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a b s t r a c t 

A computational approach is presented in this paper to construct local Lyapunov functions for au- 

tonomous dynamical systems with multiple isolated locally asymptotically stable (such as point-like, 

periodic, or strange) attractors. We consider systems of nonlinear ODEs, where the right-hand-side of 

the dynamic equations is given in the form of rational functions (i.e., fraction of polynomials). The Lya- 

punov function is searched in a parameterized quadratic form of rational terms of the state variables. The 

quadratic decomposition of the rational state-dependent inequalities is performed using the linear frac- 

tional transformation (LFT) and further algebraic/numeric simplification steps. Unlike the sum of squares 

(SOS) approach, the sufficient linear matrix inequality (LMI) conditions for the Lyapunov function are for- 

mulated only locally on a compact polytopic subset of the state space, which allows indefinite matrix 

solutions for the quadratic decomposition. The local solution is enforced using affine annihilators with 

matrix Lagrange multipliers. Alongside the typical Lyapunov conditions, further boundary LMI constraints 

are prescribed using Finsler’s lemma to ensure the required geometric properties of the Lyapunov func- 

tion. The results are illustrated on four planar benchmark models having either multiple locally stable 

equlibria or a limit cycle, and on the Lorenz system. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. 
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. Introduction 

Finding or at least estimating the domain of attraction (DOA) of 

n attractive equilibrium solution of an autonomous model is still 

 relevant topic in the field of nonlinear systems [60] . The stabil- 

ty analysis of a dynamical model often involves determining an 

ppropriate Lyapunov function [8] , which gives qualitative infor- 

ation (e.g., bounds [15] ) on the dynamic behavior of the system. 

hen, a forward invariant domain for a local attractor can be given 

s an appropriate level set of the Lyapunov function. 

In the literature, numerous DOA approximation results are avail- 

ble, which are based on converse Lyapunov theorems [24] . An it- 

rative method is presented in Rozgonyi et al. [50] , [61] to approx- 

mate a so-called maximal (rational) Lyapunov function, which is 

losely related to Zubov’s approach [63] . Another group of results 

2–5,12,19] are based on the numerical approximation of Massera’s 
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onstruction [32] , where the Lyapunov function is searched as 

n integral of an initially given function of the system’s solution. 

hese approaches generally involve discretization of both the state 

pace (spatial) and the dynamics (temporal). 

The optimization-based approaches usually consider an initially 

tructured parameterized Lyapunov function candidate and formu- 

ate convex (sufficient) Lyapunov-type certificates as linear matrix 

nequalities (LMIs) to estimate the robust DOA of uncertain polyno- 

ial/rational systems [37,39,44,46,47,58–60] . Therefore, these ap- 

roaches result in a Lyapunov function in a closed algebraic form. 

However, the research on computing Lyapunov functions gener- 

lly focuses on dynamical systems with a single locally stable equi- 

ibrium point at the origin. Therefore, the nonzero isolated equi- 

ibrium points are generally translated to the origin to perform 

OA computation. Often, the dynamic equations in the new coor- 

inates have a symbolically more complicated form, which result 

n a numerically less tractable model. Therefore, it is motivating to 

ompute Lyapunov functions in the original system of coordinates. 

n [2,4] , important numerical approximation results are available 

n the Lyapunov function construction for dynamical models with 
l Association. This is an open access article under the CC BY-NC-ND license 
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ultiple and not necessarily point-like local attractors, e.g., limit 

ycles. 

It is worth remarking that the stability of a limit cycle is often 

nalysed through the linearized model of the transverse dynam- 

cs [20,30,31,53,54,56] . In [31,54] , e.g., the authors proposed an SOS 

olution to estimate the DOA of fixed points of discrete Poincar ̧E 

aps. 

The theory of Lyapunov functions for systems with multi- 

le (not necessarily point-like) local attractors is well-founded in 

halil [25 , Chap. 4], in book [16] , or in Björnsson et al. [2] , Björns-

on et al. [3] , Björnsson and Hafstein [4] . The authors of Björns-

on et al. [2] , introduced relaxed Lyapunov criteria to prove local 

tability and compute a forward invariant set for a local attractor 

possibly a limit cycle). 

Finally, a class of important and closely related results can be 

ound in Fantuzzi et al. [15] , Goluskin [17 , 18] , Jones and Peet [23] ,

obasco et al. [57] . In these publications, closed-form functions are 

omputed to find minimal attracting sets for autonomous systems 

ith different, possibly multiple attractors. The computed func- 

ions determine lower or upper bounds on given state-dependent 

uantities such as polynomials of the state variables. These ap- 

roaches are based on the SOS methodology, and are similar to the 

yapunov techniques [39,47,58] , but the computed functions do not 

ecessarily have the properties that define a Lyapunov function, 

uch as positive definiteness, polynomial growth, or a negative Lie 

erivative in the whole state-space. 

From a methodological point of view, the SOS solutions rely 

n the Positivstellensatz [55] and a polynomial SOS decomposition 

ith a positive semidefinite matrix, called the Gramian [27,38] . 

hereas, the polytopic (also called the slack-variable [13] ) ap- 

roaches [41,43,44,46,59] consider rational decompositions with a 

atrix that is not required to be positive semidefinite, but sat- 

sfy an affine state-dependent LMI over a bounded polytope. The 

uthors of Chesi [7] , De Madeira and Adamy [11] , Sato and Peau-

elle [51 , 52] , Trofino and Dezuo [59] observed that the polytopic 

onstraint augmented with slack variables generates a less conser- 

ative solution set compared to the corresponding SOS constraint. 

n [41,43,44,46] , the rational quadratic decomposition is automated 

sing the LFT [14] and further dimension reduction steps. 

In this paper, we follow the polytopic slack-variable LMI so- 

utions, and compute local Lyapunov functions to prove stability 

nd determine invariant domains for systems with (possibly) mul- 

iple locally asymptotically stable attractors. Unlike the majority of 

he Lyapunov function computation results [37,39,44,46,47,58,59] , 

e consider the generalized Lyapunov stability theory of Björns- 

on et al. [2] , which provides strong stability properties, but only 

utside of a close neighborhood of the attractor. 

The paper is organized as follows. After a brief subsection on 

he notations, we introduce the known definitions and results in 

ection 2 . Then, we summarize the computational framework de- 

eloped in Polcz [41] , Polcz et al. [43 , 44 , 46] . The main contribu-

ions of this paper are presented in Sections 4 and 5 . In Section 6 ,

e demonstrate the operations through four planar models and 

he Lorenz system. 

.1. Notations, abbreviations 

Let R + = [0 , ∞ ) . We use ‖ x ‖ to refer to the Euclidean norm of

ector x ∈ R 

n . The m × m identity matrix is denoted by I m 

, whereas,

 n ×m 

is the n × m zero matrix, and 

 m 

= 

(
1 0 1 ×(m −1) 

0 (m −1) ×1 0 (m −1) ×(m −1) 

)
. (1) 

e say that matrix A ∈ R 

n ×m is “narrow” if n > m , and “fat” if

 < m . Let He { A } denote A 

� + A , where A is a real-valued square

atrix and A 

� is its transpose. Relations P � 0 and P � 0 indicate 
2 
hat symmetric matrix P is positive and negative semidefinite, re- 

pectively. 

Sets X 

◦ and X denote the interior and the closure of a set 

 ⊂ R 

n , respectively. The boundary of a set X is referred to as 

X = X \ X 

◦. Let N (M) denote the set of all compact subsets D ⊂
 

n such that D 

◦ is a connected open neighborhood of the compact 

et M ⊂ R 

n . We use Ve (X ) to refer to the set of vertices of a com-

act polytope X , whereas, Co (A ) denotes the convex hull of a set 

 . 

Let L f V denote the Lie derivative of function V : R 

n → R

ith respect to (w.r.t) function f : R 

n → R 

n , namely, L f V (x ) =
∂V 
x (x ) f (x ) , where ∂V 

x : R 

n → R 

1 ×n is the gradient row function of

 . In a similar way, let L f π(x ) denote ∂π
x (x ) f (x ) , where ∂π

x : R 

n →
 

m ×n is the Jacobian of π : R 

n → R 

m . The gradient column function 

f V is denoted by ∇V : R 

n → R 

n . Let �c = { x ∈ X | V (x ) ≤ c} de-

ote the c-level set of function V : X → R , and let �c,M 

denote the

onnected subset (if exists) of �c that contains set M ⊂ X . 

. Background 

We consider nonlinear (rational) autonomous dynamical sys- 

ems of the form 

˙ 
 = f (x ) , x 0 ∈ X (2) 

here x : [0 , ∞ ) → R 

n is the state, x 0 is the initial condition, and

 ⊂ R 

n is a compact polytope given a priori. Function f : X → R 

n 

s a fraction of polynomials (i.e., rational) in x , and it can be given

s follows: 

f (x ) = f 0 + 

∑ J 
j=1 

q 1 j (x ) 

q 2 j (x ) 
f j , (3) 

here f 0 , f j ∈ R 

n are constant vectors and q 1 j , q 2 j : R 

n → R are

olynomials. 

ssumption 1. We assume that q 2 j (x ) ≥ ε for all x ∈ X , all j =
 , . . . , J, and some ε > 0 . 

