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A B S T R A C T

Task sequencing problems arise in many different forms in various robotic applications. The task sequence can
be subject to different constraints, and various cost functions can be used to assess the quality of a solution.
Moreover, task sequencing is often closely coupled with other sub-problems of process planning, such as the
selection of a robot joint configurations for each task originally defined in the task space, or the selection of
cut directions in a cutting problem. This implies that these problems must be solved jointly, in an integrated
way. This complexity results that almost all previous approaches to robotic task sequencing aim at solving the
sequencing problem arising in a specific application, using a dedicated – typically, meta-heuristic – solution
method. Despite this, such custom methods rely on similar mathematical models, namely, different extension
of the well-known traveling salesman problem (TSP). In order to avoid such redundancies, this paper proposes
a generic problem definition language for robotic task sequencing and process planning problems, as well as a
solver called ProSeqqo to compute close-to-optimal solutions for those problems. ProSeqqo relies on the vehicle
routing problem (VRP) library of Google OR-Tools, extended with custom algorithms to tackle conditional
precedence constraints. It is demonstrated that the proposed language can capture the overwhelming majority
of the robotic task sequencing problems investigated in the scientific literature, and the application of the
modeling language and the solver is illustrated on five, seemingly very different use cases, including both
real industrial applications and lab demonstrations. Results of thorough computational experiments are also
presented. The ProSeqqo solver has been made available open source for the scientific community.
1. Introduction

Effective task sequencing has a decisive role in the performance of
robotic production and manipulation processes. The task sequencing
problem can be posed in different ways depending on the particular ap-
plication, and it is often interrelated with other sub-problems of process
planning, such as the selection of robot configurations for executing
tasks originally defined in the Cartesian task space, or the direction
of the individual cuts in a robotic cutting application. Accordingly,
a plethora of task sequencing approaches have been proposed in the
scientific literature, almost always dedicated to a specific application,
almost always with a custom (meta-)heuristic solution method.

In this paper, it is highlighted that most of these approaches stand
on the same grounds with respect to the underlying mathematical
model, namely, the traveling salesman problem (TSP) or one of its
many extensions, such as the generalized TSP (GTSP) that can capture
discrete choices on the execution modes of tasks. This raises the op-
portunity to define a generic model that captures the overwhelming
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majority of task sequencing and related process planning problems
arising in different applications.

The paper introduces such a generic model, and a modeling lan-
guage that allows stating the robotic task sequencing problem in a
user-friendly way for process engineers, even without a deep back-
ground in operations research. The model is translated into a GTSP with
precedence constraints, and solved using the open-source vehicle rout-
ing problem (VRP) solver of Google OR-Tools, extended with custom
algorithms to boost search performance where necessary.

The solver has been made available open source, together with
various examples and appropriate documentation. We expect that, by
offering efficient means to modeling and solving typical robotic process
planning and task sequencing problems, this software tool brings major
benefits to fellow researchers in industrial robotics. Redundancies due
to time-consuming reproduction and adaptation of known techniques
for a new, but still familiar application can be avoided, and research
efforts can focus on developing dedicated solution approaches where
those are indeed required for the success of the application.
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This paper is structured as follows. After reviewing the related
literature in Section 2, a generic model is defined for robotic process
planning and task sequencing problems in Section 3. The model is il-
lustrated on a camera-based pick-and-place application. Then, Section 4
introduces the proposed problem definition language. The applied so-
lution techniques are presented in Section 5, and they are evaluated
in experiments on five different applications in Section 6. Finally,
conclusions are drawn in Section 7.

2. Literature review

2.1. Mathematical models for task sequencing

The archetype of mathematical models for task sequencing is the
well-known TSP: a minimum-cost Hamiltonian cycle is looked for in
a graph whose vertices correspond to the tasks, whereas edge weights
capture the cost of executing one task after the other. When sequencing
is coupled with some choice of execution mode, various extensions of
TSP become of interest. Discrete choices, if choices for different tasks
are independent, can be captured by a GTSP [1], which involves a par-
titioning of the graph vertices into disjoint classes, and a minimum-cost
tour that visits each class exactly once is sought. A special case of GTSP
in robotics is the robotic task sequencing problem (RTSP) [2], where
each class contains the inverse kinematic (IK) solutions for a task exe-
cuted in a given task-space point. If the visited point must be selected
from a geometrical region, rather than from a discrete set, then the
problem becomes a TSP with neighborhoods (TSPN) [3]. The particular
challenge of TSPN is that its solution requires coupling combinatorial
optimization approaches with geometrical reasoning. An exact mixed-
integer non-linear programming (MINLP) solution approach for TSPN
with polyhedral or ellipsoid regions is proposed in [4].

The above models are often extended with various side constraints
to reflect the requirements of practical applications. The extension of
the classical TSP with precedence constraints is called the sequential
ordering problem (SOP) [5], whereas a similar extension of GTSP with
precedence constraints between the classes resulted in the precedence-
constrained GTSP (PCGTSP). Recent solution methods for PCGTSP
include a large neighborhood search (LNS) meta-heuristic [6] and
an exact branch-and-bound approach [7]. A related, generic family
of models is the vehicle routing problem (VRP), which can capture
multiple vehicles (corresponding to robots or other resources executing
the tasks), time windows, as well as precedence and capacity con-
straints. Efficient solution methods for this rich model often involve
a combination of constraint programming and meta-heuristics, such as
tabu search or guided local search [8]. A detailed review of common
mathematical models and solution methods for task sequencing is
provided in [9].

2.2. Survey of robotic task sequencing problems

This section reviews process planning and task sequencing ap-
proaches in various robotic applications with the goal of identifying the
common requirements towards mathematical models in such applica-
tions. The findings are summarized in Table 1, which also indicates if a
given problem fits into the model proposed in this paper. For problems
that cannot be captured, the challenging features are highlighted. It
is noted that in some of the referred papers, the mathematical model
is not named explicitly, but the problem can be captured using the
indicated model.

In applications where task sequencing is performed independently
of any other decision on the execution modes, the natural model is a
TSP, and the duty of the modeler is to characterize the cost or time
of executing the tasks in a given order. Such an approach for robotic
operations in general is presented in [10], which also captures tasks
that comprise visiting multiple positions and task clusters that must be
executed continuously after each other in arbitrary order. In [11], an
2

application to fruit picking is introduced. The so-called traversing tuft
problem, a task sequencing problem in carpet production is mapped
to a TSP in [12], where edge weights encode tufting, positioning,
and needle switching times. In [13], the problem of sequencing the
pallet operations in machining is modeled as a SOP, considering tool
changeovers, table rotations, idle movements, as well as precedence
constraints.

Various applications couple task sequencing with different process
planning decisions, such as the IK solutions for the visited task space
points, the entry and exit points along contours, or the directions of cuts
or strokes, which leads to a GTSP model. Such an approach, where the
classes of vertices correspond to IK solutions for a task, is presented
in [14], and solved using a genetic algorithm. A similar approach,
illustrated on a drilling application motivated by the Airbus Shop Floor
Challenge, is discussed in [2]. Coverage path planning for the inspec-
tion of free-form surfaces is formulated as a GTSP in [15], where each
class corresponds to a surface primitive that must be inspected, and
the vertices in it to collision-free IK solutions for candidate viewpoints.
Similarly, path planing for a 5-axis on-machine inspection system is
addressed in [16], with different possible probe orientations for each
feature to inspect.

The minimization of non-productive times in material extrusion
additive manufacturing is investigated in [17,18], where vertices in
a class encode the entry and exit points for closed contours and pro-
cessing directions for open filling rasters within each layer. For solving
the problem, heuristics and mixed-integer linear programming are
combined in [17], whereas the performance of different heuristics is
compared in [18].

