all j = 2, . . . , n − 1, xn ≤ λn−1
}
. (13)

Observe that in this formulation, if λ j = 1, then x j and x j+1 may be positive, but
all other coordinates of x must be 0. Hence, if λ is integral, then projx (P SO S2

n )emb

is indeed a SOS2. However, relaxing the integrality of the λi variables in (13), we
obtain a polytope P̃ SO S2

n which has a number of vertices with fractional λi variables.
For instance, for n = 5, x = (1/2, 1/2, 0, 0, 0), and λ = (1/2, 0, 1/2, 0), (x, λ) is a
vertex of P̃ SO S2

5 .
We create a network N SO S2

n = (V , A, c) with V = {s}∪ Vs ∪ Vt ∪{t}, where Vs =
{v1, . . . , vn−1} and Vt = {1, . . . , n}. For all i = 1, . . . , n−1we add arcs (s, vi ), (vi , i)
and (vi , i + 1) to the network of capacity λi each, and the arcs ( j, t) of capacity x j

for j ∈ Vt , see Fig. 4.
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Fig. 4 Construction of network N SO S2
n for special ordered sets of type 2

By construction, we have

(P SO S2
n )emb =

⎧
⎨

⎩
(x, λ) ∈ R

n × R
n−1 :

n−1∑

i=1

λi = 1,
n∑

j=1

x j = 1, x ≥ 0, λ ≥ 0,

cx,λ([S, S̄]) ≥
n∑

j=1

x j for all s − t cuts (S, S̄)

⎫
⎬

⎭
.

Proposition 9 The non-trivial facets of (P SO S2
n )emb are

n∑

j=
+1

x j ≤
n−1∑

i=


λi , 
 = 1, . . . , n − 1 (14)

n−1∑

i=


λi ≤
n∑

j=


x j , 
 = 2, . . . , n. (15)

Proof Consider a nonempty set U ⊂ Vt and the corresponding unique dominating
s − t cut (S, S̄) w.r.t. U . By definition, vk ∈ S if and only if S ∩ {k, k + 1} �= ∅.
Clearly, if i, k /∈ U and j ∈ U for some 1 ≤ i < j < k ≤ n, then N SO S2

n \(S ∪ {t}) is
disconnected, and thus the setU does not induce a facet of (P SO S2

n )emb.We distinguish
three cases.
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First, supposeU = {1, . . . , 
} for some 1 ≤ 
 ≤ n−1, then S = {s}∪{v1, . . . , v
}∪
U which clearly satisfies the conditions of Theorem 2, and thus yields the inequality
(14).

Second, suppose U = {
, . . . , n} for some 2 ≤ 
 ≤ n, then S = {s} ∪
{v
−1, . . . , vn−1} ∪ U which clearly satisfies the conditions of Theorem 2, and thus
yields the inequality


−1∑

j=1

x j ≤

−1∑

k=1

λk

which can be reformulated as (15).
Third, suppose Vt\U = {k, . . . , 
} for some 2 ≤ k ≤ 
 ≤ n − 1. Then S =

{s} ∪ {vi ∈ Vs | 1 ≤ i ≤ k − 1 or 
 ≤ i ≤ n − 1} ∪ U . However, (S, S̄) violates
condition (ii) of Theorem 2, since (S\{s}, A(S\{s})) is not connected. ��
Observe that (14) and (15) along with the non-negativity of the variables and the two
valid equations, is precisely the reformulation of Padberg [39] for SOS2 (obtained by
complety different means), see also [26,28,45].

5.2 Special ordered sets of type k

A special ordered set of type k (SOSk) consists of vectors x ∈ R
n≥0 such that

∑n
j=1 x j = 1, and x has at most k consecutive non-zero components, see [26,38].

Clearly, it generalizes SOS2 discussed in the previous section. Let (PSOSk
n )emb be the

convex hull of those (x, λ) that satisfy the constraints

x j −
j∑

i=max{ j−k+1,1}
λi ≤ 0, j = 1, . . . , n

n∑

j=1

x j = 1,

n−k+1∑

i=1

λi = 1,

x ≥ 0, λ ∈ {0, 1}n .

The corresponding network N = (V , A, c) has a set of nodes V comprising a source
s, a sink t , the nodes Vs = {v1, . . . , vn−k+1}, and also Vt := {1, . . . , n}. s is connected
to each of the vi by a directed arc of capacity λi , and each j ∈ Vt to t by a directed arc
of capacity x j . Finally, vi is connected to the nodes i, . . . , i + k − 1 in Vt by directed
arcs of capacity λi each. By applying Theorem 2 to the network N , one can prove
analogously to the SOS2 special case the following:
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Proposition 10 The non-trivial facets of (PSOSk
n )emb are

n∑

j=h

x j ≤
n−k+1∑

i=h−k+1

λi , h = k, . . . , n, and

n∑

j=h

x j ≥
n−k+1∑

i=h

λi , h = 2, . . . , n − k + 1.