Note that function f in (3) with Assumption 1 is Lipschitz con- 

inuous in X and differentiable in X 

◦. 

According to El Ghaoui and Scorletti [14 , Lemma 2.1], any ratio- 

al matrix function G : x �→ G (x ) with no singularities at the origin

dmits the following (lower) linear fractional representation (LFR) 

orm: 

 (x ) = F l 

{ (
M 11 M 12 

M 21 M 22 

)
, �(x ) = 

( 

I r 1 x 1 
. . . 

I r n x n 

) } 

= M 11 + M 12 (I − �(x ) M 22 ) 
−1 �(x ) M 21 , (4) 

here M i j are constant matrices, and r = r 1 + . . . + r n is called the

rder of the LFR. Moreover, G admits a so-called well-posed LFR in 

 (i.e., I − �(x ) M 22 is invertible for all x ∈ X ) if G is well-defined

n X [29] . The factorized form (4) of function G is computed by the

FT. 

In the followings, we introduce standard definitions and the- 

rems on stability of nonlinear systems based on the results of 

oebel et al. [16] , [25] , [30] . Let t �→ �(t, x 0 ) denote the solution of

ystem (2) if the initial value at time 0 is x 0 . Note that �(0 , x 0 ) =
 0 . 

efinition 1 ( [25] ) . A set M is said to be invariant w.r.t (2) if ξ ∈
implies �(t, ξ ) ∈ M for all t ∈ R . A set D is said to be forward

nvariant w.r.t (2) if x 0 ∈ D implies �(t, x 0 ) ∈ D for all t ≥ 0 . 

In the following definition, we use the notion of the distance of 

 0 ∈ R 

n to a set M in the usual way [16,30] , namely: 

ist (x 0 , M) = inf 
x ∈ M 

‖ 

x 0 − x ‖ 

. (5) 
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efinition 2 ( [16,30] ) . Let M be a forward invariant set w.r.t (2) .

e say that M is locally stable if for all ε ∈ (0 , ε̄ ) , there exists

> 0 such that, for all x 0 satisfying 

ist (x 0 , M) ≤ δ, (6) 

he solution t �→ �(t, x 0 ) for t ≥ 0 exists, is unique, and 

ist (�(t, x 0 ) , M) < ε for all t ≥ 0 . (7) 

We say that M is locally attractive, i.e., it is a local attractor, if 

here exists a connected neighborhood D ∈ N (M) such that, for all 

 0 ∈ D, the solution t �→ �(t, x 0 ) for t ≥ 0 exists, is unique, and 

lim 

→∞ 

dist (�(t, x 0 ) , M) = 0 (8) 

We say that M is locally asymptotically stable if it is locally sta- 

le and locally attractive. 

efinition 3. The set B (M) of all initial conditions x 0 satisfying (8) ,

s called the domain of attraction (DOA) of attractor M. 

The following theorem formulates classical stability properties 

or autonomous nonlinear systems. 

heorem 4 (LaSalle’s theorem Khalil [25 , Thm. 4.4]) . Let � ⊂ X be 

 compact set that is forward invariant w.r.t (2) . Let V : X → R be a

ontinuously differentiable function such that L f V (x ) ≤ 0 in �. Let E

e the set of all points x ∈ � where L f V (x ) = 0 . Let M be the largest

nvariant set in E. Then, every solution starting in � approaches M as 

 → ∞ . 

emark 1 (relations between the used notions) . When M is an in- 

ariant set w.r.t (2) , any solution starting from M remains in M

ven if we go either forward or backward in time. When M is a 

ocal attractor , it admits a domain of attraction B (M) , satisfying 

 ⊂ B (M) ◦, which is not necessarily invariant but forward invariant 

.r.t (2) . An attractor M is not necessarily invariant either, but for- 

ard invariant as the limit of the solution in (8) should approach 

when the time is going forward . An attractor is not necessar- 

ly locally stable, because it may happen that a solution starting 

rbitrarily close to M moves away from M and then returns and 

pproaches M as t → ∞ . According to Definition 2 , an attractor is

 locally attractive forward invariant set w.r.t (2) . 

efinition 5. We call M a stable attractor if M is locally asymptoti- 

ally stable w.r.t (2) . We call M an invariant attractor if attractor M

s invariant w.r.t. (2) . We call M a stable invariant attractor if it is

oth stable and invariant. 

emark 2 (examples) . A set of equilibria M = { }x (1) 
∗ , x (2) 

∗ , . . . , or 

 periodic orbit M = { �(t, ξ ) = �(t + T , ξ ) | t ≥ 0 } of period T are

oth invariant w.r.t (2) . We call a locally attractive periodic orbit M

 limit cycle . 

.1. Recent results on the stability of nonlinear autonomous systems 

In this section, we present a few additional recent results in the 

yapunov theory for nonlinear systems with complex dynamic be- 

avior. These results will be useful when we compute a Lyapunov 

unction for a limit cycle or a strange attractor. 

efinition 6 ( Björnsson et al. [2 , Def. 2.2]) . Let M be a compact set,

 , Y ∈ N (M) , and Y ⊂ X 

◦. Let V : X \ Y 

◦ → R + be a continuously

ifferentiable function and let c > 0 be a constant. Define the set 

c = Y ∪ { x ∈ X \ Y 

◦ | V (x ) < c} ⊂ X . (9) 

enote by 
c,M 

the connected subset of 
c satisfying M ⊂ 
c,M 

⊂
c . Let 

 c,M 

= 

{

c,M 

if Y ⊂ 
◦
c,M 

⊂ 
c,M 

⊂ X 

◦, 
∅ if no such 
c,M 

exists . 
(10) 
t

3 
urthermore, we define 

 

inf 
M 

= 

⋂ 

c > 0 
L c,M � = ∅ 

L c,M 

and L 

sup 
M 

= 

⋃ 

c > 0 

L c,M 

. (11) 

efinition 7 ( Björnsson et al. [2 , Def. 2.3]) . Let X , Y ∈ N (M) sat-

sfy Y ⊂ X 

◦. Let G ⊂ R 

n satisfy X \ Y 

◦ ⊆ G. A continuously differ-

ntiable function V : G → R + is called a Lyapunov function for M

n X \ Y 

◦ for (2) if there exists a constant α > 0 such that 

(L1) V (x ) > 0 for all x ∈ X \ Y 

◦, 

(L2) L f V (x ) ≤ −α for all x ∈ X 

◦ \ Y , 

(L3) L 

inf 
M 

� = ∅ . 
Note that Definition 7 prescribes the Lyapunov conditions (L1) 

nd (L2) only on X \ Y 

◦, where Y is ideally a tight outer estimation

f the invariant set M. This relaxation allows the Lyapunov function 

o vary along the invariant set M. This flexibility is necessary when, 

.g., M is a limit cycle, but a closed form of the limit cycle is not

nown or it does not exist at all. In this case, we cannot expect 

 closed-form Lyapunov function to take the same value along the 

ycle. 

The following theorem formulates strong stability properties for 

ystem (2) with a Lyapunov function on X \ Y 

◦. 

heorem 8 ( Björnsson et al. [2 , Thm. 2.5]) . Consider X , Y ∈ N (M) ,

 ⊂ X 

◦, and let V be a Lyapunov function for M on X \ Y 

◦. Let c > 0

e a constant such that L c,M 

� = ∅ . Then, 

T1 L c,M 

, L 

inf 
M 

, and L 

sup 
M 

are forward invariant sets, 

T2 there is a constant T > 0 such that x 0 ∈ L 

sup 
M 

implies 

�(T , x 0 ) ∈ L 

inf 
M 

, 

T3 L 

inf 
M 

= 
a,M 

and L 

sup 
M 

= 
b,M 

where 

a = max 
x ∈ ∂Y 

V (x ) and b = sup { c > 0 | L c,M 

� = ∅} . 

. Polytopic LMI approach for rational parameter-dependent 

onstraints 

In this section, we summarize our computational framework, 

rst, inspired by Trofino and Dezuo [59] , then, developed in Polcz 

t al. [43 , 44 , 46] , finally, presented in details in Polcz [41 , Chap. 5].

hough new results are not proposed in this section, all presented 

echniques are used in the forthcoming sections. 

Consider a scalar inequality in the following form: 

 (x ) = ϕ 

� (x ) Q ϕ(x ) ≥ 0 for all x ∈ M , (12) 

here ϕ : M → R 

m is a fixed Lipschitz continuous rational function 

f the state, M ⊂ R 

n is a fixed compact polytope in R , and R ⊆ R 

n 

s an (n − 1) -dimensional affine submanifold (i.e., hyperplane) or 

 

n itself. In the further notations, we assume that the first coor- 

inate of ϕ(x ) is 1. The constant entry in ϕ(x ) is used to allow

hecking the non-negativity of functions, that are not necessarily 

ero in the origin. 

We are looking for a matrix Q = Q 

� ∈ R 

m ×m , that solves in-

quality (12) for all x ∈ M . 

Observe that a positive semidefinite matrix Q is a possible so- 

ution for (12) . In this case, function W is a sum of squares, and it

s non-negative for all x ∈ R 

n . However, the authors of Trofino and

ezuo [59] remarked that, it may be rather conservative to pre- 

cribe the SOS property for W when its non-negativity should be 

rovided only on a bounded set M . 