A task-oriented programming system is proposed for remote laser
welding in [19]. The task sequencing problem is encoded in a TSP
over the mid-points of the welding seams, and weld directions are
determined afterwards, using a greedy improvement heuristic. The
ensemble of the two problems can be cast as a GTSP. In a similar
application, [20] focuses on the robot configurations applicable to weld
a seam, rather than on the position of the welding seam itself. The
configuration space of the redundant robot is sampled, which leads to
a GTSP model.

In [21], a PCGTSP model is applied to task sequencing in milling,
where the vertex classes describe candidate entry and exit points for
each contour, and classes corresponding to embedded contours are
connected by precedence constraints. Task sequencing in laser cutting is
coupled with the selection of a direction for the individual cuts in [22].
A rich set of technological constraints, such as precedence relations
between inner and outer contours, piercing, pre-cuts, and sharp angles
is captured and encoded into a PCGTSP representation. While this
model can be mapped into the formalism proposed in this paper,
the conversion is non-trivial and needs a slight abuse of notation. A
thorough review of models and algorithms specifically for laser cutting
applications can be found in [28].

Task sequencing problems have been investigated in various appli-
cations with the consideration of precise geometry, often modeled as
a variant of TSPN. The primary difficulty in capturing these problems
using a generic solver is the integration of combinatorial optimization
with geometrical reasoning. This approach is taken to task sequenc-
ing and path planning for remote laser welding in [23], captured as
a TSP with neighborhoods and durative visits (TSP-ND). In [24], a
TSPN representation and a so-called constricting insertion heuristic
solution approach is proposed for robotic cutting and deburring oper-
ations. In these applications, sampling the geometrical space can often
provide a suitable discrete approximation of the original continuous
problem, which enables the encoding of the problem into the generic
representation introduced here.

Nevertheless, some applications require side constraints specific
for the given technology. In robotic spray painting, performing task
sequencing jointly with the selection of paint stroke directions and

IK solutions would fit into the above models, but reasoning about
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Table 1
Overview of task sequencing problems from the literature. Column Captured displays if the problem is captured by the approach proposed in this paper: Y : yes; (Y): yes, but with

misuse of the formalism; D: after discretizing the geometrical space; N : no. In the latter case, the challenging feature is also identified.
Application Model Discrete choice Objective Captured Challenging features

[10] Generic model TSP – Min. distance Y
[11] Fruit picking TSP – Min. distance Y
[12] Carpet tufting TSP – Min. cycle time, min. dead yarn Y
[13] Machining SOP – Min. cycle time Y
[14] Generic model GTSP IK solution Min. cycle time Y
[2] Drilling GTSP IK solution Min. distance Y
[15] Inspection GTSP Viewpoint, IK solution Min. distance Y
[16] Inspection GTSP Probe orientation Min. distance Y
[17] Additive manufacturing GTSP Entry/exit points, directions Min. cycle time Y
[18] Additive manufacturing GTSP Entry/exit points, directions Min. cycle time Y
[19] Remote laser welding GTSP Weld directions Min. distance Y
[20] Remote laser welding GTSP Entry/exit points Min. cycle time Y
[21] Milling PCGTSP Entry/exit points Min. cycle time Y
[22] Laser cutting PCGTSP Cut directions Min. cycle time (Y)

[23] Remote laser welding TSP-ND Task start/end positions Min. distance D
[24] Cutting and deburring TSPN Task start/end positions Min. distance D

[25] Spray painting Custom Stroke directions, IK solution Min. distance, max quality N Violation of min–max time lags (objective)
[26] Drilling Custom Tool sequence for hole Min. cycle time N Sequence-dependent edge costs
[27] Welding Custom – Min. cycle time, min. distortion N Predicting part distortion
o
d

the time lags between overlapping paint strokes, in order to ensure
the proper drying time for the paint requires custom models [25].
Moreover, trade-offs between productivity and product quality are
captured by an objective function that contains a linear combination
of the total distance traveled by the robot and the violation of the
soft constraints on the minimum and maximum time lags. In [26],
the sequencing of drilling tasks is investigated. The challenge is that
a large-diameter hole can be drilled in various ways, using different
series of tools with increasing diameter. Moreover, the series of sub-
tasks with different tools is not executed continuously, but a single tool
is typically applied to many holes before a changeover. In a TSP, this
would correspond to sequence-dependent edge costs, which cannot be
tackled using classical TSP algorithms efficiently. A thorough survey on
drilling path optimization is presented in [29], where it is found that
79% of the reviewed papers model the problem as a simple TSP, 13%
as a SOP, and 8% apply more complex models like the one above.

Finally, in robotic welding, the distortion and residual stress of parts
is heavily dependent on the welding sequence. In [27], the sequencing
of the welding tasks that do not affect distortion is captured by a
TSP, whereas sensitive tasks are sequenced using a genetic algorithm
considering a temperature field model for estimating distortion, and
finally, the two sub-sequences are merged. Obviously, the effective
handling of such technology-specific requirements needs customized
computational techniques.

2.3. Contributions

The above literature review highlights that previous approaches to
robotic task sequencing rely on well-understood mathematical models,
notably, on TSP or one of its numerous extensions. In particular, the
overwhelming majority of the investigated problems fits into a PCGTSP
model. Despite this, all the surveyed papers undertook to develop
custom algorithms for very similar problems, leading to considerable
redundancy in research efforts. This claim is also supported by the
conclusions of the critical survey [29] that a considerable part of the
research in task sequencing (especially in drilling) is currently spent on
reproducing earlier results, which could be saved by wittingly reusing
existing generic solution techniques.

In order to respond to the shortage of generic solvers in robotic
task sequencing and to support fellow researchers in the field, this
paper proposes an expressive problem definition language for robotic
task sequencing, easily editable by domain experts even without a deep
background in operations research. Moreover, it introduces an efficient
3

solver, publicly available with open source, to solve the problems t
encoded in the proposed format. The expressive power of the language
and the efficiency of the solver is demonstrated in five rather different
applications.

Obviously, any single model, however generic it is meant to be,
cannot capture all possible planning problems arising in the field.
The literature review identified two such limitations of the proposed
approach. Firstly, if task sequencing is coupled with decisions in con-
tinuous space (e.g., with viewpoint selection in inspection or in remote
laser welding [23]; start/end point selection on continuous curves
in cutting [24]), then the problem must be discretized by sampling
before encoding it into the proposed formulation. Secondly, it might
be impossible to express the objective function as the sum of transition
costs on the (PCG)TSP edges, e.g., for characterizing product quality
in spray painting [25], machining times in multi-hole drilling [26], or
part distortion in welding [27]. These applications still need dedicated
solution approaches.

3. Problem definition

3.1. Formal definition

In a robotic process planning and task sequencing problem, there
is given a set of 𝑛 processes, 𝑃1, 𝑃2,… , 𝑃𝑛, to be executed sequen-
tially. Each process 𝑃𝑖 can be executed by using one of the process
alternatives 𝐴𝑖1, 𝐴𝑖2,… , 𝐴𝑖𝐽 (𝑖). Alternative 𝐴𝑖𝑗 consists of a sequence
of tasks 𝑇 1

𝑖𝑗 , 𝑇
2
𝑖𝑗 ,… , 𝑇𝐾(𝑖𝑗)

𝑖𝑗 . If the alternative is selected for execution,
then all the corresponding tasks must be executed consecutively, in the
predefined order. Each of these tasks 𝑇 𝑘

𝑖𝑗 can be executed using one
of the robot motions 𝑀𝑘𝓁

𝑖𝑗 , where each motion 𝑀𝑘𝓁
𝑖𝑗 takes the robot

through a sequence of configurations (𝐶𝑘𝓁1
𝑖𝑗 , 𝐶𝑘𝓁2

𝑖𝑗 ,… , 𝐶𝑘𝓁𝑁(𝑖𝑗𝑘𝓁)
𝑖𝑗 ).1 It is

noted that many applications involve point-like tasks, in which case
𝑁(𝑖𝑗𝑘𝓁) = 1. The hierarchy of processes, alternatives, tasks, motions
and configurations is illustrated in Fig. 1.