5.3 Logical constraints

Consider a set of binary variables x j indexed by j ∈ J = {1, . . . , n}. For each
i = 1, . . . , m, let Ei ⊆ {H ⊆ J : H �= ∅} be a set of pairwise disjoint subsets
of J , that is, Eik ∩ Eik′ = ∅ for distinct sets Eik, Eik′ ∈ Ei . Note however, that for
distinct i and i ′, there may exist E ∈ Ei and E ′ ∈ Ei ′ such that E ∩ E ′ �= ∅. We
also assume that V = ⋃m

i=1
⋃|Ei |

k=1 Eik . Let P L OG≤ be the convext hull of those binary
vectors x ∈ {0, 1}J that satisfy the following disjunctive constraints:

m∨

i=1

⎛

⎝
|Ei |∧

k=1

⎛

⎝
∑

j∈Eik

x j ≤ pik

⎞

⎠

⎞

⎠ (16)

In order to obtain a MIP formulation for P L OG≤ , we introduce a binary variable λi for
i = 1, . . . , m. Let (P L OG≤ )emb be the convex hull of points (x, λ) ∈ {0, 1}n × {0, 1}m

that satisfy the constraints

m∑

i=1

λi = 1, (17)

(|Eik | − pik) λi +
∑

j∈Eik

x j ≤ |Eik |, i = 1, . . . , m, k = 1, . . . , |Ei |. (18)

Define the network N = (V , A, c), where V = {s, t} ∪ Vs ∪ W ∪ Vt , where Vs :=
{v1, . . . , vm}, Vt = J , and W = {wik | i = 1, . . . , m, k = 1, . . . , |Ei |}. The set of arcs
A comprises the (s, vi ) of capacity (n −∑|Ei |

k=1(|Eik |− pik))λi for each i = 1, . . . , m;
the (vi , wik) of capacity pikλi for i = 1, . . . , m, k = 1, . . . , |Ei |; the arcs (vi , j) of
capacity λi for i = 1, . . . , m, and j ∈ Vt\ ∪ (Eik | k = 1, . . . , |Ei |); and the (wik, j)
of capacity λi for i = 1, . . . , m, k = 1, . . . , |Ei |, j ∈ Eik .

Firstly, we identify the dominating s − t cut (S, S̄) w.r.t. some U ⊂ Vt . Clearly,
S = {s} ∪ Vs ∪ U ∪ {wik ∈ W : |Eik\U | ≤ pik}, because the capacity of the arc
(vi , wik) is pikλi , while the total capacity of those arcs fromwik to Vt\U is |Eik\U |λi .

We can apply Theorem 1 to determine those dominating s − t cuts of N with respect
to some U ⊂ Vt that induce facets of (P L OG≤ )emb, however, the condition we get is
not much more specific than that of the theorem. All we can say is that the dominating
s − t cut w.r.t. any U ⊂ Vt satisfies condition (ii) of Theorem 1.
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As a special case we reconsider the logical constraints of [7], which we summarized
in Sect. 2. By splitting J into two subsets J1 and J2, and after complementing all the
variables, i.e., x̄ j = 1 − x j for all j , we can express P1 and P2 as

P1 =
{(

x1, . . . , xr ; y1, . . . , ys
)

∈ [0, 1]|M1|+···+|Mr |+|N1|+···+|Nr | :
x̄ i (Mi ) ≤ |Mi | − pi , i = 1, . . . , r

}
,

and

P2 =
{(

x1, . . . , xr ; y1, . . . , ys
)

∈ [0, 1]|M1|+···+|Mr |+|N1|+···+|Nr | :
ȳ j (N j ) ≤ |N j | − 
 j , j = 1, . . . , s

}
.

Since P1 and P2 are in disjoint subspaces, the characterization of Theorem 1 becomes
more apparent. Let E1i = Mi , and E2 j = N j .

Proposition 11 The subset U ⊂ Vt induces a facet of conv(P1 ∪ P2) if |Vt\U | = 1,
or there exists w1i or w2 j such that for the dominating s − t cut (S, S̄) ∈ Cmin(U ),
w1i ∈ S̄ and Mi\U = Vt\U, or w2 j ∈ S̄ and N j\U = Vt\U.

Proof By Theorem 1, N\(S ∪{t})must be connected. However, the Mi and the N j are
disjoint by assumption, so, condition (i) holds only if the conditions of this statement
are satisfied. On the other hand, Vs ⊂ S, and thus condition (ii) of the same theorem
is met as well. ��

5.4 Cardinality indicating polytope

The cardinality indicating polytope PC AR D
n ⊆ R

2n+1
≥0 is defined as the convex hull of

the points

{

(x, λ) ∈ {0, 1}n × {0, 1}n+1 : λk = 1 and λ j = 0 for j �= k, where k =
n∑

i=1

xi

}

.

Clearly,
∑n

k=0 λk = 1 holds for each (x, λ) ∈ PC AR D
n .

First, we create a network N C AR D
n = (V , A, c)with V = {s}∪{t}∪Vs ∪Vt , where

Vs = {v0, v1, . . . , vn}, and Vt = {1, . . . , n}, and A comprising the following arcs. For
k = 0, . . . , n, the arcs (s, vk) ∈ A of capacity kλk . For k = 0, . . . , n and j = 1, . . . , n,
the arcs (vk, j) ∈ A of capacity λk . For j = 1, . . . , n, the arcs ( j, t) ∈ A of capacity
x j (Fig. 5).
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Fig. 5 Network for the cardinality indicating polytope

By construction, we have

PC AR D
n =

⎧
⎨

⎩
(x, λ) ∈ R

n+1 × R
n :

n∑

k=0

λk = 1,
n∑

k=0

kλk =
n∑

j=1

x j , x ≥ 0, λ ≥ 0,

cx,λ([S, S̄]) ≥
n∑

j=1

x j for all s − t cut (S, S̄)

⎫
⎬

⎭
.

Proposition 12 The non-trivial facets of PC AR D
n are

∑

j∈I

x j ≤
|I |∑

k=1

kλk + |I |
n∑

k=|I |+1

λk, ∅ �= I ⊂ {1, . . . , n}. (19)

Proof By Proposition 6 it suffices to consider dominating s − t cuts to identify the
facets of PC AR D

n . For any nonempty subset I ⊆ {1, . . . , n}, let U := Vt\I , and (S, S̄)

the unique dominating s − t cut w.r.t.U . Since (S, S̄) is of minimum capacity w.r.t.U ,
vk ∈ S for all k > |I |, and vk ∈ S̄ for all k < |I |. Since, (S, S̄) is dominating w.r.t. U ,
v|I | ∈ S. Clearly, (S, S̄) satisfies the conditions of Theorem 2, thus the corresponding
face FS is a facet of PC AR D

n , and takes the form (19). ��

Notice that Theorem 10 of [35] gives precisely the same description of PC AR D
n .
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5.5 All even subsets

The parity polytope P EV E N
n is defined as the convex hull of points

{
x ∈ {0, 1}n : x has even an number of 1’s

}
.