In the following corollary, we present a consequence of the 

arameter-dependent form Trofino and Dezuo [59] of Finsler’s 

emma [36] , which formulates a still sufficient, but less conserva- 

ive condition for (12) . 

orollary 1. Consider a constant matrix S ∈ R 

m ×m 

′ 
, a rational func- 

ion ̂ ϕ : R 

n → R 

m 

′ 
, and an affine function N : R 

n → R 

s ×m 

′ 
, such that 
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1. S and ̂ ϕ determine a factorization of ϕ in M , namely, 

ϕ(x ) = S ̂  ϕ (x ) for all x ∈ M , (13) 

2. N is an annihilator of ̂ ϕ in M , namely, 

N(x ) ̂  ϕ (x ) = 0 for all x ∈ M . (14) 

Assume that there exists  ∈ R 

m 

′ ×s , and Q = Q 

� ∈ R 

m ×m such

hat 

 

� Q S + He { N(x ) } � 0 for all x ∈ Ve (M ) . (15) 

hen, Q solves (12) . 

Observe that pre- and post-multiplying (15) by ̂ ϕ 

� (x ) and 

̂ ϕ (x ) 

espectively, we get back inequality (12) . 

emark 3. The role of annihilator N in (15) is to represent the 

lgebraic interdependence between the coordinate functions of 

̂ 

 (and hence of ϕ). Consider ϕ(x ) = 

( 

1 

x 

x 2 

) 

as an example with 

 = I 3 . Though the nonlinear terms of ϕ are eliminated from 

15) , some information about its structure is encoded in N(x ) = 

x −1 0 

0 x −1 

)
. Note that other references call  a slack [7] or 

caling variable [59] . 

emark 4. The factorization of ϕ in (13) may have different roles 

epending on the size and structure of the coefficient matrix S ∈ 

 

m ×m 

′ 
. 

1. First, it does not have any role if S = I m 

. 

2. When S is a fat matrix ( m < m 

′ ), function 

̂ ϕ represents a 

richer algebraic structure than ϕ. Therefore, compared to ϕ, 

function 

̂ ϕ may introduce important new degrees of free- 

dom to the LMI (15) through its annihilator N. In this way, 

we may reduce the conservatism of (15) at the cost of in- 

creasing its dimension. In Sections 3.2 and 3.3 , we present 

two possible alternatives to construct S and 

̂ ϕ in a conve- 

nient form. 

3. Assume that S is a full-rank narrow matrix ( m > m 

′ ). This 

fact encodes that function ϕ is “redundant” in the sense 

that it can be reconstructed from function 

̂ ϕ having a 

smaller number of coordinate functions. In this case, ma- 

trix S performs a dimension reduction on (15) without com- 

promising the accuracy of the solution for Q . This aspect of 

Corollary 1 is explained in brief in Section 3.5 . 

4. Finally, a narrow matrix S ( m > m 

′ ) can help us to formulate

a sufficient condition for (12) when the parameter ( x ) be- 

longs to a hyperplane in R 

n . A possible construction of such 

a narrow matrix is presented in Section 3.4 . 

In the following subsections, we describe the four cases in more 

etails but in a different (hopefully, didactic) order. 

.1. The trivial factorization 

Let S = I n , ϕ = 

̂ ϕ , and M = X denote a compact polytope in

 

n , such that it is an n -dimensional manifold in R 

n . Consider a

unction N that satisfies N(x ) ϕ(x ) = 0 for all x ∈ X . Practically, the

erms in the coordinates of vector N(x ) ϕ(x ) algebraically miss each 

ther. Then, (15) simplifies to 

 + He { N(x ) } � 0 for all x ∈ Ve (X ) . (16) 

ondition (16) is generally less conservative than simply prescrib- 

ng Q to be positive semidefinite. 
4 
.2. Factorization with LFT to reduce conservatism 

The major source of conservatism in (16) is that the algebraic 

oupling constraints between the coordinates of ϕ(x ) are not, or 

annot be well represented by an affine annihilator. This is also 

he case when a few important monomials are missing from ϕ(x ) . 

.g., ϕ(x ) = (1 , x, x 3 ) � does not admit an appropriate annihilator

ecause N(x ) = (x, −1 , 0) does not represent the coupling between 

he terms x and x 3 . In this way, LMI (16) describes a more general

nequality, namely: 

1 , x, y ) Q(1 , x, y ) � ≥ 0 for all x ∈ X and all y ∈ R , 

hich is satisfied if and only of Q is positive semidefinite. 

We say that ϕ admits a preferred annihilator if each coordi- 

ate of ϕ(x ) is involved in at least a single coupling constraint in 

(x ) ϕ(x ) = 0 with a nonzero coefficient in N(x ) , and N(x ) is not

lock diagonalizable by performing a simple symmetric row and 

olumn permutation. If N(x ) is block diagonalizable, then, at least 

wo groups of basis functions in ϕ(x ) will be considered indepen- 

ent when solving (16) . In [46] , we illustrate that a rational func- 

ion, which originates from a well-posed LFR, typically admits a 

referred affine annihilator. 

Consider function ϕ, that is defined as follows: 

(x ) = F l 

{(
g 11 | G 12 

g 21 | G 22 

)
�g (x ) 

}
= H g ϕ g, lfr (x ) , (17) 

here 

 g = ( g 11 G 12 ) ∈ R 

m ×m g and (18) 

 g, lfr (x ) = 

(
1 

(I − �g (x ) G 22 ) 
−1 �g (x ) g 21 

)
∈ R 

m g . (19) 

hen, we say that ϕ g, lfr originates from the LFR (17) , and ϕ g, lfr ad-

its the following affine annihilator: 

 g, lfr (x ) = 

(
�g (x ) g 21 �g (x ) G 22 − I 

)
. (20) 

t can be shown that in each column of N g, lfr (x ) there exists a

onzero element, which involves the corresponding coordinate of 

 g, lfr (x ) into a non-trivial coupling constraint. Considering the fac- 

orization (17) with annihilator (20) , we can formulate the follow- 

ng LMI: 

 

� 
g QH g + He { g N g, lfr (x ) } � 0 for all x ∈ Ve (X ) . (21) 

In [41, Section 5.5] , we demonstrate through a few examples 

hat LMI (21) is less conservative than (16) if ϕ does not admit a 

referred annihilator. However, we need to face with two possible 

rawbacks of this technique. 

1. First, matrix H g is typically fat ( m < m g ), thus, LMI (21) is a

higher dimensional constraint than (16) . 

2. Though N g, lfr (20) is typically a preferred annihilator for ϕ g, lfr 

(19) , it does not necessarily result in the least possible con- 

servative affine LMI (21) to find a solution for (12) . 

To improve the proposed LFR-based factorization approach in 

17) , we use it in combination with a dimension reduction trans- 

ormation and a different annihilator computation approach. These 

echniques are introduced later in Sections 3.5 and 3.6 . 

.3. Canonical factorization to reduce conservatism 

This approach can be considered as an alternative to the LFT- 

ased factorization of Section 3.2 . Suppose that the algebraic in- 

erdependence between the coordinates ϕ cannot be described by 

nly affine functions. Therefore, we are looking for a function ϕ g , 
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hich admits a preferred annihilator and ϕ(x ) = H g ϕ g (x ) for all

 ∈ X . 

Let ψ d (x ) comprise all at most dth degree monomials 1 of x , in

 fixed order. Then, 

(x ) = �ψ d (x ) q −1 (x ) , (22) 

s referred to as the canonical factorization of ϕ, where q (x ) de- 

otes the lowest degree common denominator of the coordinates 

f ϕ(x ) , and d indicates the highest degree monomial, which can 

ppear in ϕ(x ) q (x ) . It can be shown that for a fixed integer d, the

anonical factorization of a rational function ϕ is unique. 

To compute the coefficient matrix 

= 

( 

ϑ 11 . . . ϑ 1 m 

′ 
. . . . . . . . . 

ϑ m 1 . . . ϑ mm 

′ 

) 

, (23) 

e introduce the vector γ � = 

(
γ1 . . . γm 

)
. First, we determine 

he unique irreducible factorized form of 

� ϕ(x ) = 

p(x ;γ ) 

q (x ) 
. (24) 

e should find matrix � such that 

� { }(ϕ(x ) q (x ) − �ψ d (x )) = 0 (25) 

or all x ∈ X and all γ ∈ R 

m . Therefore, we collect the terms of

25) with respect to the monomials in (x, γ ) , as follows: 

� (ϕ(x ) q (x ) − �ψ d (x )) = 

∑ K 
k =1 c k (ϑ) p k (x, γ ) , (26) 

here the coefficients c k are affine functions of unknown variables 

 i j . Finally, we solve the system of linear equations c k (ϑ) = 0 , k =
 , . . . , K in ϑ i j to obtain �. 

In [45, Section 3] we present a possible implementation of the 

omputations above using MATLAB’s Symbolic Math Toolbox [33] . 