Hence, the complete operating cycle of the robot consists of a series
of selected effective motions, from 𝐶𝑘𝓁1

𝑖𝑗 to 𝐶𝑘𝓁𝑁(𝑖𝑗𝑘𝓁)
𝑖𝑗 , and idle motions

connecting the final configuration of an effective motion, 𝐶𝑘𝓁𝑁(𝑖𝑗𝑘𝓁)
𝑖𝑗 ,

with the starting configuration of the next selected effective motion. If
𝑘 < 𝐾(𝑖, 𝑗), then this is a starting configuration of the next task in the

1 Configurations can be defined in arbitrary dimensions, e.g., in the 2D
r 3D task space, in the 6D robot joint configuration space, or in higher
imensions for fully characterizing the state of the robotic system, including
he configuration of grippers, fixtures, or other equipment.
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Fig. 1. Hierarchy of processes, alternatives, tasks, motions and configurations in the model.
given alternative, 𝐶 (𝑘+1)𝓁′1
𝑖𝑗 for some 𝓁′. Otherwise, if 𝑘 = 𝐾(𝑖, 𝑗), then

it is a starting configuration of the first task of the next process, 𝐶1𝓁′1
𝑖′𝑗′ .

This series of effective and idle motions is continued until all processes
are executed.

It is highlighted that, in addition to sequencing the processes 𝑃𝑖,
two types of decisions must be made about their way of execution:
the selection of an alternative 𝐴𝑖𝑗 , which is a consistent selection
throughout the execution of the process (such as the selection of the
grasp for a workpiece in a pick-and-place application, since this grasp
must be applied throughout the entire processing of the workpiece),
and the selection of a motion 𝑀𝑘𝓁

𝑖𝑗 for each task separately (such as
the selection of the robot joint configuration for a task, which does not
influence the configuration used in other tasks on the same workpiece).

A problem can be cyclic or acyclic. In case of cyclic problems, the
starting configuration (depot, in VRP terms) must be provided in the
input, and it is assumed that the robot returns to this configuration in
the end. For acyclic problems, the specification of a starting or a finish-
ing configuration is optional. In the absence of a starting (respectively,
finishing) configuration, it is assumed that the robot starts (finishes) at
the initial (final) configuration of the first (last) task executed.

Two types of precedence constraints impose restrictions on the order
of the processes: process precedence constraints 𝑃𝑖 → 𝑃𝑖′ state that
process 𝑃𝑖 must be executed before process 𝑃𝑖′ . In contrast, motion
precedence constraints 𝑀𝑘𝓁

𝑖𝑗 → 𝑀𝑘′𝓁′
𝑖′𝑗′ require that, if both involved

motions occur in the plan, then 𝑀𝑘𝓁
𝑖𝑗 must precede 𝑀𝑘′𝓁′

𝑖′𝑗′ . If either
of the motions is left out of the plan, then the constraint is ignored.
Observe that a directed cycle of process precedences renders a problem
infeasible, but a directed cycle of motion precedences does not, since
the cycle can be cut by leaving some of the involved motions out of the
plan.

The cost of a solution is computed as the total cost accumulated
while the robot travels between subsequent configurations. The pro-
posed problem definition language includes various functions to express
this cost in a user friendly way, such as the Euclidean or the Manhattan
distance between configurations, travel times with trapezoid speed
profiles, a special function for expressing the resource requirements of
tasks and the changeovers between them, or a penalty for switching
contours in cutting or drawing problems. Finally, using a matrix format
4

with arbitrary cost values, the language captures all possible objective
functions that can be computed as the sum of the elementary motion
costs.

Then, the planning problem consists in sequencing the processes 𝑃𝑖,
selecting an alternative 𝐴𝑖𝑗 for each process 𝑃𝑖, and choosing a robot
motion 𝑀𝑘𝓁

𝑖𝑗 for each executed task 𝑇 𝑘
𝑖𝑗 , in such a way that the total cost

is minimized.

3.2. Illustrative example: Camera-based robotic pick-and-place

Throughout the paper, the above formal model is illustrated on
a camera-based pick-and-place case study, whereas further potential
applications are discussed later in Section 6. One of the greatest current
challenges in industrial automation is the handling of parts arriving in
bulk to the input points of an automated manufacturing or assembly
system. A robot must grasp the parts lying in random poses based on
appropriate sensory information. A potential solution to this challenge
has been presented in [30], where various parts are first loaded onto a
vibrating lighting table, their precise poses are determined by a camera
system, and then a robot takes them one by one to the part holder of a
press machine,2 see Fig. 2.

In the proposed representation, one process is defined for each part.
Each process contains multiple alternatives corresponding to different
ways for grasping the part. Then, each alternative contains two tasks,
a picking and a placing task for the given part using the given grasp.
Different motions within a task correspond to different collision-free IK
solutions for the given task-space poses for picking or placing.

It is highlighted that task sequencing is coupled with two types of
decisions about how the tasks are executed. The selection of the grasp
must be consistent between the corresponding picking and placing
tasks, and hence, it must be captured on the level of alternatives. On
the other hand, the selection of the IK solutions can be performed
independently for each task, and accordingly, must be represented by
multiple candidate motions within a task.

2 Camera-based robotic pick-and-place (youtube link): https://youtu.be/
9novNg8slN4.

https://youtu.be/9novNg8slN4
https://youtu.be/9novNg8slN4
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Fig. 2. Camera-based robotic pick-and-place [30].

Blocking relations between parts are captured by process prece-
dence constraints. The objective is minimizing the total processing time
by considering a trapezoid speed profile for each robot motion, with
given robot joint acceleration and speed limits.

4. Language for defining task sequencing problems

In order to provide an easy-to-use interface for the proposed solver,
the following language is proposed for defining the process planning
and task sequencing problems. The subsections below introduce the
keywords of the language that can be used in JSON, in XML, or in a
custom, concise and human-readable text file format called SEQ. The
main components of a problem definition are the process hierarchy,
costs, resources and solver settings. A simplified camera-based pick-
and-place problem is used to illustrate the SEQ format, broken into
four parts. The ensemble of the four code snippets gives a complete
problem specification file. Several further examples are available in the
online project repository. Finally, the task sequencing problems can
also be defined via an API, which enables the efficient interfacing of
the ProSeqqo solver in complex planning workflows.

4.1. Process hierarchy

The following keywords are available for defining the hierarchy of
processes, alternatives, tasks, motions, and configurations:

• ConfigList: list of <ConfigID(int); Config
(double[]); Name(string); ResourceID(int)>
The complete list of configurations in the sequencing problem.
Each configuration record consists of an identifier, a vector of
coordinates with common dimension over all configurations, and
an optional name and resource identifier.

• ProcessHierarchy: list of <ProcessID(int); Al-
ternativeID(int); TaskID(int); MotionID(int);
ConfigIDList(int[]), Bidirectional(bool), Name
(string)>
The definition of the hierarchy of processes, alternatives, tasks,
and motions, including the list of configurations visited during
each motion. Each motion identifier must be universally unique.
Tasks within an alternative are executed in increasing order of
their IDs. The optional bidirectional flag can be used to override
BidirectionalMotionDefault.
5

• Cyclic: (bool)
Indicates whether after the execution of the processes, the robot
must return to its initial configuration. If yes, then a start config-
uration is required. Otherwise, the start and end configurations
are optional.

• StartConfigID: (int)
Identifier of the start configuration. Optional, see also the key-
word Cyclic.

• FinishConfigID: (int)
Identifier of the finish configuration. Optional, see also the key-
word Cyclic.