The minimal description of P EV E N
n in terms of linear inequalities in the space of

original variables is attributed to Jeroslow [30]. We apply our technique to get one in
a higher dimensional space. Let (P EV E N

n )emb be the convex hull of the set of points

{

(x, λ) ∈ {0, 1}n × {0, 1}�n/2�+1 : ∃ k such that λ = εk, and 2k =
n∑

i=1

xi

}

.

Similarly to Sect. 5.4, we create a network N EV E N
n = (V , A, c) with V = {s} ∪

Vs ∪ Vt ∪ {t}, where Vs := {v0, . . . , v�n/2�} and Vt := {1, . . . , n}, and the set of arcs
is defined analogously to that of N card

n . The arc capacities are c(s, vk) = 2kλk , for
k = 0, . . . , �n/2�, c(vk, j) = λk for all j ∈ Vt ), and c( j, t) = x j for j ∈ Vt . By
construction we have

(P EV E N
n )emb =

⎧
⎨

⎩
(x, λ) ∈ R

n × R
n+1 :

n∑

k=0

λk = 1,
�n/2�∑

k=0

2kλk =
n∑

j=1

x j , x ≥ 0, λ ≥ 0,

cx,λ([S, S̄]) ≥
n∑

j=1

x j for all s − t cut (S, S̄)

⎫
⎬

⎭
.

Proposition 13 The non-trivial facets of (P EV E N
n )emb are

∑

j∈I

x j ≤
�|I |/2�∑

k=1

2kλk + |I |
n∑

k=�|I |/2�+1

λk, I ∈ In, (20)

where In := {I ⊆ {1, . . . , n} : |I | �= 2, ∃ k ∈ Z such that n > 2k > |I |}.

Proof By Proposition 6 only dominating s − t cuts of N EV E N
n can define facets. For

any nonempty subset I ⊆ {1, . . . , n}, letU := Vt\I , and (S, S̄) the unique dominating
s − t cut w.r.t.U . Since (S, S̄) is of minimum capacity w.r.t.U , vk ∈ S for all 2k ≥ |I |,
and vk ∈ S̄ for all 2k < |I |. In contrast to the cardinality indicating polytope, not all
I determine facets of (P EV E N

n )emb, namely, |I | induces a facet if and only if |I | �= 2,
and there exists an integer k such that n > 2k and 2k > |I |. If this condition fails,
then the s − t cut (S, S̄) corresponding to I does not satisfy condition (i) or (ii) of
Theorem 2. The statement follows. ��
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5.6 Polytopes of small cliques

Given a simple graph G = (V, E), and a constant c, let

PC L Q
≤c := conv

{
x(C) ∈ [0, 1]V | C ⊆ V clique of size ≤ c

}

be the polytope whose vertices correspond to cliques of G of size at most c, and

PC L Q=c := conv
{

x(C) ∈ [0, 1]V | C ⊆ V clique of size c
}

Let C1, . . . , Cm be the node sets of the cliques of size c of G, and n = |V|. Clearly,
m ≤

(
n
c

)

. The corresponding MIP formulations can be derived using a network

N = (V , A, c), where V = {s, t} ∪ Vs ∪ Vt such that Vs comprises a distinct node vi

for each Ci , and Vt = V (the set of nodes of G). The source s is connected to each
vi , each j is connected to the sink t , and each node vi is connected to every j ∈ Ci .
c(s, vi ) = cλi , c(vi , j) = λi for j ∈ Ci , and c( j, t) = x j for all j ∈ Vt . First we

consider (PC L Q=c )emb. It is easy to see that

(
PC L Q=c

)emb =
⎧
⎨

⎩
(x, λ) ∈ R

n × R
m |

∑

j∈V
x j = c,

m∑

i=1

λi = 1, x ≥ 0, λ ≥ 0,

cx,λ

([S, S̄]) ≥
n∑

j=1

x j ,∀s − t cut (S, S̄)

⎫
⎬

⎭
.

In fact, this polytope has a very simple structure.

Proposition 14

(
PC L Q=c

)emb =
⎧
⎨

⎩
(x, λ) ∈ R

n × R
m : x j =

∑

i : j∈Ci

λi ,

m∑

i=1

λi = 1, x ≥ 0, λ ≥ 0

⎫
⎬

⎭
.

Proof The validity of the equations is easy to verify. They correspond to the dominating
s − t cuts for U ⊂ Vt such that |U | = n − 1, but they hold at equality for all
(x, λ) ∈ (PC L Q=c )emb and together imply

∑
j∈V x j = c. Moreover, the polyhedron on

the right is integral, which can be verified by ad-hoc methods. ��
When c = 2, we can easily project out the λi variables, by considering the stables
sets of G. That is, using a result of [8], we apply the extreme rays of the polyhedron
y B ≥ 0, where Bλ = x is the subsystem defining the connection between the x and λ

in the definition of (PC L Q=c )emb. For any stable set I of G, let y j = −1 for j ∈ I , and
y j = 1 for j ∈ Γ (I ), the neighbors of I in G. These extreme rays y yield the valid
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inequalities

x(I ) − x(Γ (I )) ≤ 0, for all stable set I of G.