.4. Solution over a hyperplane 

A specific factorization (13) of function ϕ allows us to solve 

he parameter-dependent inequality (12) over the boundary of the 

olytopic n -dimensional manifold X ⊂ R 

n . In this case, the inequal- 

ty is reformulated for each facet F k , k = 1 , . . . , M X of polytope X ,

here M X denotes the number of facets of X . Note that F k is a

ubset of an (n − 1) -dimensional hyperplane 

 k = { x ∈ R 

n | b k + a � k x = 0 } ⊂ R 

n , (27) 

here a k ∈ R 

n and b k ∈ R . It can be shown that, there exists a

unction ϕ k : R 

n → R 

m 

′ 
k , a full-rank narrow matrix S k ∈ R 

m ×m 

′ 
k , and

ffine function N k : R 

n → R 

s k ×m 

′ 
k such that 

(x ) = S k ϕ k (x ) and N k (x ) ϕ k (x ) = 0 , (28) 

for all x ∈ F k (but not necessarily all x ∈ X ). 

here m > m 

′ 
k 
. Consequently, the coordinates of vectors ϕ(x ) −

 k ϕ k (x ) and N k (x ) ϕ k (x ) are not identically zeros in X but only on

acet F k . 

xample 1. Assume that the first (n + 1) coordinates of ϕ(x ) 

re ψ 1 (x ) = ( 1 x 1 . . . x n ) 
� . The following nonlinear coordinates of 

(x ) are referred to as ϕ 1 (x ) ∈ R 

m 1 , m 1 = m − n − 1 , namely, 

(x ) = 

(
ψ 1 (x ) 
ϕ 1 (x ) 

)
. (29) 
1 Observe that each pair of monomials p, q : R n → R corresponding to sibling lat- 

ice points in the Newton polytope Löfberg [27 , Sec. III-A] of a polynomial are 

inearly coupled, namely, there exists a variable x i such that p(x ) x i − q (x ) = 0 or 

p(x ) − q (x ) x i = 0 for all x . In this way, it can be shown that any set of monomials 

orresponding to the lattice points in a Newton polytope admits a preferred anni- 

ilator. 

(  

a

a

(

a

5 
o construct a possible factorization and an annihilator for ϕ in 

 k we follow Polcz [41 , Cor. 4.7] and introduce the following nota- 

ions: 

1. Let C ⊥ 
k 

= 

(
b k a � 

k 

)
. 

2. Consider C k ∈ R 

(n +1) ×n such that C ⊥ 
k 

C k = 0 1 ×n . 

3. Denote the left pseudoinverse of C k by C 
† 

k 
∈ R 

n ×(n +1) , namely, 

C 
† 

k 
C k = I n . 

4. Introduce ̂ ψ k : R 

n → R 

n , ̂ ψ k (x ) = C 
† 

k 
ψ 1 (x ) , and observe that 

C k ̂
 ψ k (x ) = C k C 

† 

k 
ψ 1 (x ) = ψ 1 (x ) for all x ∈ F k . 

5. Then, S k = 

(
C k 0 

0 I m 1 

)
and ϕ k (x ) = 

( ̂ ψ k (x ) 

ϕ 1 (x ) 

)
satisfy ϕ(x ) = 

S k ϕ k (x ) for all x ∈ F k . 

6. Finally, N k (x ) = 

(
r k 

N(x ) 

)
S k is an affine annihilator for ϕ k 

in F k , namely, ϕ k (x ) N k (x ) = 0 for all x ∈ F k , where r k =(
C ⊥ 

k 
0 1 ×m 1 

)
and N is an affine annihilator of ϕ in X . 

The technique to compute S k , ϕ k , and N k is a slight generaliza-

ion of that presented in Polcz [41 , Cor. 4.7], in the sense that it

llows F k to intersect the origin. When F k does not intersect the 

rigin (i.e., b k � = 0 ), matrices C k and C 
† 

k 
may take the following val-

es: 

 k = 

(
−b −1 

k 
a � 

k 

I n 

)
and C † 

k 
= 

(
0 n ×1 I n 

)
. (30) 

n this way, (15) simplifies to the following (m − 1) -dimensional 

MI: 

 

� 
k QS k + He { k N k (x ) } � 0 for all x ∈ Ve (F k ) . (31) 

emark 5. We note that (31) is a sufficient polytopic LMI condi- 

ion for (12) over M = F k , a polytopic segment of a hyperplane in

 

n . Condition (31) is rendered by matrix S k and functions ϕ k , N k 

atisfying (28) . Example 1 presents a simple approach to compute 

hem. 

In the following subsection, we outline a numerical technique, 

hich makes possible to compute a factorization ϕ = S k ϕ k , which 

an be more advantageous from a computational point of view. 

.5. Dimension reduction 

In Sections 3.2 and 3.3 , we presented two different factorization 

echniques, where the coefficient matrix is fat. In this case, the di- 

ension of LMI (15) is inflated compared to (16) to introduce ad- 

itional free Lagrange variables and reduce the conservatism of the 

olution for Q . 

In this section, we claim that a full-rank narrow matrix S can 

educe the dimension of the LMI without increasing its conser- 

atism if function ϕ can be reconstructed from 

̂ ϕ = S † ϕ as follows: 

(x ) = S ̂  ϕ (x ) = S S † ϕ(x ) for all x ∈ M . (32)

Let M denote a polytope in R , where R is an (n − d) -

imensional hyperplane in R 

n ( d = 1 ) or R 

n itself ( d = 0 ). Assume

hat matrix S ∈ R 

m ×m 

′ 
in (13) is a full-rank narrow matrix. We say 

hat S ̂  ϕ is a minimal factorization of ϕ in M if the dimension of ϕ̂ 

i.e., m 

′ ) is the possible minimum value such that ϕ(x ) = S ̂  ϕ (x ) for

ll x ∈ M . 

According to Polcz [41 , Thm. 5.17], we are able to formulate 

 sufficient polytopic LMI (15) for (12) if m 

′ < m − d. Moreover, 

15) is equivalent to, but smaller dimensional than (16) if d = 0 

nd (31) if d = 1 . 
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.6. Further remarks and computational aspects 

emark 6 (Maximal affine annihilator) . Consider inequality 

12) and its possible sufficient condition (15) with a fixed rational 

unction 

̂ ϕ satisfying ϕ = S ̂  ϕ . In [41, Section 5.3] , we introduced 

he notion of a maximal affine annihilator of function 

̂ ϕ , which 

orresponds to the maximum achievable solution set (for Q) of 

he polytopic LMI condition in (15) . To compute the maximal 

ffine annihilator of function 

̂ ϕ over M satisfying (14) , we refer 

o the technique presented in Polcz [41 , Par. 5.3.2.1]. The compu- 

ations rely on a parameter independent kernel computation of 

 parameter-dependent matrix. As a possible kernel computation 

ethod, one may consider: 

(K1) the computer algebra approach Polcz [41 , Proc. 5.12], 

(K2) the numerical sample-based approach Polcz [41 , Proc. 5.13]. 

Approach (K1) is applicable only when M is an n -dimensional 

olytope ( d = 0 ). 

emark 7. To compute a minimal factorization ϕ = S ̂  ϕ satisfying 

13) we apply Polcz [41 , Proc. 5.15] with an appropriate kernel 

omputation approach (K1) or (K2). 

emark 8. The LFR-based factorization ϕ = H g ϕ g, lfr in 

ection 3.2 generates LMI (21) , which can be less conserva- 

ive than (16) . Depending on the considered LFR realization of ϕ
n (17) , function ϕ g, lfr in (19) may admit a non-trivial minimal 

actorization ϕ g, lfr = S g ϕ g . Let N denote a maximal affine annihila- 

or of ϕ g and introduce S = H g S g . Then, (15) with N and S implies

12) , but (15) is potentially less conservative than (16) , and it is

ypically smaller dimensional than (21) . 

We note that the minimal factorization and the maximal affine 

nnihilator computation of Polcz et al. [43 , Section 5.3, Section 5.4] 

re more technical, and their detailed descriptions are not included 

n this paper. 

emark 9 (Global analysis) . When a certain state variable x i is 

mitted from the annihilator N(x ) , then, the LMI (15) implies 

12) for all x i ∈ R . In this way, we are able to formulate global

onstraints with respect to selected variables. Furthermore, it is 

nough to test the LMI (15) in the corner points of a reduced 

maller-dimensional polytope; a polyotope that is the convex hull 

f the projected corner points of M onto the space of the remain- 

ng variables. 

.7. Our approach in relation with the SOS methodology 

The main mathematical apparatus behind the SOS techniques 

s the positive locus theorem or, as it is commonly called, the Pos- 

tivstellensatz 2 (PS). Using PS, one can formulate sophisticated set 

ontainment constraints for semialgebraic (i.e., polynomial level-) 

ets. These constraints are formulated over the whole parameter 

pace R 

n . 