• ProcessPrecedences: list of <ProcessIDBefore
(int); ProcessIDAfter(int)>
Precedence constraints between processes. Directed cycles are not
allowed.

• MotionPrecedences: list of <MotionIDBefore
(int); MotionIDAfter(int)>
Precedence constraints between motion. Directed cycles are al-
lowed.

• BidirectionMotionDefault: (bool)
If true, then the reverse of each specified motion is automatically
added to every task. The identifier of the reverse motion is the
opposite of the original identifier. This default value can be
overridden for individual motions in the ProcessHierarchy
records.

Fig. 3 presents a small pick-and-place problem, where the robot
must start from the camera position, take two workpieces one by one
from their current positions to a target position, and then return to the
camera position. In the configuration list, the 6-DoF robot configuration
is fully defined for the camera position, while up to 3 alternative IK
solutions are available for the task-space positions corresponding to
picking and placing tasks. In the process hierarchy, the three-digit iden-
tifiers are constructed from the process ID (first digit), the alternative
ID (second digit) and the task ID (last digit). Hence, process 100 can be
executed using the single alternative 110, which contains two tasks, the
picking task 111 and the placing task 112. Task 111 can be executed
using motions (configurations) 1, 2, or 3.

The process precedence 200 → 100 indicates that workpiece 2
blocks access to workpiece 1 entirely. Moreover, the motion prece-
dences describe a situation where configuration Pick_2_1 for picking
workpiece 2 is also blocked by workpiece 1, and hence, becomes ap-
plicable only after workpiece 1 is removed. Observe that the ensemble
of all these precedence constraints implies that Pick_2_1 cannot be
applied, and therefore, could be removed from this problem definition.
Resource identifiers are added to the configurations only for the sake
of illustrating the format of changeovers later.

4.2. Costs

Travel costs or times between configurations can be defined using
the following keywords:

• DistanceFunction: Euclidean/ Manhattan/ Max/
TrapezoidTime/ Matrix The travel cost between two config-
urations can be computed using the Euclidean or the Manhattan
distance functions, the maximum norm, by assuming a trapezoid
speed profile (i.e., computing the robot travel time subject to
given acceleration and speed limits), or they can be specified
explicitly in a matrix format.

• TrapezoidAcceleration: (double[])
Maximum acceleration for each dimension (e.g., each robot joint).
Required if DistanceFunction = TrapezoidTime.

• TrapezoidSpeed: (double[])
Maximum speed for each dimension (e.g., each robot joint). Re-
quired if DistanceFunction = TrapezoidTime.
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Fig. 3. Sample problem in SEQ format (part 1): process hierarchy. Lines starting with a # symbol contain comments.
• ConfigMatrix: <ConfigIDHeader(int[]); Costs
(double[][]); NameFooter(string[]),
ResIDFooter(int[])>
If travel costs are given explicitly in a matrix format, then first,
the configuration identifiers must be enumerated, and then the
distances between each pair of configurations must be specified.
Optionally, configuration names and corresponding resources can
be provided. If this matrix is specified, then the configuration list
can be omitted.

• OverrideCost: list of <ConfigID1(int); ConfigID2
(int); Cost(double); Bidirectional(bool)>
The above defined distance function can be overridden for spe-
cific pairs of configurations.

• IdlePenalty: (double)
An optional penalty can be added to the above cost each time
the robot aborts performing effective tasks and makes an idle
movement, i.e,. if the end point of an effective motion is different
from the start point of the next effective motion. Useful in cutting
and drawing problems.

• AddMotionLengthToCost: (bool)
When this option is enabled, the cost accumulated by chang-
6

ing configurations within effective motions, including travel costs
and resource changeovers, is also added to the solution cost.
Otherwise, only the cost between effective motions is calculated.

Fig. 4 shows an example where travel times are computed using a
trapezoid speed profile, based on the given robot joint acceleration and
speed limits. The automatically computed travel times are overridden
for two pairs of configurations where the robot must take a complex
path to avoid collisions. These travel times must be determined in a pre-
processing step by path planning. If collisions are a common problem
in the given application, then a reasonable alternative representation is
specifying the travel times of all collision-free paths in a matrix format.

4.3. Resources

The following keywords can be applied to characterize the required
resources and the changeover times between them. Note that the
single resource used in each individual configuration is specified in the
configuration list. Fig. 5 shows an example where the changeover times
are specified in a matrix format.

• ResourceChangeover: None/ Constant/ Matrix
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Fig. 4. Sample problem in SEQ format (part 2): costs.
Fig. 5. Sample problem in SEQ format (part 3): resources.
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If resource changeover takes time, then its value can be either
constant or taken from a matrix. In both cases, a resource identi-
fier must be provided for each configuration in the configuration
list.

• ResourceChangeoverFunction: Add/ Max
Indicates whether changeover times must be added to the travel
cost between configurations (plus the potential idle penalty),
or the maximum of the two values must be taken. Required if
ResourceChangeover ≠ None.

• ChangeoverConstant: (double)
Uniform resource changeover time. Required if
ResourceChangeover = Constant.

• ChangeoverMatrix: <ResourceIDHeader(int[]),
ChangoverCostMatrix(double[][])>
If changeover times are specified in matrix format, then the
matrix header must define the sequence of resource identifiers.
This header is followed by the matrix of changeover time values,
where rows correspond to the from resource, and columns to the
to resource. Required if ResourceChangeover = Matrix.

.4. Solver settings

The following keywords can be used to customize the solution
trategy (see Fig. 6 for an example):

• LocalSearchStrategy: GreedyDescent/
GuidedLocalSearch/ SimulatedAnnealing/ TabuSe-
arch/ ObjectiveTabuSearch
Meta-heuristic used by the open source solver during local search.
Often, guided local search results in the best solution quality, or
greedy descent can be used for a quick validation of the problem
definition.

• UseMIPpresolver: (bool)
Use a mixed-integer linear programming (MIP) solver to generate
an initial solution. This method is guaranteed to find a feasible
initial solution if there exists one, but often results in worse
solution quality than the default VRP initial solution. Recom-
mended in case of precedence constraints in the model, see also
Section 5.3.

• UseShortcutInAlternatives: (bool)
Pre-compute shortest paths within each alternative when encod-
ing the problem into a GTSP, see Section 5.2. Recommended in
case of long chains of tasks within an alternative.
7

O

• TimeLimit: (int)
Limit on the total computation time in milliseconds. Obligatory
for all local search strategies except for greedy descent, where it
is optional.

5. Solution approach

The above description of the robotic process planning and sequenc-
ing problem is encoded in the form of a GTSP with precedence con-
straints, and solved using the open-source VRP library of Google OR-
Tools [31], using partly the built-in algorithms of OR-Tools and partly
custom algorithms. The encoding and the algorithms are presented in
the following sections.

5.1. Encoding into a GTSP with precedence constraints

In the GTSP representation of the problem, one vertex corresponds
to each motion in the process hierarchy. Directed edges connect motion
𝑀𝑘𝓁

𝑖𝑗 to motion 𝑀 (𝑘+1)𝓁′
𝑖𝑗 , i.e., to all possible motions of the next task

n the same alternative if 𝑘 < 𝐾(𝑖, 𝑗). Moreover, the motions in the last
ask of every alternative, 𝑀𝐾(𝑖,𝑗)𝓁

𝑖𝑗 , are connected to all possible first
otions of other processes 𝑀1𝓁′

𝑖′𝑗′ with 𝑖 ≠ 𝑖′. The overall structure of
he resulting GTSP is depicted in Fig. 7 for a sequencing problem with
wo processes.