These inequalities were derived in [33] by starting out from a different extended
formulation, and Kaibel and Loos also show that along with x j ≥ 0, j ∈ V , and
∑

j∈V x j = 2, they suffice to describe PC L Q=c , and they give conditions for these
inequalities to define facets.

Now let us turn to (PC L Q
≤c )emb. Clearly,

(
PC L Q

≤c

)emb =
{

(x, λ) ∈ R
n × R

m |
m∑

i=1

λi = 1, x ≥ 0, λ ≥ 0,

cx,λ([S, S̄]) ≥
n∑

j=1

x j ,∀s − t cut (S, S̄)

⎫
⎬

⎭
.

Proposition 15 The non-trivial facets of (PC L Q
≤c )emb are

∑

i : j∈Ci

λi ≥ x j , ∀ j ∈ {1, . . . , n} .

Proof By Theorem 1, the only setsU ⊂ Vt that induce facets of (PC L Q
≤c )emb are those,

where U contains all but one of the nodes j ∈ Vt , and the statement follows. ��

The special case with c = 2 is extensively studied in [29] and [33], where all facets
of PC L Q

≤c are determined in the space of the original problem variables.

5.7 Union of simplicies

This application is from Jeroslow [31]. Let PΔ := conv(∪m
i=1PΔ

i ), where

PΔ
i :=

⎧
⎨

⎩
x ∈ R

n |
n∑

j=1

x j ≤ U Bi , x j ≥ L Bi
j , j = 1, . . . , n

⎫
⎬

⎭
.

We assume that
∑n

j=1 L Bi
j ≤ U Bi for all i , and all bounds are finite. Let (PΔ)emb =

conv(∪m
i=1(PΔ

i × εi )). Clearly, (PΔ)emb is the convex hull of those (x, λ) that satisfy
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the constraints

n∑

j=1

x j ≤ U Biλi , i = 1, . . . , m

x j ≥ L Bi
jλi , i = 1, . . . , m, j = 1, . . . , n

m∑

i=1

λi = 1

λ ∈ {0, 1}m .

(21)

In order to describe (PΔ)emb, we form a network N = (V , A, c, lb), where V com-
prises a source s, sink t , the nodes Vs = {v1, . . . , vm} as well as Vt = {1, . . . , n}. The
set of arcs A comprises (s, vi ) for all vi ∈ Vs , (vi , j) for all vi ∈ Vs , and j ∈ Vt ,
and ( j, t) for all j ∈ Vt . There are both capacities c, and lower bounds lb on the arcs.
Let c(s, vi ) = U Biλi , lb(s, vi ) = λi

∑n
j=1 L Bi

j , c(vi , j) = (U Bi − ∑
k �= j L Bi

k)λi ,

lb(vi , j) = L Bi
jλi , and c( j, t) = x j , and lb( j, t) = 0 for all i and j . The lower

bounds on the arcs (s, vi ), and (vi , j) can be eliminated by the following transforma-
tion.We derive a new network N ′ = (V , A, c′) from N bymodifying the upper bounds
as follows. c′(s, vi ) := (U Bi − ∑n

k=1 L Bi
k)λi , c′(vi , j) := (U Bi − ∑n

k=1 L Bi
k)λi ,

and c′( j, t) := x ′
j , where x ′

j = x j − ∑m
i=1 L Bi

jλi . We have the following relation
between the feasible flows of N and N ′.

Proposition 16 Let x ∈ R
n, y ∈ R

m be vectors such that λ ≥ 0, and
∑n

i=1 λi = 1.
We have the equivalences

i) (x, λ) ∈ (PΔ)emb if and only if Nx,λ admits a feasible s−t flow of value
∑n

j=1 x j .
ii) Nx,λ admits a feasible s − t flow of value

∑n
j=1 x j if and only if N ′

x ′,λ admits a

feasible s − t flow of value
∑n

j=1 x ′
j , where x ′

j = x j − ∑m
i=1 L Bi

jλi .

Proof Part i) is obvious. As for ii), first suppose Nx,λ admits a feasible flow f of
value

∑n
j=1 x j . Let f ′

(s,vi )
= f(s,vi ) − λi

∑n
j=1 L Bi

j , f ′
(v j , j) = f(vi , j) − λi L Bi

j , and

f ′
( j,t) = f( j,t) − ∑m

i=1 λi L Bi
j . Clearly, f ′ is a feasible s − t flow in N ′

x ′,λ of value
∑n

j=1 x ′
j , as claimed. The opposite direction can be proved similarly. ��

Let Q′ be convex hull of those (x ′, λ) such that x ′, λ ≥ 0, and N ′
x ′,λ admits a

feasible s − t flow of value
∑n

j=1 x ′
j . Now we use Theorem 1 to identify those facets

of Q′ that corresponds to some s − t cuts of N ′ and then we lift the description of Q′
to that of (PΔ)emb.

Observation 5 Q′ is of dimension n + m − 1 if there exists i ∈ {1, . . . , m} such that∑n
j=1 L Bi

j < U Bi , otherwise it has dimension m − 1.
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Proposition 17 Any proper subset U ⊂ Vt does not induce a facet of Q′. If dim Q′ =
n + m − 1, then the set U = Vt induces the facet

n∑

j=1

x ′
j ≤

m∑

i=1

⎛

⎝U Bi −
n∑

j=1

L Bi
j

⎞

⎠ λi . (22)