A possible reinterpretation of the extended SOS test of Chesi [7 , 

hm. 1], makes possible to test the non-negativity of W over a hy- 

erplane R ⊂ R 

n of the parameter space. Let R (λ) be a linear pa-

ameterization of the set 

 R | ϕ 

� (x ) Rϕ(x ) = 0 ∀ x ∈ R , but � ∀ x ∈ R 

n } . (33)

hen, the LMI Q + R (λ) � 0 ( [7, Eq. (8)] ) ensures the non-negativity

f W but only in R . E.g., consider an (n − 1) -dimensional hyper-

lane R as defined in (27) , a vector of monomials ϕ(x ) , and its
k 

2 A detailed description of PS can be found in Papachristodoulou [37] . 

T

s  

6 
inimal factorization (28) . Then, our approach gives a possible pa- 

ameterized form of R (λ) , which makes possible to restrict the 

nalysis to the hyperplane R k by solving 

 + He 
{

˜ k S 
⊥ 
k 

}
� 0 , (34) 

here ˜ k is a free matrix Lagrange multiplier. According to 

e Oliveira and Skelton [36 , Lemma 2, ii ) ⇔ i v ) ], condition (34) is

quivalent to (31) if N k = 0 , and typically more conservative that 

31) if N k � = 0 . Furthermore, the LMI (34) has a higher dimension 

ompared to (31) . 

In the SOS framework, the PS and the S-procedure Boyd et al. 

6 , Section 2.6] make possible to force local solutions, e.g., restrict- 

ng the analysis to a bounded level set Prajna et al. [47 , Prop. 10],

n interval Wu and Prajna [62 , Thm. 1], or a polytope Coutinho 

t al. [9 , Eqs. (23) - (24) ]. In this case, a new polynomial is for-

ulated with additional Lagrange multiplier terms. But the non- 

egativity of the resulting polynomial (let’s say, W in (12) ) is tested 

ver the whole parameter space by checking its SOS property ( Q �
 , with the assumption that the coordinates of ϕ(x ) are linearly 

ndependent). 

In comparison, Finsler’s lemma with affine annihilators and the 

ethod of vertices make possible to test the non-negativity of W 

ver a bounded polytope of the parameter space R 

n or a hyper- 

lane R ⊂ R 

n . In this sense, the method of vertices can be an al-

ernative to the PS or S-procedure. Moreover, according to Trofino 

nd Dezuo [59 , Rem. 4.3], the method of vertices may lead to 

 less conservative solution compared to the SOS technique with 

S. However, we emphasize that our approach does not exclude 

he possibility to consider additional PS or S-procedure constraints 

hen it is necessary. An important result, where the S-procedure 

nd the method of vertices with affine annihilators are combined, 

an be found in Coutinho et al. [9 , Eqs. (23) - (24) ]. 

From a computational point of view, the LFT allows us to 

anipulate with rational functions efficiently in a “natural” way 

without “recasting” the fraction of polynomials into polynomi- 

ls). The effort s to find an appropriate factorization for ϕ in 

ections 3.2 –3.5 are made to reduce the conservatism while keep- 

ng the problem’s dimension as low as possible. Note that the fac- 

orization of ϕ directly affects the quadratic decomposition (12) of 

unction W to be tested. These techniques can be considered as 

he LFT [10,21] -based alternatives of the polynomial approaches of 

öfberg [27] , Papachristodoulou et al. [38] to find an optimal SOS 

ecomposition (12) of polynomials. 

. Lyapunov function for a local attractor 

In this section, we prescribe Lyapunov-type conditions for a 

andidate function V , which ensure the suitability of the Lyapunov 

unction over a compact set X . 

Consider the system model in the following form: 

˙ 
 = f (x ) = Aπ(x ) , with π(x ) = 

(
1 

π1 (x ) 

)
, (35) 

here A ∈ R 

n ×m is a constant matrix and π1 : R 

n → R 

m −1 is a ra-

ional function of the state. We are looking for a rational Lyapunov 

unction in the following parameterized quadratic expression: 

 (x ) = π� (x ) P π(x ) , (36) 

here P ∈ R 

m ×m is a free symmetric (not necessarily positive defi- 

ite) matrix. 

In the following theorem, we give sufficient conditions for the 

xistence of a Lyapunov function for an invariant set M. Certain 

arts of the following theorem were inspired by Goluskin [18 , Sec- 

ion 2.1]. 

heorem 9. Consider an autonomous system (2) over the compact 

et X . Let M a be the largest invariant set in X , and let M ⊆ M a be the
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argest invariant attractor in X . Let α1 , α2 ≥ 0 . Assume the existence 

f constants 0 < c 1 < c 2 < c 3 , 0 < ε2 , ε3 � 1 , and function V : R 

n →
 + satisfying the following conditions: 

(C1) V is continuous in X and continuously differentiable in X 

◦, 

(C2) V (x ) ≥ 0 for all x ∈ X , 

(C3) α1 V (ξ ) ≤ c 1 for all ξ ∈ M, 

(C4) L f V (x ) ≤ −α2 (V (x ) − c 2 + ε2 ) for all x ∈ X , 

(C5) V (x ) ≥ c 3 + ε3 for all x ∈ ∂X . 

Then, 

(R1) each connected subset of �c 3 is forward invariant with respect 

to (2) . 

(R2) If M = { }x (i ) 
∗ , i = 1 , 2 , . . . is a set of isolated equilibria, and 

(C3), (C4) are satisfied with α1 > 0 and α2 = 0 , then, each 

equilibria x (i ) 
∗ is contained in a connected subset �(i ) 

c 3 
of level 

set �c 3 , and every solution starting in �(i ) 
c 3 

approaches M a ∩ 

�(i ) 
c 3 

as t → ∞ . 

(R3) If M is a periodic orbit with period T < ∞ (i.e., for all ξ ∈ M, 

ξ = �(T , ξ ) ), and (C3) is satisfied for at least a single element

ξ ∈ M with α1 > 0 , then, there exists a connected subset �c 3 ,M 

of level set �c 3 that comprise M. Moreover, V is a Lyapunov 

function for M on �c 3 ,M 

\ �◦
c 2 ,M 

for (2) in the sense of Defini- 

tion 7 if α2 > 0 . 

roof. (R1) When α2 = 0 , the Lyapunov function is non-increasing 

long the trajectories in the whole polytope X , therefore, a con- 

ected subset of any level set of V contained in X 

◦ is invariant. 

urthermore, (C5) implies that the c 3 -level set �c 3 is a subset 

f X 

◦. When α2 > 0 , condition (C4) implies the strict negativity 

f the Lie derivative in X \ �◦
c 2 

, and hence in �c 3 \ �◦
c 2 

. Though

 connected subset of �c 2 is not necessarily invariant, it is sur- 

ounded by a connected subset of �c 3 . Moreover, the Lie deriva- 

ive in �c 3 \ �◦
c 2 

is strictly negative. Then, any trajectory which 

eaves �c 2 and enters �c 3 \ �◦
c 2 

, will be immediately led back to 

c 2 . Consequently, each connected subset of �c 3 is invariant. 

Proof for (R2). Let E (i ) be the set of all points x ∈ �(i ) 
c 3 

, where

 f V (x ) = 0 , and observe that each equilibrium in �(i ) 
c 3 

is necessarily

n element of E (i ) . Therefore, M ∩ �(i ) 
c 3 

is the maximal invariant set 

n E (i ) , that is surrounded by the forward invariant set �(i ) 
c 3 

. Then, 

R2) is a direct consequence of Theorem 4 . 

Proof for (R3). Assume that (C3) is satisfied for at least a sin- 

le element ξ ∈ M with α1 > 0 . Then, according to (C1) and (C5), 

here exists a connected subset �c 3 ,M 

, which comprise ξ . Due to 

R1), set �c 3 ,M 

is invariant, therefore, �(t, ξ ) ∈ �c 3 ,M 

for all t ≥ 0 . 

his implies that M ⊂ �c 3 ,M 

if M is a periodic orbit with period 

 < ∞ . Moreover, a positive scalar α2 ensures that L f V (x ) ≤ −α2 ε2 

f V (x ) ≥ c 2 . Due to the continuity property (C1), we have that

c 2 ,M 

⊂ �◦
c 3 ,M 

if �c 2 ,M 

= �c 2 ∩ �c 3 ,M 

. Finally, the conditions 

 f V (x ) ≤ −α2 ε2 , V (x ) > 0 ∀ x ∈ �c 3 ,M 

\ �◦
c 2 ,M 

(37)

ith a nonempty L 

inf 
M 

= �c 2 ,M 

imply that V is a Lyapunov function 

or M on �c 3 ,M 

\ �◦
c 2 ,M 

for (2) in the sense of Definition 7 . �

To ensure the necessary conditions for Definition 7 , we force a 

ew geometric properties for the Lyapunov function candidate in 

C3), (C4), and (C5). First, the Lyapunov function is bounded from 

bove by a positive scalar c 1 in M. Then, the Lyapunov function is 

orced to be higher than c 3 on the boundaries ( ∂X ) of polytope X .

inally, the c 2 -level set of the Lyapunov function bounds the region 

here a negative Lie derivative is not required. When α1 , α2 > 0 , 

he conditions of Theorem 9 imply the following set containment 

elations: 

 ⊂ �c 2 ⊂ �c 3 ⊂ X 

◦. (38) 
7 
emark 10. When M is a limit cycle and condition (C4) is sat- 

sfied with α2 = 0 , then, the Lyapunov function should take the 

ame (local minimum) value in set M, namely, V (M) = { v 0 } , where

 0 ≤ V (x ) for all x ∈ �c,M 

. This is only possible when the periodic

rbit is described by a closed-form implicit equation, or the Lya- 

unov function is not given in a closed-form. Fortunately, condition 

C4) with α2 > 0 allows the Lyapunov function candidate to vary 

long the orbit. Finally, note that statement (R1) of Theorem 9 also 

pplies when M is a strange attractor. 

emark 11. The negativity of the Lie derivative of the Lyapunov 

unction is required over the whole polytope X except a (hopefully 

ight) neighborhood of M. Therefore, polytope X should be selected 

arefully when M is only locally stable. Although it is not necessary 

or X to lie inside the DOA B (M) of M, a feasible solution for (C2),

C3), (C4), and (C5) may not be found if X \ B (M) is significant. 