For each directed edge, connecting motion 𝑀 = (𝐶1, 𝐶2,… , 𝐶𝑁 )
o motion 𝑀 ′ = (𝐶 ′

1, 𝐶
′
2,… , 𝐶 ′

𝑁 ′ ), the edge cost 𝑐(𝑀,𝑀 ′) is calcu-
ated based on the configurations within the motions. If the Ad-
MotionLengthToCost switch is enabled, then costs are summa-
ized over each elementary step, i.e., 𝑐(𝑀,𝑀 ′) =

∑𝑁−1
𝑖=1 𝑐(𝐶𝑖, 𝐶𝑖+1) +

(𝐶𝑁 , 𝐶 ′
1). Otherwise, only the cost between the two motions is con-

idered, i.e., 𝑐(𝑀,𝑀 ′) = 𝑐(𝐶𝑁 , 𝐶 ′
1). The cost of each elementary step

s calculated based on the specified distance function, and this value
s combined with the corresponding resource changeover cost, by tak-
ng the sum or the maximum of the two values, as required by the
esourceChangeoverFunction switch. If necessary, then the idle
enalty is also added to 𝑐(𝐶𝑁 , 𝐶 ′

1).
Prescribed start and finish configurations are captured by an addi-

ional process with a single motion, and a corresponding GTSP depo
ertex, which is connected to vertices belonging to other processes the
ame way as above. If the start or the finish configuration is specified in
he input, then the cost of these edges is calculated as described above.
therwise, the cost of the corresponding edges is zero.
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Fig. 6. Sample problem in SEQ format (part 4): solver settings.
Fig. 7. GTSP representation of a sequencing problem with two processes, two alternatives per process, and two tasks per alternative, as well as an additional process for the start
and finish configuration in the cyclic problem. GTSP classes are displayed with dashed lines.
Vertex classes in the GTSP are used to capture the discrete choice
between alternatives within a process, and between motions within a
task. This is achieved by defining a separate class for each process 𝑖 and
each task position 𝑘, and assigning motions 𝑀𝑘𝓁

𝑖𝑗 with the given 𝑖 and 𝑘
to that class, see Fig. 7. A special case occurs when alternatives within
a process contain different numbers of tasks. Assume 𝐾(𝑖, 𝑗) < 𝐾(𝑖, 𝑗′),
and there is a class to be created for process 𝑖 and task position 𝑘 with
𝐾(𝑖, 𝑗) < 𝑘 ≤ 𝐾(𝑖, 𝑗′). In this case, last motions 𝑀𝐾(𝑖,𝑗)𝓁

𝑖𝑗 from the shorter
alternative 𝑖 are added to the given class. Observe that this assignment
violates the common assumption in GTSP that classes are disjoint, but
this does not cause any major complication. The core requirement that
exactly one vertex should be selected from each class still holds, and
the disjunctive constraints in OR-Tools captures overlapping classes as
well.

All process and motion precedence constraints in the sequencing
problem are translated into precedence constraints among the vertices
of the GTSP. After checking that process precedences do not contain a
directed cycle, they are translated into motion precedences. Namely,
a process precedence 𝑃𝑖 → 𝑃𝑖′ is converted into a set of motion
precedences between all last motions of process 𝑖 and all first motions of
process 𝑖′, i.e., 𝑀𝐾(𝑖,𝑗)𝓁

𝑖𝑗 → 𝑀1𝓁′
𝑖′𝑗′ for each 𝑗, 𝑗′,𝓁,𝓁′. Then, each motion

precedence is encoded into a logical constraint in OR-Tools which states
that if both involved vertices are active in a solution, then they must
be executed in the given order.

5.2. Pre-computing shortest paths in the GTSP

While the above GTSP encoding is a valid and full-fledged represen-
tation of the task sequencing problem, its structure can be simplified
8

by discovering shortest paths within each alternative. This transforma-
tion is reasonable if an alternative contains a long sequence of tasks.
Namely, for each alternative, the shortest path is computed between
each possible first motion vertex and each possible last motion vertex.
In the transformed GTSP, one vertex corresponds to each such shortest
path, and all vertices of the same process belong to the same class. The
vertices of the new GTSP inherit all precedence constraints from the
corresponding path in the original GTSP. The alternative representation
of the sequencing problem originally introduced in Fig. 7 is displayed in
Fig. 8. The transformed representation has a simpler structure, and it is
shallower but wider than the original GTSP: if the number of processes,
alternatives, tasks and motions are denoted by 𝐼 , 𝐽 , 𝐾, and 𝐿, then
the original and the transformed representations contain 𝐼𝐽𝐾𝐿 and
𝐼(𝐽𝐿)2 vertices, respectively. Accordingly, applying the transformation
can be advantageous if the problem involves long chains of tasks within
the alternatives, but few alternatives within a process and few motions
within a task.

5.3. Initial solution

The above defined problem is solved using local search. While the
algorithms provided by OR-Tools are efficient on GTSP problems, the
handling of precedence constraints – especially motion precedences –
is a challenge. At this point, the difference between PCGTSP, a problem
model commonly studied in the literature, and the proposed GTSP
model with precedence constraints must be highlighted: in PCGTSP,
the precedence constraints are defined between the given disjoint
classes of vertices, i.e., the sequencing and the vertex selection sub-
problems are connected only via the solution cost, but feasibility is
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Fig. 8. Alternative GTSP representation of the problem in Fig. 7 after pre-computing all shortest paths. The detailed content of Process 2 is not shown in the figure.
independent of vertex selection. In contrast, in the proposed model,
motion precedence constraints are defined between vertices, which
implies that the interdependence of the sequencing and vertex selection
sub-problems is much stronger, as they jointly determine the feasibility
of a tour. An example of this requirement is provided in the building
blocks problem in Section 6.5. The consequences are twofold: first, the
open-source solvers for PCGTSP, such as [6], are not applicable to the
proposed model; and second, finding a feasible solution itself is a hard
combinatorial problem.

For this reason, the problem of finding a feasible solution is formu-
lated as a mixed-integer linear program (MIP). Variables in the MIP
include binary decision variables 𝑥𝑘𝑙𝑖𝑗 for each motion 𝑀𝑘𝑙

𝑖𝑗 , indicating
if the given motion is selected, as well as continuous variables 𝑝𝑖
capturing the position of process 𝑃𝑖 in the solution.  and  denote
the set of process and motion precedence constraints, respectively:
∑

𝑗,𝓁
𝑥min(𝑘,𝐾(𝑖,𝑗))𝓁
𝑖𝑗 = 1 ∀ 𝑖, 𝑘 (1)

𝑝𝑖 + 1 ≤ 𝑝𝑖′ ∀ (𝑖, 𝑖′) ∈  (2)

𝑝𝑖 + 1 ≤ 𝑝𝑖′ + 𝐼(2 − 𝑥𝑘𝑙𝑖𝑗 − 𝑥𝑘
′𝑙′

𝑖′𝑗′ ) ∀ (𝑀𝑘𝑙
𝑖𝑗 ,𝑀

𝑘′𝑙′
𝑖′𝑗′ ) ∈  (3)

∑

𝓁

𝑥𝑘𝓁𝑖𝑗 =
∑

𝓁

𝑥(𝑘+1)𝓁𝑖𝑗 ∀𝑖, 𝑗, 𝑘 < 𝐾(𝑖, 𝑗) (4)

1 ≤ 𝑝𝑖 ≤ 𝐼 ∀ 𝑖 (5)

𝑥𝑘𝑙𝑖𝑗 ∈ {0, 1} ∀ 𝑖, 𝑗, 𝑘,𝓁 (6)

Constraint (1) states that exactly one motion must be selected from
each process and each task position (unless the given task position is
empty in an alternative, which is achieved by using 𝑥min(𝑘,𝐾(𝑖,𝑗))𝓁

𝑖𝑗 instead
of 𝑥𝑘𝓁𝑖𝑗 , just as it is done in the GTSP formulation). Inequalities (2) and
(3) ensure that process and motion precedence constraints are satisfied.
Yet, a motion precedence implies a restriction on the sequence of the
corresponding processes only if both motions are selected in the actual
solution, which condition is captured by a so-called big-M constraint. If
a motion is selected from a given task, then a motion from the next task
of the same alternative must also be selected (4). The solution of this
MIP serves as an initial solution during local search. Yet, for problems
without precedence constraints, it is recommended to use the built-in
9

algorithms of OR-Tools, which often result in better initial solutions by
applying common VRP insertion heuristics.