Proof Let U ⊆ Vt . If |U | ≤ n − 2, then any s − t cut (S, S̄) in Cmin(U ) has the
following structure: S = {s} ∪ U . But then condition (ii) of Theorem 1 is not satisfied
by (S, S̄). Now suppose |U | = n −1. Then the dominating s − t cut (S, S̄) in Cmin(U )

has the following structure: S = {s} ∪ Vt ∪ U . But then condition (i) of Theorem 1 is
not satisfied by (S, S̄), since for each vi , a single arc of capacity λi (U Bi −∑n

k=1 L Bi
k)

leaves S, but thismatches the capacity of (s, vi ). Finally, ifU = Vt , then the conditions
of Theorem 1 are satisfied (the first one is void), and thus we get the inequality in the
statement. ��
So, we have the following description for Q′:

n∑

j=1

x ′
j ≤

m∑

i=1

λi

⎛

⎝U Bi −
n∑

j=1

L Bi
j

⎞

⎠

m∑

i=1

λi = 1

x, λ ≥ 0

Notice that this description is valid even if U Bi = ∑n
j=1 L Bi

j for all i . Now we

transform this description to one for (PΔ)emb. But this is easy. By Proposition 16
we know that (x, λ) ∈ (PΔ)emb if and only if x j ≥ ∑m

i=1 L Bi
jλi for each j , and

(x ′, λ) ∈ Q′, where x ′
j = x j − ∑m

i=1 L Bi
jλi for all j . Consequently, we have the

following:

Proposition 18 A minimal linear description of (PΔ)emb is

n∑

j=1

x j ≤
m∑

i=1

U Biλi ,

x j ≥
m∑

i=1

L Bi
jλi , j = 1, . . . , m

m∑

i=1

λi = 1.

λ ≥ 0.

This is precisely the description of Jeroslow obtained by completely different means.
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5.8 Multi-variate piecewise linear functions

This application is from [26], see also [28]. The objective is to model the graph of a
continuous piecewise linear function f : D → R on a bounded domain D ⊆ R

d ,
where D admits a polyhedral partition

⋃m
i=1 Ci = D (relint(Ci ) ∩ relint(C j ) = ∅ for

i �= j) such that x ∈ Ci implies f (x) = ai · x + bi , for some ai ∈ R
d and bi ∈ R.

The graph of f is gr( f ) := {(x, f (x)) : x ∈ D}. Let W := ⋃m
i=1 vert(Ci ). In fact,

we have

gr( f ) =
{
∑

w∈W

xw(w, f (w)) : x ∈
m⋃

i=1

Pi

}

,

where Pi := {x ∈ R
W≥0 : ∑

w∈W xw = 1, xw = 0 ∀w ∈ W\vert(Ci )}. Here,
x ∈ ⋃m

i=1 Pi is the combinatorial disjunctive constraint (5).
Let P pwl = conv(

⋃m
i=1 Pi ). Suppose W = {w1, . . . , wn}. Then (P pwl)emb is the

convex hull of those (x, λ) which satisfy

n∑

j=1

x j = 1,

x j ≤
∑

i∈�m� : w j ∈vert(Ci )

λi , j = 1, . . . , n

m∑

i=1

λi = 1,

λ ∈ {0, 1}m .

(23)

It is easy to see that (P pwl)emb admits a network representation N = (V , A, c), where
V = {s, t} ∪ Vs ∪ Vt such that Vs = {v1, . . . , vm}, Vt = {1, . . . , n}, and (vi , j) ∈ A
if and only if w j ∈ Ci . Furthermore, A contains all the arcs (s, vi ) for i = 1, . . . , m,
and ( j, t) for j = 1, . . . , n. As usual, c( j, t) = x j for j ∈ Vt , while c(s, vi ) = λi ,
and c(vi , j) = λi for all (vi , j) ∈ A. The facets of (P pwl)emb have a particularly nice
geometrical characterization. Let κ(T ) denote the number of connected components3

of some T ⊂ R
d . Clearly, the dimension of (P pwl)emb is n + m − 1 − κ(D).

Proposition 19 The non-trivial facets of (P pwl)emb take the form

∑

i∈M

λi ≤
∑

j∈∪i∈MΓ out
vi

x j , (24)

where M ⊂ {1, . . . , m} is such that κ(D\(⋃i∈M Ci )) + κ(
⋃

i∈M Ci ) = κ(D) + 1.

Proof We construct a dominating s − t cut (S, S̄) from M and show that it determines
an inequality equivalent to (24). Let U := ∪i∈MΓ out

vi
, and S := {s} ∪ {vi ∈ Vs :

3 Path-connected in topological sense.
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|Γ out
vi

\U | ≤ 1} ∪ U . Observe that vi /∈ S if and only if |Γ out
vi

\U | ≥ 2 and i ∈ M if
and only if Γ out

vi
⊆ U . Therefore, the corresponding inequality for (S, S̄) is

∑

vi ∈Vs : |Γ out
vi

\U |≥2

λi +
∑

vi ∈Vs : |Γ out
vi

\U |=1

λi +
∑

j∈U

x j ≥
n∑

j=1

x j .

Since
∑m

i=1 λi = ∑n
j=1 x j = 1 by assumption, we can rewrite this as

1 −
∑

i∈M

λi +
∑

j∈U

x j ≥ 1.

Rearranging terms yields (24).
We still have to verify that S meets the conditions of Theorem 2. In fact, if either

of the conditions does not hold, then either the nodes in U are disconnected in the
subnetwork spanned by S\{s}, or those in Vt\U are disconnected in N\(S ∪ {t}),
which implies κ(D\(⋃i∈M Ci )) + κ(

⋃
i∈M Ci ) > κ(D) + 1. ��

In fact, this characterization is the same as that of Lee and Wilson [36].
The 2-dimensional special case, where D = [0, S1] × [0, S2], and the {Ci }m

i=1
constitute a grid triangulation of D with m = 2S1S2 triangles, is extensively stud-
ied in [26–28,45,48], and ideal formulations with O(log2 m) new (binary) variables
and constraints are provided. Different triangulation of the grid may define different
piecewise linear functions, even if they agree on the grid points, for an example we
refer the reader to [28].