. Optimization-based Lyapunov function computation for 

ocal attractors 

In this section, we formulate sufficient LMI conditions to com- 

ute a Lyapunov function for a dynamical system with multiple 

ocal attractors. 

.1. Convenient structure for the candidate function 

First, observe that the parameterized structure of the candidate 

yapunov function is generated by function π , hence, it is called 

 “generator” in Polcz [41] . When selecting π , we focus on three 

bjectives (so to say, trade-offs). 

1. To compute a good estimation of B (M) , function π should 

generate a relatively wide class of polynomial/rational func- 

tions, 

2. however, the complexity of the optimization problem will 

increase combinatorially with the number of coordinates of 

π . 

3. Finally, function π admits a preferred annihilator. 

emark 12. In the literature [59] , π is often selected such that it 

ontains all monomials of x of given degrees (e.g., π = ψ d ). 

emark 13. Alternatively, we can construct a set of basis functions 

π) by applying the LFR-based technique of Section 3.2 in combi- 

ation with the dimension reduction method of Section 3.5 . First, 

e factorize the vector field f as proposed in (17) : 

f (x ) = F l 

{(
f 11 | F 12 

f 21 | F 22 

)
, �(x ) 

}
= ( f 11 F 12 ) πlfr (x ) , (39) 

here πlfr (x ) = 

(
1 

(I − �(x ) F 22 ) 
−1 �(x ) f 21 

)
∈ R ̄

m +1 . Then, we com- 

ute a minimal factorization Sπ for πlfr as proposed in Remark 7 . 

inally, the dynamics can be written in the form (35) with A = 

 

f 11 F 12 ) S. 

.2. Lie derivative of the Lyapunov function 

To formulate a convex constraint for the Lyapunov condition 

C4) of Theorem 9 , we rewrite the Lyapunov function’s Lie deriva- 

ive in the following form: 

 f V (x ) = He 
{
π� (x ) P L f π(x ) 

}
= π� 

d (x ) 

(
0 P 
P 0 

)
πd (x ) , 

where πd (x ) = 

(
π(x ) 

L f π(x ) 

)
. (40) 
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posed in Remark 6 with (K2), such that N π ≡ 0 on F , 
s it is remarked in Polcz et al. [46 , Section 4], the structure of πd 

ay be unfortunate in the sense that we cannot find affine cou- 

ling between the first ( π ) and second block ( L f π ) of π . Therefore,

e select a well-structured function πg with a preferred affine an- 

ihilator N g , and a fat matrix H g such that πd = H g πg in X . To con-

truct H g and πg , we can follow Section 3.2 or Remark 8 applied to

 = πd . 

Finally, the Lie derivative can be written as follows: 

 f V (x ) = π� 
g (x ) He 

{
E � g PA g 

}
πg (x ) . (41) 

here E g = ( I m 

0 m ×m 

) H g , A g = ( 0 m ×m 

I m 

) H g . 

.3. Subdivision of polytope X 

The results in Theorem 9 do not guarantee a separate invariant 

omain for all locally asymptotically stable and isolated attractors 

 

(i ) in M = 

⋃ 

i M 

(i ) . To do so, we have the possibility to introduce

urther boundary conditions similar to (C5) in Theorem 9 . Assume 

hat polytope X = 

⋃ 

i X 

(i ) can be divided into smaller polytope 

lices X 

(i ) satisfying X 

(i ) ◦ ∩ X 

( j) ◦ = ∅ for all i � = j, such that each

lice X 

(i ) contains a single invariant set M 

(i ) . 

xample 2. Consider the gradient system 

˙ 
 = −∇H (x ) , with H (x ) = 

∏ 3 
i =1 

∥∥x − x (i ) 
∗

∥∥2 
, (42) 

aving three locally asymptotically stable equilibrium points x (i ) 
∗ ∈ 

 (0 , 1) , (−1 , 2) , (1 , 2) } . In (42) , ‖ x ‖ denotes the Euclidean norm

f x ∈ R 

n x . Let X = Co ({ v 1 , v 2 , v 3 } ) , where v 1 = (−4 , 0) , v 2 = (4 , 0) ,

 3 = (0 , 4) . Then, a possible subdivision of X is 

 

(1) = Co ({ v 1 , v 4 , v 6 , v 3 } ) , X 

(2) = Co ({ v 4 , v 5 , v 6 } ) , 
 

(3) = Co ({ v 5 , v 2 , v 3 , v 6 } ) , (43) 

here v 4 = (−2 , 0) , v 5 = (2 , 0) , v 6 = (0 , 2) . Observe that the three

olytopes in (43) are “almost disjoint” (except their common 

dges). The secant segments between the polytope slices in 

43) are 

 4 = Co ({ v 3 , v 6 } ) , F 5 = Co ({ v 4 , v 6 } ) , 
 6 = Co ({ v 5 , v 6 } ) . (44) 

he indexing of the secant segments in (44) is started from 4 as 

he indices 1,2,3 are “reserved” for the faces of polytope X , namely, 

 1 ∪ F 2 ∪ F 3 = ∂X . This notation for the secant segments allows

s to reformulate condition (C5) of Theorem 9 for each slice in a 

onvenient way, namely: 

 (x ) ≥ c 3 + ε3 for all x ∈ F k and all k = 1 , . . . , 6 . (45) 

xample 3. Consider the gradient dynamics 

˙ 
 = −∇H(x ) , (46) 

with H(x ) = x 4 1 x 
2 
2 + x 2 1 x 

4 
2 − 3 x 2 1 x 

2 
2 + 1 , 

here H is the Motzkin polynomial [35] . System (46) has 

our locally asymptotically stable equilibrium points in x (i ) 
∗ ∈ 

 (−1 , −1) , (1 , −1) , (1 , 1) , (−1 , 1) } . Let X = [ −2 , 2] × [ −2 , 2] . Then,

 possible subdivision of X can be obtained by considering the fol- 

owing secant segments: 

F 5 = Co ({ (−2 , 0) , (2 , 0) } ) , 
F 6 = Co ({ (0 , −2) , (0 , 2) } ) . (47) 

bserve that the four slices can be separated in an optimal way 

ith only two secant segments. Again, the four sides of rectangle 

 are denoted by F 1 , F 2 , F 3 , F 4 . 

One might see that in the n -dimensional Euclidean space the 

olytope slices X 

(i ) are separated by (n − 1) -dimensional hyper- 

lanes, such that the common sides are polytopes in the se- 

ant hyperplane. Let the number of slices be denoted by m and 
sd 

8 
he number of secant manifolds be denoted by m sm 

, where “sd”

nd “sm” stand for “subdivision” and “secant (polytopic) mani- 

olds”, respectively. Observe that, for a given set of subdivision 

 X 

(i ) } i =1 , ... ,m sd 
, the set of secant manifolds are not unique, but 

hey are determined heuristically (such that their number is mini- 

ized). 

Condition (C5) in Theorem 9 , prescribes a PD-LMI for each face 

 F 

(i ) 
k i 

) of each slices X 

(i ) of polytope X . However, as we suggested

t in (45) , it is enough to prescribe the boundary conditions only 

nce along each secant manifold. Furthermore, it is convenient to 

etect those secant manifolds, which have an identical support- 

ng hyperplane. The reason for we introduced the secant manifolds 

 m X +1 , . . . , F m X + m sm 

is to simplify the further notations and to re- 

uce the number of convex constraints for the Lyapunov function 

omputation. 

.4. Boundary conditions 

Following the ideas of Polcz [41 , Section 4.2.4] (first, proposed 

y [59] ), we aim to scale the Lyapunov function such that the con- 

ected subset �(i ) 
1 ,M 

of the unitary level set, which comprise M 

(i ) , 

s expanded as much as possible in each slice X 

(i ) of polytope X . 

herefore, instead of condition (C5) of Theorem 9 , we prescribe 

n interval constraint on each bounding ( k = 1 , . . . , m X ) and secant

 k = m X + 1 , . . . , m X + m sm 

) manifold F k as follows: 

 3 + ε3 ≤ V (x ) ≤ τk for all x ∈ F k (48) 

nd all k = 1 , . . . , m X + m sm 

, where τk are slack variables, which

re minimized through the optimization. 

The two inequalities in (48) are rewritten as follows: 

� (x ) (P − (c 3 + ε3 ) 1 m 

) π(x ) ≥ 0 for all x ∈ F k , 

� (x ) (P − τk 1 m 

) π(x ) ≤ 0 for all x ∈ F k , (49) 

here matrix 1 m 

is introduced in (1) . 