5.4. Local search

In the improvement phase of the local search, the planner relies
on the VRP-specific meta-heuristics offered by the underlying solver,
according to the choice of the user. The available strategies include
Greedy Descent, running until the first local minimum, Guided Local
Search [32], which tries to escape local minima by a modified objective
that penalizes certain features of the solution, Simulated Annealing [33],
also accepting worsening moves with a given probability, or Tabu
Search [34], which builds a short-term memory about search history
to avoid returning to previously visited solutions. In experiments on
problems from various applications, Guided Local Search has shown the
best performance. OR-Tools combines multiple common VRP neighbor-
hood functions according to the status of the search, including Or-Opt,
Two-Opt, the Lin–Kernighan heuristic, and various other, more complex
neighborhoods.

6. Experimental evaluation

6.1. Overview of case studies

This section introduces five, apparently very different robotic appli-
cations, presents how the arising task sequencing and process planning
problems can be captured using the proposed approach, and investi-
gates the performance of the approach in each of the applications. A
brief overview of the applications is given in Table 2.

Computational experiments were performed with ProSeqqo version
1.0, available open source on GitHub.3 ProSeqqo has been implemented
in C#, and it is built on top of Google OR-Tools version 9.0.9048.
The experiments were run on a laptop computer with Intel i7-10510U
2.30 GHz CPU and 16 GB RAM, under a 64-bit Windows 10 operating
system.

3 https://github.com/sztaki-hu/proseqqo.

https://github.com/sztaki-hu/proseqqo
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Table 2
Overview of sample applications. Problem size involves the number of processes/alternatives per process/tasks per alternative/motions per
task. Letter B denotes bidirectional motions.

Choice Size Cost function Additional features

Pick-and-place, Section 6.2 IK solution 3-30/1/
2/1–10

6D trapezoid time Model: process prec.
Solver: shortest paths

Drawing, Section 6.3 Direction 265-643/
1/1/1B

2D Euclidean Model: idle penalty

Engraving, Section 6.4 Direction 250-4048/
1/1/1B

2D Euclidean Model: idle penalty

Building blocks, Section 6.5 Grasp 25-100/ 3D Euclidean Model: process & motion prec.
1/2/2 Solver: initial sol.

Grinding, Section 6.6 Direction 19/1/1/
1B

Matrix (collision-free path time) Model: process prec.
Solver: initial sol.
6.2. Camera-based robotic pick-and-place

The detailed description of the camera-based pick-and-place ap-
plication is presented in Section 3.2. The goal of the computational
experiments was evaluating the efficiency of different GTSP formula-
tions (i.e., with or without pre-computing the shortest paths) and of
different local search algorithms on a large set of randomly generated,
but realistic problem instances. Namely, instances were generated using
the simulation model of the physical pick-and-place workcell, and parts
were placed on the vibrating table in random poses. Although the
approach would allow using multiple candidate grasps corresponding
to multiple alternatives in the model, a single feasible grasp (alter-
native) was used for the given part geometry. The candidate robot
configurations for picking the parts were computed using a closed-form
IK solver using the nominal kinematics of the UR robot, and colliding
configurations were filtered out using the collision detection and path
planning library [35]. This resulted in 1–10 picking configurations
per part, and accordingly, 1–10 motions in the first, picking tasks of
each process in the model. All parts had to be placed into the same
pose at the entry of a press machine, using one of the 4 collision-
free robot configurations, i.e., motions in the second, placing task of
the processes. Five such instances were generated for each problem
size of 3–30 parts, resulting in 80 instances altogether. Two alternative
GTSP formulations, with and without pre-computed shortest paths were
generated for each instance, and both formulations were solved using
a greedy descent (GD) algorithm to local optimality, and using guided
local search (GLS) with four different time limits between 0.1 s and one
minute. It is noted that the instances were solved using tabu search and
simulated annealing, too, but these algorithms were clearly dominated
by GLS, hence, their results are omitted in the paper. Moreover, the
exact optimal solutions were available for the small instances with 3–4
parts from an exact solver.

The results are presented in Table 3, where each row contains aggre-
gated results for the ten instances with the same number of parts. In the
upper part of the table, the GTSP model without pre-computed shortest
path (PSP=N), whereas in the lower part, the GTSP with pre-computed
paths (PSP=Y) was used. Column GTSP vertices displays the average
number of vertices in the GTSP representation. Then, the average value
of the local optimal solution by GD and the corresponding computation
time are presented. Finally, the values of the solutions found by GLS
with different time limits are shown. The computation of the shortest
paths in the small GTSP took insignificant time.

For all small problems where the exact optimum is known, GLS
could find that optimal solution in at most 0.1 s for three parts, or
1 s for four parts, using either GTSP formulation. For most of the
larger problems, the value of the exact optimum is unknown, but GLS
could find high-quality solutions for these instances as well. With-
out pre-computed shortest paths, the local optima found by GD were
surprisingly weak, 10%–32% worse than the best known solution. In
contrast, shortest paths could effectively simplify problem structure,
resulting in high-quality local optima only 0.4%–3.9% worse than the
10
best known solution. These gaps were reduced effectively by GLS, to
at most 5.5% (PSP=N) or 4.5% (PSP=Y) in 0.1 s, or to at most 4.1%
(PSP=N) or 2.0% (PSP=Y) in ten seconds.

Various conclusions can be drawn from these experiments. First, in
applications with multiple tasks in an alternative, it is definitely worth
pre-computing the shortest paths, and the performance gap between the
two GTSP representations will most likely increase further in problems
with longer chains of tasks. Second, GLS showed robust performance
and found high-quality solutions quickly. Third, the above computation
times facilitate the application of the solver in online planning scenarios
as well.

6.3. Robotic cartoon drawings

While the robotic cartoon drawing application was originally built
as a popular science demonstration, the involved process planning and
task sequencing problem illustrates various real industrial problems
from the domains of cutting, welding, and painting. In this application,
a visitor’s picture is taken, and after appropriate image processing, it
is drawn on a white board by a UR5 robot using a marker pen, see
Fig. 9 and the video demonstrations (using a previous version of the
sequence planner).4,5 Since force feedback is applied when pushing the
pen against the board, lifting up and then re-positioning the pen takes
considerable time. A special challenge is that the sequencing problem
must be solved online, with as little computational time as possible.

The problem consists in sequencing the drawn lines and choosing
their directions. The drawing of each line is captured as a separate
process, with a single alternative, a single task, and a single but
bidirectional motion. The objective is minimizing the 2D Euclidean
distance traveled plus the idle penalty for lifting up the pen.

Experiments on the robotic cartoon drawing application investi-
gated solution quality with different algorithms and different time
limits. Table 4 displays the results for five instances, corresponding
to the four faces and the Christmas greetings message displayed in
Figs. 9 and 10, solved with GD until reaching a local minimum, and
with GLS using four different time limits ranging from one second to
ten minutes. The indicated objective values include a combination of
the total distance traveled (including both the lines drawn and the
transitions between them) and the idle penalty. The latter penalizes the
time required for re-positioning the pen and the potential discontinuity
of the lines after re-positioning. Cartoons consisted of 265–643 lines,
corresponding to the same number of tasks in the model. The local
minimum found by GD was typically 3%–8% worse than the best
solution known, except for cartoon B, where it was nearly 22% worse.
Solution quality was similar after a 1 s run of GLS, but the quality gap
decreased to 3%–6% after 10 s even for the notorious cartoon B. Other
local search strategies were dominated by GLS.