The naivemodelling (23) of the grid triangulations leads tom auxiliray λi variables,
which is far more than O(log2 m) needed by the methods of [26–28,45,48]. On the
other hand, the techniques of the above papers are difficult to generalize for 3 or more
dimensions. Nevertheless, Huchette and Vielma [28] proved that intersecting ideal
formulations for combinatorial disjunctions yields an ideal formulation:

Theorem 3 [28] Fix s ∈ Z≥1, and consider s distinct combinatorial disjunctive con-
straints Bt = ⋃mt

i=1 Q(T i,t ) on the same set V , where
⋃mt

i=1 T i,t = V , for t ∈ �s�.
Let Π t ⊆ R

V × R
rt be such that {(x, λt ) ∈ Π t : λt ∈ Z

rt } is an ideal formulation
for Bt , for each t ∈ �s�. Then, an ideal formulation for

⋂s
t=1 Bt is

{
(x, λ1, . . . , λs) : (x, λt ) ∈ Π t , λt ∈ Z

rt ∀t ∈ �s�
}

. (25)

Huchette and Vielma suggested that this result permits to go beyond the 2-variable
special case.Belowwedescribe a possible realization of their idea. Ind dimensions, the
unit grid for D := ×d

t=1[0, Sk] consists of∏d
t=1 St unit cubes. Let n = ∏d

t=1(St +1) be
the number of grid points in W := D∩Z

d . For each unit cube in the grid, a partitioning
into d! simplices of [0, 1]d is specified. Let C be the set of all the simplices given in
all the unit cubes of the grid W . We can use d distinct combinatorial disjunctions for
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Fig. 6 Covering the grid
[0, 4]2 ∩ Z

2 by 4 sets of node
disjoint unit squares. The
squares with the same number
constitute one set of the
partitioning

selecting a cube, and then some additional combinatorial disjunction(s) to select a
single simplex in the selected cube (this is how the compact formulation of [28] works
in 2 dimensions). So, for t ∈ �d�, let mt = St , and T i,t = {w ∈ W : wt ∈ {i − 1, i}}
for i ∈ �mt�, namely, in T i,t we select all the grid points w ∈ D such that wt ∈
{i − 1, i}. Let Bt = ⋃mt

i=1 Q(T i,t ), and observe that this is the SOS2 constraint along
the t th axis. Let Π t ⊂ R

n × R
rt be any ideal formulation for Bt with rt = O(log St )

variables and O(log St ) constraints, see e.g., [28], and Sect. 2. By Theorem 3, joining
the Π t , t ∈ �d�, yields an ideal formulation for

⋂d
t=1 Bt , and in fact it selects a single

cube from the grid (by setting the λt to unit vectors). However, we still have to select a
simplex. All we need is one more combinatorial disjunction, which covers the vertices
of all the d!∏d

t=1 St simplices such that each term in this disjunction covers simplices
of node disjoint cubes. In fact, 2dd! terms suffice, as the following statement shows.

Proposition 20 There is a combinatorial disjunction Bd+1 = ⋃2d d!
i=1 Q(T i,d+1) such

that

–
⋃2d d!

i=1 T i,d+1 = D ∩ Z
d ,

– for any unit cube in the grid D ∩ Z
d , and any simplex C ∈ C from the cube, there

is a unique T i,d+1 containing vert(C), and
– Any T i,d+1 consists of the vertices of simplices from vertex disjoint unit cubes of

the grid.

Proof To cover a grid in Z
d by sets of node disjoint unit cubes, we can partition the

grid into 2d subsets, see Fig. 6. Each of the 2d sets of cubes yields d! disjunctive
terms, namely, we identify each simplex in each unit cube uniquely by a number from
1, . . . , d!, and then we collect all vertices of those simplices having the same id. in a
term of the disjunction. More formally, let Rk for k ∈ �2d� be the sets of node disjoint
unit cubes from the grid which together cover D. Each Rk gives rise to d! sets T i,d+1

for i ∈ {d!(k − 1) + 1, . . . , d!k}, where T i,d+1 contains vert(C) for those simplices
C from the cubes of Rk having id (i − d!(k − 1)). It is easy to see that the sets T i,d+1

satisfy the conditions of the statement. ��

Corollary 3 Let ΔW
C = {x ∈ R

W≥0 : ∑
w∈W xw = 1, xw = 0 ∀w /∈ vert(C)}. Then

conv(
⋂d+1

t=1 Bt ) = conv{ΔW
C : C ∈ C}. Moreover, joining any ideal formulations Π t

for Bt , t ∈ �d + 1�, as in Theorem 3, yields an ideal formulation for
⋂d+1

t=1 Bt .

Finally, using our techniques, it is straightforward to obtain an ideal formulation
for Pd+1= := conv(Bd+1). Let m = 2dd!, and n = |W |. The underlying network
N = (V , A, c) has nodes {s, t} ∪ Vs ∪ Vt , where Vs = {v1, . . . , vm}, and Vt =
{1, . . . , n}. Node s is connected to each vi ∈ Vs by an arc of capacity λi , node vi
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is connected to each node j ∈ Vt such that w j ∈ T i,d+1 by an arc of capacity λi ,
and finally, each j ∈ Vt is connected to t by an arc of capacity x j . We also have
the equations

∑m
i=1 λi = ∑n

j=1 x j = 1. However, there are no implicit equations

for (Pd+1= )emb, because if a partitioning E1, . . . , Eκ of W , for some κ ≥ 2, induces
linearly independent valid equations for (Pd+1= )emb, then each T i,d+1 must be a subset
of some E
. It is easy to verify that this is impossible.

Observation 6 dim((Pd+1= )emb) = n + m − 2.