Finally, a set of sufficient boundary LMIs for (49) can be formu- 

ated as presented in Section 3.4 . 

In the following subsection, we present a semidefinite program, 

hich (if feasible) constructs a Lyapunov function for multiple lo- 

al (not necessarily point-like) attractors. 

.5. The resulting optimization problem for computing Lyapunov 

unctions 

Consider an autonomous system (2) over X = 

⋃ m sd 
i =1 

X 

(i ) , in each 

lice with the largest invariant attractor M 

(i ) . Consider a Lya- 

unov function candidate (36) and a possible quadratic factoriza- 

ion (41) for its Lie derivative. Observe that inequality (C4) of 

heorem 9 can be written in the form 

� 
g (x ) P g πg (x ) ≤ 0 for all x ∈ X with (50) 

 g = He 
{

E � g PA g 

}
+ α2 { (} E � g P E g − H 

� 
g 1 2 m 

H g (c 2 − ε2 )) , 

here matrices E g , A g , and H g are defined in Section 5.2 . 

Compute two maximal affine annihilators 

 : X → R 

s ×m and N g : X → R 

s g ×m g , (51) 

s proposed in Remark 6 with (K1) or (K2), such that 

π ≡ 0 and N g πg ≡ 0 on X . (52) 

hen, for each bounding and secant facet F k , compute 

1. a minimal factorization π = S f,k π f,k in F k as proposed in 

Remark 7 with (K2), where S f,k ∈ R 

m ×m f,k and π f,k : F k → 

R 

m f,k . 

2. a maximal affine annihilator N f,k : F k → R 

s f,k ×m f,k as pro- 
f,k f,k k 
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3 The Motzkin polynomial, as any other non-negative polynomial, is a sum of 

squares of rational functions [1] . The non-negativity of a polynomial p(x 1 , . . . , x n ) 

that is not an SOS can be proved by finding the smallest integer r such that 

(1 + x 2 + . . . + x 2 ) r p(x 1 , . . . , x n ) is an SOS [49] . 
here m f,k ≤ m − 1 , k = 1 , . . . , m X + m sm 

. 

In the following corollaries, we present the LMI constraints, 

hich determine a Lyapunov function for system (2) . These results 

re direct consequences of Corollary 1 . 

orollary 2. Assume that there exist matrices  ∈ R 

m ×s and g ∈ 

 

m g ×s g such that: 

P + He { N(x ) } � 0 for all x ∈ Ve (X ) , 
P g + He { g N g (x ) } � 0 for all x ∈ Ve (X ) . 

(53) 

urthermore, assume that for all facets F k , k = 1 , . . . , m X + m sm 

there

xists a full matrix (1) 
f,k 

∈ R 

m f,k ×s f,k such that 

 

� 
f,k (P −(c 3 +ε2 ) 1 m 

) S f,k + He 
{
(1) 

f,k 
N f,k (x ) 

}
� 0 (54) 

s satisfied for all x ∈ Ve (F k ) . Finally, assume that P satisfies the fol-

owing ordinary LMI: 

 (ξ (i ) ) = π� (ξ (i ) ) P π(ξ (i ) ) ≤ c 1 , i = 1 , . . . , m sd , (55) 

or some 0 < c 1 � 1 and ξ (i ) ∈ M 

(i ) . 

Then, the conditions of Theorem 9 are satisfied in each polytope 

lice X 

(i ) , where i = 1 , . . . , m sd , and V is a Lyapunov function for sys-

em (2) on X \ �◦
c 2 

. 

The four convex constraints in Corollary 2 together ensure the 

onditions of Theorem 9 and provide a common Lyapunov function 

n the whole polytope X , and a positively invariant domain for 

ach locally asymptotically stable invariant set M 

(i ) . In addition, we 

ay introduce further constraints, which may shape the Lyapunov 

unction more conveniently, e.g., enlarge the invariant domains. 

orollary 3. In addition to Corollary 2 , assume that, for each bound- 

ng and secant facet F k , k = 1 , . . . , m X + m sm 

, there exists a matrix
(2) 
f,k 

∈ R 

m f,k ×s f,k such that 

 

� 
f,k (P − τk 1 m 

) S f,k + He 
{
(2) 

f,k 
N f,k (x ) 

}
� 0 (56) 

s satisfied for all x ∈ Ve (F k ) . Furthermore, assume that τk are the

inimal possible values that fulfill (56) . Then, the Lyapunov function 

atisfies the second inequality in (48) , and �(i ) 
c 3 ,M 

= L 

inf 
M 

(i ) is the largest 

nvariant level set of V in X 

(i ) , which contains M 

(i ) . 

. Illustrative examples 

To find a possible LFR realization of a rational function, we 

sed the object-oriented recursive LFT implementation of the En- 

anced LFT Toolbox for MATLAB [28] . The operations of the re- 

erred LFT implementation are presented in details in Polcz [41 , 

ection 3.6]. To model and solve semidefinite programs, we used 

ALMIP [26] with Mosek [34] solver. 

In the case studies, the computed matrices/functions are of- 

en obtained as complicated structures of large matrices (e.g., 

igh order LFR realization). These values are not provided in this 

anuscript, but we refer to the online repository [42] , where all 

ntermediate results can be computed with a MATLAB implemen- 

ation for each case study. 

.1. Gradient dynamics of the Motzkin polynomial 

In this section, we revisit the gradient dynamics (46) of the 

otzkin polynomial [35] , which was presented in Example 3 . The 

hape of function H is illustrated in panel (a) of Fig. 1 . Function H

as four local minima, which correspond to the four isolated (lo- 

ally asymptotically stable) equilibrium points of dynamics (46) . 

A possible Lyapunov function for system (46) is the Motzkin 

olynomial H itself. The Motzkin polynomial is a counterexample 

or a non-negative polynomial, which is not a sum of squares of 
9 
olynomials 3 due to the negative coefficient of term x 2 
1 
x 2 

2 
. Now, 

onsider a candidate function W , such that W (x ) = H(x ) + 0 . 1 . It

an be shown that W is still not an SOS, however, our approach 

llows to check its non-negativity in X = [ −2 , 2] × [ −2 , 2] . A possi-

le decomposition for W is presented in Polcz [42 , Section 5] 

Though function W can prove stability, we compute a synthetic 

yapunov function following the procedure described in Section 5 . 

t is an interesting question, how the computed Lyapunov function 

ill follow the shape of the Motzkin polynomial. 

During the computations, we considered polytope X and its 

ubdivision as presented in Example 3 . The two secant manifolds 

 5 and F 6 in (47) are illustrated by the green dashed segments in 

anel (b) of Fig. 1 . 

To construct function π for the Lyapunov function, we consid- 

red Remark 13 . First, we computed an LFR realization of the sys- 

em Eq. (46) , which generates πlfr : R 

2 → R 

27 . Then, we computed 

 minimal factorization of πlfr = Sπ , where π : R 

2 → R 

15 . The co-

rdinates of the computed vector π(x ) are the following monomi- 

ls: 1, x 3 
1 
x 2 

2 
, x 2 

1 
x 2 

2 
, x 1 x 

2 
2 
, x 1 x 

4 
2 
, x 2 

1 
x 3 

2 
, x 1 x 

3 
2 
, x 2 

1 
x 2 , x 1 x 2 , x 

4 
1 
x 2 , x 

3 
1 
x 2 , x 

2 
2 
, x 2 ,

 

4 
2 
, x 3 

2 
. Then, we followed Remark 8 to find a convenient factoriza-

ion for function πd in (40) . 

To compute an invariant domain for each x (i ) 
∗ , we need to as- 

ure the geometrical properties of the Lyapunov function around 

ach equilibrium point. For this, we introduced two secant lines in 

47) , on which the boundary conditions (54) and (56) should be 

atisfied as well as on the boundary of polytope X . 

We proceeded the steps of Section 5.5 to compute annihilators 

, N g , and then S f,k , π f,k , and N f,k for each bounding and secant

ines F k . 

We solved the LMIs in Corollaries 2 and 3 with α1 = 1 , 

2 = 0 , c 1 = 0 . 3 , and c 3 = 1 . The role of constants ε2 and ε3 in

heorem 9 and Corollary 2 are technical, their positive values can 

e selected arbitrarily small. The value of c 2 is not relevant when 

2 = 0 . Furthermore, we minimized the values of τk , k = 1 , . . . , 6

o enlarge the invariant level sets of V as much as possible in each 

lice of X . The computed a Lyapunov function and its invariant 

evel set are presented in panel (b) of Fig. 1 . The area of a con-

ected subset of the unitary level set, which contains x (1) 
∗ is 2.1350. 

It is worth mentioning that the area of the simply connected 

ubset of the c = 0 . 99 level set of the Motzkin polynomial (filled

egion in the negative orthant in panel (a) of Fig. 1 ) is 1.9908. This

rea tends to π
√ 

3 
2 � 2 . 7207 as c → 1 . 