4 Robotic cartoon drawing (youtube link): https://youtu.be/8ULIP_5nEJ0.
5 Christmas greetings (youtube link): https://youtu.be/NhOibxWIpH0.

https://youtu.be/8ULIP_5nEJ0
https://youtu.be/NhOibxWIpH0
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Table 3
Results for the camera-based pick-and-place application. Column PSP indicates if shortest paths were pre-computed in the
GTSP formulation (Y) or not (N).
Parts PSP GTSP GD GLS

vertices 0.1 s 1 s 10 s 1 min

3 N 28.8 10.73 (0.02 s) 9.73 9.73 9.73 9.73
4 36.0 15.64 (0.03 s) 12.65 12.60 12.60 12.60
5 54.3 18.88 (0.05 s) 15.44 15.38 15.38 15.38

10 117.5 37.72 (0.08 s) 31.01 30.75 30.09 29.90
15 180.0 57.11 (0.15 s) 45.59 45.27 44.44 43.36
20 249.8 75.29 (0.34 s) 61.40 61.18 60.25 58.32
25 305.0 94.58 (0.46 s) 76.26 75.63 75.34 74.11
30 358.2 114.64 (0.57 s) 92.35 91.64 91.16 88.39

3 Y 61.2 9.78 (0.00 s) 9.73 9.73 9.73 9.73
4 74.0 12.73 (0.00 s) 12.63 12.60 12.60 12.60
5 131.2 15.44 (0.01 s) 15.40 15.38 15.38 15.38

10 304.0 30.66 (0.03 s) 30.64 30.39 30.16 30.02
15 474.0 45.02 (0.05 s) 44.93 44.58 43.93 43.56
20 673.2 60.58 (0.09 s) 60.58 60.26 59.67 58.79
25 814.0 75.57 (0.12 s) 75.76 75.43 75.15 73.67
30 946.8 90.76 (0.18 s) 91.59 90.61 89.27 87.61
Fig. 9. Robotic cartoon drawing by a UR5 collaborative robot, and the task sequence for a sample portrait (cartoon C).
Fig. 10. Best solutions found for cartoons A, B, D, and E. Blue lines indicate the actual lines drawn, whereas red lines stand for idle movements. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Results for the cartoon drawing application.
Cartoon Lines GD GLS

1 s 10 s 1 min 10 min

A 265 811.83 (1.05 s) 811.83 790.55 764.02 751.80
B 485 3899.34 (4.47 s) 4081.54 3399.34 3387.65 3203.63
C 614 3970.43 (6.98 s) 4312.00 3970.43 3927.73 3818.12
D 643 5204.70 (7.18 s) 5364.63 5185.53 5074.26 5033.43
E 296 3502.24 (1.99 s) 3595.68 3476.95 3411.11 3310.68
6.4. Robotic laser engraving

Somewhat similarly to the previous application, the goal is to create
a 2D image from lines on different objects by laser engraving, such
as the Celtic knot drawing in Fig. 12. While the problem model is
identical to that of the previous application, the special challenge is
the handling of the large number of lines (e.g., up to 4000) in the raw
input. The problem is relevant both for one-of-a-type products, with
as low computation times as possible, and for mass production, where
large computation times can also be allowed. Accordingly, experiments
11
focused on the trade-off between computation time and execution time
by varying the resolution and the time limit for the solver.

The focus of the experiments on the laser engraving application
was the evaluation of the performance of the planner on huge problem
instances. For this purpose, the problem of engraving the Celtic knot
motif shown in Fig. 11 was investigated with different resolutions: the
4048 line segments in the original motif were heuristically merged in
multiple steps, resulting in 250 segments with the lowest resolution. It
is noted that the motif itself remains identical, while having less line
segments and less opportunities to switch between segments has a two-
fold effect on solution quality: the optimal solution might be lost, but



Robotics and Computer-Integrated Manufacturing 78 (2022) 102387L. Zahorán and A. Kovács
Fig. 11. Laser-engraved wooden coin product, and the corresponding task sequencing
problem.

Table 5
Results for the laser engraving application.

Lines GD GLS

1 s 10 s 1 min 10 min 30 min

250 485.59 (1.15 s) 485.59 481.84 468.93 465.45 464.27
466 493.43 (4.56 s) 507.80 493.43 488.37 464.76 463.28
883 485.33 (33.50 s) 514.10 510.13 485.17 470.68 463.37

1800 480.43 (89.91 s) 515.03 512.55 481.38 480.43 480.43
4048 491.42 (546.19 s) – 501.28 496.27 491.42 491.42

smaller instances can be managed more efficiently within the same time
frame. The objective was minimizing the total travel distance plus a
penalty for switching between line segments. The best solutions found
with the different resolutions are displayed in Fig. 12.

The detailed results are presented in Table 5. The best solution over
all experiments was achieved after 30 min with GLS, using 466 lines,
i.e., a relatively low resolution. This solution is also an upper bound
on all instances with higher resolution, while in theory it may happen
that with 250 lines, the exact optimum is worse than this. Compared to
this solution, GD terminates in a 3.7%–6.5% worse local minima, which
takes one second with the lowest, and almost one minute with the
highest resolution. In one second, GLS achieves a 4.8%–11.2% gap (but
it fails to find a solution with the highest resolution), which is gradually
decreased to 1.2%–7.1% after one minute. In order to achieve the best
solution with a given, fixed time limit, it is recommended to use a low
resolution (e.g., 250 lines) if the limit is at most one minute, which
corresponds to the online usage scenario for a one-of-a-kind product.
In an offline planning scenario before large-series production, it can be
beneficial to improve the resolution of the sequencing model as well
(e.g., using ca. 500 lines in case of a 10–30 min time limit).

6.5. Robotic building blocks

The building blocks application is a student project, originally fo-
cused on the identification of objects, their poses, and the potential
ways of grasping them using a vision camera. The building blocks
must be grasped using a two-finger gripper and taken from their iden-
tified source poses to the specified target poses, without applying an
intermediate buffer. An interesting feature from the sequence planning
point of view is the interdependence of the task sequence and the
grasping modes: e.g., the green cylinder in Fig. 13 can be grasped
using an east–west (EW) orientation of the gripper only if the blue
cube is removed first. At the same time, it can be grasped using a
north–south (NS) orientation if the red cube is removed beforehand.
These correspond to conditional precedence constraints. On the other
hand, some precedence constraints are independent of the grasping
modes, e.g., between two blocks placed on the top of each other. Similar
precedence and conditional precedence constraints stem from the target
poses. While the physical implementation has been tested with few,
up to 10 blocks only, a simulated environment has been applied to
12
investigate the performance of the proposed planner on large instances
with up to one hundred blocks and a thousand motion precedence
constraints between them.

The sequencing problem originating from this application has been
modeled in the 3D task space, with one process standing for each block,
which contains one alternative and two tasks for picking and placing
the block. The two grasping modes, NS and EW, are captured by two
motions within the task. Note that the current blocks have a 90◦ rota-
tional symmetry, which implies that the target configuration is realized
correctly independently of the chosen grasping mode. For asymmetric
blocks, the grasps could be modeled as different alternatives within the
process. Conditional precedences are modeled as motion precedences,
whereas classical precedence constraints as process precedences.

Experiments on the building blocks problem addressed the eval-
uation of the solver on instances with a large number of motion
precedence (i.e., conditional precedence) constraints, where finding a
feasible solution in itself is challenging. Special attention was paid to
the performance of the MIP proposed in Section 5.3 for computing an
initial solution. Artificial instances of the building blocks problem were
generated, in which a building had to be dismantled to build up another
building from the same blocks. Both buildings were geometrically dense
structures, implying a large number of motion precedence constraints,
but the existence of a feasible solution was guaranteed by construction
(yet, in additional tests on infeasible instances, the MIP could also prove
quickly that no solution existed).