We can apply Theorem 2 to obtain the non-trivial facets of (Pd+1= )emb :=
conv{⋃2d d!

i=1 Q(T i,d+1)×{εi }). Note that there are only 2dd! auxiliary variables in the
resulting formulation, which is just 8 for d = 2, 48 for d = 3, and 384 for d = 4,
and it is independent of the size of n. As for the number of facets of (Pd+1= )emb, it
can be exponential in n even if d = 2. However, to our best knowledge, for d ≥ 3,
no ideal formulation is known with a logarithmic number of auxiliary variables and
linear inequalities in n.

Proposition 21 Let U ⊂ Vt , and (S, S̄) ∈ Cmin(U ). Then FS is a facet of (Pd+1= )emb

if and only if (a) N\(S ∪ {t}) is connected, and (b) for any partitioning of U into
nonempty subsets U1 and U2, there is some i such that T i,d+1 ∩ U
 �= ∅ for 
 = 1, 2,
and T i,d+1 ⊆ U.

5.9 Modeling of variable intensity activities in a resource loading problem

This application stems from the paper [41], where a resource loading problem is stud-
ied. Here we give a new derivation of the polyhedral description of feasible intensity
assignments to an activity.

Suppose there is a time horizon of n consecutive time periods of unit length each,
and an activitywhich has to be scheduled in an interval of time periods uninterruptedly.
In those time periods when it is processed, a fraction between given lower and upper
bounds, L B and U B, must be assigned such that the sum of fractions is 1, where
0 < L B ≤ U B ≤ 1.LetE consist of all the possible execution intervals for the activity,
i.e., [k, 
] ∈ E if and only if 1 ≤ k ≤ 
 ≤ n, and (
−k +1)L B ≤ 1 ≤ (
−k +1)U B.
For ease of notation, [k, 
] also represents the set of integers {t ∈ Z : k ≤ t ≤ 
}.
If we select [k, 
] ∈ E , then the intensity assignment x ∈ R

n of the activity must
satisfy the conditions

∑

j=k x j = 1, L B ≤ x j ≤ U B for j ∈ [k, 
], and x j = 0

otherwise.
For each interval [k, 
] ∈ E , we can strengthen the lower and upper bounds as

follows: L Bk
 = max{L B, 1 − (
 − k)U B} and U Bk
 = min{U B, 1 − (
 − k)L B}.
To avoid implicit equations, we assume that for each pair of consecutive time periods
j , and j +1, there exists some execution interval [k, 
] ∈ E such that j, j +1 ∈ [k, 
],
and (
 − k + 1)L Bk
 < 1 < (
 − k + 1)U Bk
.

We can model the feasible intensity assignments by means of the following integer
program:
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∑

[k,
]∈E : j∈[k,
]
λk
L Bk
 ≤ x j ≤

∑

[k,
]∈E : j∈[k,
]
λk
U Bk
, ∀ j ∈ {1, . . . , n} (26)

∑

[k,
]∈E
λk
 = 1 (27)

n∑

j=1

x j = 1 (28)

x j ≥ 0, ∀ j ∈ {1, . . . , n}
λ ∈ {0, 1}E (29)

Let P RL P be the convex hull of those (x, λ) vectors that satisfy these constraint. In
order to get the (non-trivial) facets of P RL P , we model the above integer program
by a network N = (V , A, c, lb), where V comprises a source node s, a sink node t ,
the nodes Vs := {vk
 | [k, 
] ∈ E}, and the nodes Vt := {1, . . . , n}. We have one arc
from s to each vk
 with lower bound lb(s, vk
) = (
 − k + 1)L Bk
λk
, and capacity
c(s, vk
) = λk
. Further on, for each vk
 ∈ Vs and j ∈ Vt , we have one arc (vk
, j)
of lower bound λk
L Bk
, and capacity λk
Uk
. Finally, we have one arc from each
j ∈ Vt to t of lower bound 0, and capacity x j . Observe that the positive lower bounds
stem from the left hand side of (26). Let x ′

j = x j −∑
[k,
]∈E : j∈[k,
] λk
L Bk
, and we

derive network N ′ = (V , A, c′) from N as follows. The capacity of the arcs (s, vk
)

reduces to (1 − (
 − k + 1)L Bk
)λk
, that of (vk
, j) becomes (U Bk
 − L Bk
)λk
,
while on the arcs ( j, t) the new capacity is x ′

j . Let m = |E |. The following statement
is analogous to Proposition 16.

Proposition 22 Suppose
∑

[k,
]∈E λk
 = 1, x ≥ 0, and λ ≥ 0. (x, λ) ∈ P RL P if and
only if Nx,λ admits a feasible s − t flow of value 1 if and only if N ′

x ′,λ admits a feasible
s − t flow of value

∑
[k,
]∈E (1 − (
 − k + 1)L Bk
)λk
.

Let P RL P ′
be the convex hull of those (x ′, λ) such that x, λ ≥ 0,

∑
[k,
]∈E λk
 = 1,

and N ′
x ′,λ admits a feasible s − t flow of value

∑
[k,
]∈E (1 − (
 − k + 1)L Bk
)λk
.

We apply the MAX FLOW-MIN CUT theorem to N ′ to obtain a linear representation
of P RL P ′

:

P RL P ′ =
⎧
⎨

⎩
(x ′, λ) ∈ R

n × R
m |

∑

[k,
]∈E
λk
 = 1, x ′ ≥ 0, λ ≥ 0,

n∑

j=1

x ′
j =

∑

[k,
]∈E
(1 − (
 − k + 1)L Bk
) λk
,

cx ′,λ([S, S̄]) ≥
n∑

j=1

x ′
j ,∀s − t cut (S, S̄) of N ′} .
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Let (S, S̄) be any s − t cut of N ′, the corresponding inequality is

∑

vk
∈S

λk
|[k, 
]\U | · (U Bk
 − L Bk
) +
∑

vk
 /∈S

λk
 (1 − (
 − k + 1) · L Bk
) ≥
∑

j∈Vt \U

x ′
j .