The results are presented in Table 6, where each row displays
average results over five instances with a given problem size. Columns
Blocks and Prec contain the number of building blocks and the average
number of motion precedence constraints, respectively. Column MIP
time shows the computation time for finding an initial solution. Then,
column GD presents the average value of the local optimum found by
GD and the required computation time. Finally, column GLS shows the
values of the solutions constructed by GLS with four different values
of the time limit. MIP solution times are not accounted for in these
limits. The results indicate that the MIP approach could find a first
solution quickly, in 3.35 s even for the largest problem size with 100
building blocks. There was a significant variance among the solution
times within a given problem size as well, e.g., an outstanding instance
with only 25 blocks and 1.2 s solution time resulted that the average
MIP solution time was higher for 25 blocks than for 50 blocks. Due
to the large number of precedence constraints, order flexibility was
very low, and therefore, local search could only slightly decrease robot
travel times compared to these initial solutions: GD found local optima
in 0.16 s (for 25 blocks) or 54.63 s (for 100 blocks) that were only
0.09%–0.31% worse than the best known solutions, found by GLS in
30 min.

6.6. Robotic grinding of furniture parts

In the last application scenario, the goal is the robotic belt grinding
and polishing of cast aluminium furniture parts [36], see Fig. 14. The
surface of the part is decomposed into nine longitudinal stripes, and
each stripe must undergo up to three surface finishing tasks: rough
grinding, fine grinding, and polishing. Five stripes need all the three
tasks, whereas four stripes need only polishing, resulting in 19 tasks
altogether. For technological reasons, all rough grinding tasks must
precede all fine grinding tasks, which in turn must precede all polishing
tasks.

Each task corresponds to a robot motion specified in the 6D joint
configuration space of the robot, which guides the part along a contact
trajectory between the given stripe of the part surface and the tool.
The direction of the motion can be reversed. Idle motions between the
effective tasks can be rather complicated due to the difficult part geom-
etry and the densely populated workcell. Hence, all possible 38 × 38
idle motions between the effective path end points were pre-computed
using the library [35].
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Fig. 12. Best solutions found for the same Celtic knot motif with different resolutions (250, 466, 883, 1800, 4048 lines). Blue lines indicate the lines drawn, whereas red lines
stand for idle movements. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Results for the building blocks application.
Blocks Prec MIP GD GLS

time (s) 30 s 1 min 5 min 10 min

25 269 0.31 5 145 (0.16 s) 5 141 5 141 5 141 5 140
50 588 0.15 10 636 (4.18 s) 10 622 10 618 10 606 10 603
75 1088 2.38 16 079 (22.82 s) 16 075 16 068 16 060 16 045

100 1360 3.35 21 148 (54.63 s) 21 174 21 154 21 119 21 105
Fig. 13. A small sample instance of the building blocks problem. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

The process planning problem then consists in sequencing the above
tasks and selecting the direction of each effective motion. Each of
the above tasks was represented as separate processes in the model,
with appropriate process precedence constraints between them. Each
process contains a single alternative and the single task, with a single
bidirectional motion. The durations of the pre-computed collision-free
idle motions were provided in matrix format as input for the planner.
This way, the objective is minimizing the total transition time, which is
equivalent to minimizing the total processing time, since the duration
of the effective tasks is fixed.

In this application, a single real industrial problem instance was
available, corresponding to the surface finishing of a metallic furniture
part. The surface was decomposed into 5 stripes, each of which under-
went 1–3 finishing steps, resulting in 19 tasks altogether. The objective
was minimizing the transition times between the effective tasks, assum-
ing trapezoid speed profiles in the 6D robot joint configuration space
on each section of the pre-computed collision-free paths between the
38 × 38 motion end points.

The solutions computed using different local search strategies, in-
cluding GD, GLS, and tabu search (TS), and with different time limits
are compared to that by a human expert using simulation software in
Table 7. The initial solution was computed using the MIP approach
presented in Section 5.3. Solving this small-sized MIP took negligible
time. Even the simple GD approach could decrease the transition times
by 10% w.r.t. the human expert’s solution. TS found a very good
solution, corresponding to a 23.5% gain in only 5 s, but it could not im-
prove that further. In contrast, GLS kept on enhancing the solution for
several minutes, finishing with a 23.7% improvement compared to the
human expert’s solution. The validity of this best solution, including the
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Table 7
Results for the robotic grinding application.

Time limit Human expert GD GLS TS

5 s 38.93 35.16 32.47 29.79
10 s (one working day) (0.27 s) 32.47 29.79
1 min 32.47 29.79
10 min 29.70 29.79
30 min 29.70 29.79

avoidance of collisions, was also confirmed in simulation experiments
and by the human expert. Hence, the application of the planner results
in a substantial performance improvement in the industrial robotic
grinding cell.

6.7. Discussion of the results

The sections above demonstrated how rather different robotic appli-
cations can be captured using the proposed problem definition language
and solved using the proposed solver. In the five applications, task
sequencing was coupled with different types of decisions on how the
tasks are executed (e.g., the selection of IK solutions in pick-and-place,
or determining line directions in drawing, engraving, and grinding),
the problems were defined in different dimensions (e.g., 2D or 3D task
space or 6D robot joint configuration space), and involved optimizing
different performance measures (e.g., travel times assuming trapezoid
speed profiles, travel distances, or cycle time using the pre-computed
durations of collision-free trajectories).

The ProSeqqo solver computed high-quality solutions in all these ap-
plications. For small-to-medium problem sizes, e.g., with up to 30 parts
in pick-and-place, the solver found close-to-optimal solution with com-
putation times allowing online planning. For larger problems, e.g., with
thousands of lines in laser engraving, reasonable solutions could still
be found in a matter of seconds, but these solutions could be enhanced
further by allowing higher computation times.

From the local search algorithms of Google OR-tools, GLS pro-
vided a consistently good performance in all applications. Yet, finding
the appropriate GTSP representation by pre-computing the shortest
paths was crucial in the pick-and-place application, which was the
only investigated application with a chain of multiple configurations
to visit within each process. Moreover, the proposed MIP approach
was necessary for finding feasible initial solutions in all applications
involving precedence constraints. It should be noted the construction of
a feasible initial solution is indeed a combinatorial problem in case of
motion precedences (e.g., in the building blocks application), whereas
the solver can be extended in the future with quick initial heuristics for
problems with process precedences only.
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Fig. 14. Robotic grinding and polishing of furniture parts [36].
7. Conclusions

This paper introduced a generic problem definition language and
a corresponding solver for task sequencing in industrial robotics. It
was shown that the model covers most of the robotic task sequencing
problems studied in recent literature, and hence, can alleviate the need
for developing custom models and algorithms for such applications.
The solver translates the problem description into a GTSP model with
precedence constraints, slightly extending classical PCGTSP models,
and solves it using a combination of built-in algorithms of Google OR-
Tools and custom techniques. The solver has been made available open
source.

The applicability and effectiveness of the solver was demonstrated
in five rather different robotic applications: the sequencing problems
are coupled with different decisions on the directions or the IK solutions
applied for executing the task, they can be solved in the task space or
in the robot joint space, and they also differ in the problem size and
the time frame available for solving the problems.

Future research should focus on stronger support for common sub-
problems, such as an initial solution heuristic for GTSP with prece-
dences, or the aggregation of elementary line segments into larger
contours before sequencing in cutting, engraving, or drawing applica-
tions with thousands of elementary segments. Extension to multi-robot
problems by conversion to richer VRP models is also of interest. Finally,
the possibilities of publishing the solver in a software-as-a-service
model will be investigated.
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