(30)

If we increase both sides by
∑

[k,
]∈E |[k, 
]\U | · L Bk
λk
, we obtain

∑

vk
∈S

λk
|[k, 
]\U | · U Bk
 +
∑

vk
 /∈S

λk
 (1 − |[k, 
] ∩ U | · L Bk
) ≥
∑

j∈Vt \U

x j ,

(31)

whereweused x j = x ′
j +

∑
[k,
]∈E : j∈[k,
] L Bk
λk
. These are precisely the inequalities

(27) obtained in [41] by a different argument. The following statement is analogous
to Proposition 18.

Proposition 23 A minimal linear description of P RL P consists λ ≥ 0, the inequalities
x j ≥ ∑

[k,
]∈E L Bk
λk
, (27)–(29), and those inequalities from (31) for which the

corresponding inequality from (30) induces a facet of P RL P ′
.

It remains to characterize those U ⊂ Vt that induce facets of P RL P ′
. First, for a fixed

U ⊂ Vt , we determine the non-dominated s − t cuts of N ′ w.r.t. U . So we build a set
S containing {s} ∪ U , and some of the nodes vk
. We can decide for each vk
 whether
to include in S or not in order to minimize the capacity of (S, S̄).

– If vk
 ∈ S, then the arcs (vk
, j) for j ∈ [k, 
]\U are adjacent to vk
 and leave S.
The total capacity of these arcs is

λk
|[k, 
]\U | · (Uk
 − L Bk
) = λk
|[k, 
]\U | · Uk
 − λk
|[k, 
]\U | · L Bk
.

(32)

– If vk
 /∈ S, then the arc (s, vk
) leaves S and its capacity is

λk
(1 − (
 − k + 1) · L Bk
) = λk
 (1 − |[k, 
] ∩ U |) · L Bk
) − λk
|[k, 
]\U | · L Bk
.

(33)

Comparing (32) and (33), we can derive the following.

Observation 7 (S, S̄) ∈ Cmin(U ) if and only if vk
 ∈ S when |[k, 
]\U | · U Bk
 <

1−|[k, 
] ∩U | · L Bk
, and vk
 /∈ S when |[k, 
]\U | ·U Bk
 > 1−|[k, 
] ∩U | · L Bk
.

Now we apply Theorem 2 to single out those subsets U ⊂ Vt that induce facets
of P RL P ′

. Let E+ consist of those [k, 
] ∈ E for which (
 − k + 1)U Bk
 > 1 >

(
 − k + 1)L Bk
.

Theorem 4 Fix U ⊂ Vt , and let (S, S̄) the dominating s − t cut of N ′ w.r.t. U . It
induces a facet of P RL P ′

if and only if both of the following conditions hold.
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i) If |Vt\U | ≥ 2, then for each j ∈ Vt\U except the last one, there exists [k, 
] ∈ E+
such that vk
 ∈ S̄, [k, 
]∩[1, j]∩(Vt\U ) �= ∅ and [k, 
]∩[ j+1, n]∩(Vt\U ) �= ∅.

ii) If |U | ≥ 2, then for each j ∈ U except the last one, there exists [k, 
] ∈ E+ such
that vk
 ∈ S, [k, 
] ∩ [1, j] ∩ U �= ∅ and [k, 
] ∩ [ j + 1, n] ∩ U �= ∅.

Proof We derive the two conditions of the theorem from those of Theorem 2. First
note that if vk
 /∈ E+, then vk
 ∈ S, as (S, S̄) is the dominating s − t cut of N ′ w.r.t.U .
Consider the first condition of Theorem 2. N\(S ∪ {t}) is not connected if and only
if there exists a partitioning of Vt\U into two subsets Ū1 �= ∅ and Ū2 �= ∅, such that
each vk
 ∈ S̄ ∩ Vs is adjacent to some nodes of Ū1 only, or to some nodes of Ū2
only, that is, [k, 
]\U ⊆ Ū1 or [k, 
]\U ⊆ Ū2. Since [k, 
] is an interval, [k, 
]\U
consists of consecutive members of Vt\U , and thus the latter condition is equivalent
to the existence of some j ∈ Vt\U (but not the last one) such that [k, 
]\U ⊆ [1, j]
or [k, 
]\U ⊆ [ j + 1, n] for each vk
 ∈ S̄. But this is precisely the negation of the
first condition of this theorem.

The equivalence of the second condition of Theorem 2 to that of the present theorem
can be shown analogously. ��
The above characterization of the facets of P RL P ′

is equivalent to that obtained in [41]
for the non-trivial facets of P RL P . However, in that paper a more problem specific
approach is used.

6 Final remarks

In this paper we have proposed a new systematic way of constructing ideal, non-
extended MIP formulations for disjunctive constraints of the form x ∈ ⋃m

i=1 Pi ,
where the Pi are polytopes.Ourmethodworks if theCayleyEmbedding of this union of
polytopes admits a certain network representation. Thenwe can characterize the facets
of the LP-relaxation of the MIP formulation. We have illustrated the richness of the
class of problems that fits this framework by several examples from the literature, and
we have also worked out a new one. We emphasize that our characterization of facets
is valid for any union of polytopes such that the corresponding Cayley Embedding
admits a network representation.

These results may also pave the way for modeling problems using building blocks
representing the convex hull of polytopes with the above properties. Then, the solver
could generate cuts for such building blocks as needed in the course of solving the
problem by branch-and-cut.
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