In a higher-dimensional state-space, the polytope decomposi- 

ion is a complex task, therefore, we illustrate how the shape of 

he computed function is altered when the polytope is not or only 

artly decomposed. In panel (c) of Fig. 1 , the Lyapunov function is 

resented when polytope X is decomposed into two slices by the 

ecant segment F 6 in (47) . In panel (d) of Fig. 1 , the computed Lya-

unov function is illustrated when X is not decomposed. Observe 

hat both connected subsets of the c 3 -level set of V in panel (d) of

ig. 1 is a common invariant domain for two separate equilibria. 

.2. Genetic toggle switch in Escherichia coli 

Let us consider the dynamics of the genetic toggle switch in 

scherichia coli [12] : 

˙ 
 1 = 

μ1 

1 + x 
β
2 

− x 1 , ˙ x 2 = 

μ2 

1 + x 
γ
1 

− x 2 , (57) 
1 n 
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Fig. 1. Motzkin polynomial (46) and its c = 0 . 99 level set (a). Computed Lyapunov function for the gradient dynamics (46) and its c = 1 level set when: (b) polytope X
is split into 4 slices corresponding to the four equilibria; (c) polytope X is split into 2 slices each containing two equilibria; (d) polytope X is not split at all. In (b)–(d), 

polytope X is illustrated by the red solid rectangle, whereas, the green segments constitute the secant segments F 5 and F 6 . The filled blue region in panel (b) highlights the 

computed positively invariant domain �(1) for x (1) 
∗ . 

Fig. 2. Three different Lyapunov functions computed for system (57) with (b) and (c) and without (a) the boundary condition of (56) . In all panels, the black dots are the 

equilibria, the blue contour lines are the level sets of the Lyapunov functions, the red rectangle is polytope X . In panels (a) and (b) a Lyapunov function is computed for two 

polytope slices split by the secant segment F 5 highlighted by the green dotted line. In panel (c), polytope X is not decomposed. 
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2 
here μ1 = 1 . 3 , μ2 = 1 , β = 3 , γ = 10 . These dynamics are

istable with two locally asymptotically stable equilibrium points 

 

(1) 
∗ and x (3) 

∗ separated by a separatrix through equilibrium x (2) 
∗ . 

Let X = [0 . 5 , 1 . 5] × [ −0 . 18 , 1 . 2] . Furthermore, we considered

wo slices X 

(1) ∪ X 

(2) = X , which are separated by the secant line

 5 = { }λx (2) 
∗

∣∣λ ∈ R ∩ X (green dashed segment in Fig. 2 ). 

In this example, the computational steps and the constants of 

orollary 2 are the same as in Section 6.1 . The structure of the

yapunov function is determined by 

(x ) = 

(
1 x 1 x 2 

x 1 
q 1 

x 2 1 

q 1 

x 3 1 

q 1 

x 4 1 

q 1 

x 5 1 

q 1 

x 6 1 

q 1 

x 7 1 

q 1 

x 8 1 

q 1 

here q 1 = 1 + x 10 
1 

, q 2 = 1 + x 3 
2 
. 

First, we computed a Lyapunov function by solving the LMIs of 

orollary 2 only. Secondly, a Lyapunov function is computed by 

onsidering Corollary 3 , where the values of τk , k = 1 , . . . , 5 are

inimized. Finally, we repeated the second computation without 

onsidering a decomposition for X . 

In Fig. 2 , we illustrate the shape of both Lyapunov functions ob- 

ained. The outermost blue contour lines in Fig. 2 illustrate the for- 

ard invariant levels set of the Lyapunov functions. 

.2.1. Comparative evaluation with the SOS approach 

Observe that system (57) contains rational functions with a 3rd 

nd 10th order denominator. Furthermore, we consider a rational 

yapunov function with a surprisingly high (28th and 26th) degree 

f numerator ( V num 

(x ) ) and denominator ( V den (x ) > 0 ). This rich

lgebraic structure of the candidate function is obtained by only 

 = 16 distinct basis rational functions in π . To solve L f V (x ) ≤ 0

ith polynomial optimization, we should multiply L f V (x ) by its 

ommon denominator (x 10 
1 

+ 1) 3 · (x 3 
2 

+ 1) 3 , which results in a 41st

egree polynomial. The SOS decomposition of V num 

(x ) and L f V (x )

omprise at least 59 and 101 distinct monomials, respectively, 
10 
x 10 
1 

q 1 

x 2 
q 2 

x 2 2 

q 2 

x 3 2 

q 2 

)
� , 

hich were selected as proposed in Löfberg [27] . Due to the dense 

epresentation of both V num 

(x ) and L f V (x ) , the block diagonaliza-

ion of their SOS decomposition is not possible. Therefore, the fi- 

al conditions ensuring the non-negativity of V (x ) and −L f V (x ) are

9 and 101-dimensional LMIs. In comparison, the dimensions of π
nd πg in (41) , and hence the dimension of LMIs in (53) are only

 = 16 and m g = 41 , respectively. 

.3. The periodic ring 

In this example, we compute a Lyapunov function for a variant 

f the periodic ring oscillator taken from Tedrake [56 , Ex. 16.2]. The 

quations of the system in their general form can be written as: 

˙ x 1 = x 2 + x 1 h (r) , 
˙ x 2 = −x 1 + x 2 h (r) , 

(58) 

here r = 

√ 

x 2 
1 

+ x 2 
2 
. In this case study, we consider h (r) = R 2 0 − r 2 ,

ith R 0 = 2 . The equations can be transformed into the polar co- 

rdinates as follows [48] : 

˙ r = r h (r) , 
˙ θ = −1 , where θ = atan 2 (x 2 , x 1 ) . 

(59) 

he system equations in the form (59) allows us to guess a possi- 

le Lyapunov function candidate [56] : 

¯
 (r) = 

1 (R 0 − r) 2 . (60) 
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Fig. 3. Computed 4th degree polinomal Lyapunov function for the periodic ring system (left) and its Lie derivative (right). The red rectangle illustrates polytope X , the solid 

black line is the limit cycle M, the light blue disc is the c-level set �c,M of the Lyapunov function, where c = 1 . 3919 . (As in Tedrake [56 , Fig. 16.1], we removed a small 

segment from V for the purposes of visualization). 
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he Lie derivative of function V̄ w.r.t. f̄ (r) = 

(
r h (r) 

−1 

)
is 

L 
f̄ 
V̄ (r) = −r (R 0 − r ) h (r ) 

= −r (R 0 − r ) 2 (R 0 + r ) , 
(61) 

hich is negative for all r ∈ (0 , ∞ ) \ { R 0 } . 
In the following subsections, we present a possible synthetic 

onstruction of a Lyapunov function for system (58) . 

.3.1. Synthetic Lyapunov function construction 

In this example, we follow Remark 12 and consider a fourth de- 

ree Lyapunov function candidate (36) with the fixed set of mono- 

ials 

(x ) = ψ 2 (x ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

x 1 
x 2 
x 2 1 

x 1 x 2 
x 2 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (62) 

hen, the Lie derivative of V = π� P π w.r.t. (58) can be written in

he form (41) , where 

 g = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 0 0 0 0 0 

0 4 1 0 0 0 −1 0 −1 0 

0 −1 4 0 0 0 0 −1 0 −1 

0 0 0 8 2 0 0 0 0 0 −
0 0 0 −1 8 1 0 0 0 0 

0 0 0 0 −2 8 0 0 0 0 

 g = 

(
I 6 0 9 ×9 

)
, πg = ψ 4 : R 

2 → R 

15 . (63) 

he canonical factorization for 

d (x ) = 

(
π(x ) 

L f π(x ) 

)
= A g πg (x ) (64) 

as performed by computer algebra manipulations of MATLAB’s 

ymbolic Math Toolbox [33] . The symbolic computations follow 

he procedure proposed in Polcz et al. [45 , Section 3]. To com- 

ute the maximal affine annihilators for π and πg , we applied 

emark 6 with (K1). 
11 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 −2 0 0 

−2 0 −2 0 

0 −2 0 −2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

Then, we solved the semidefinite feasibility problem formu- 

ated in Corollary 2 with X = [ −3 , 3] × [ −3 , 3] . In (53), (54) , and

55) , we used of α1 = 1 , α2 = 0 , c 1 = 0 . 1 , and c 3 = 1 . During the

omputations the upper-bound constraints of Corollary 3 along 

he facets F k are not considered. We note that the feasibility 

roblem with no objective has multiple solutions, and the com- 

uted solution depends on the implementation of the optimization 

olver. 

In Fig. 3 , we illustrate the computed Lyapunov function and its 

ie derivative. Apparently, the circular “valley” of function V fol- 

ows the limit cycle. 

.4. Van der Pol oscillator 

In this section, we demonstrate the operations on the Van der 

ol system [40] : 

˙ x 1 = x 2 , 
˙ x 2 = μ (1 − x 2 1 ) x 2 − x 1 , 

(65) 

here μ = 1 in this case study. 

We considered an 8th degree Lyapunov function, and the se- 

ected function π = ψ 4 comprise all the possible monomials of x 

f degree 0 (constant) up to degree 4. 

Then, we computed the canonical factorized form of πd (x ) = 

 g πg (x ) in (40) , where πg = ψ 6 comprise the monomials of degree

 up to degree 6. 

To find a Lyapunov function, first we fixed polytope 

 = [ −4 , 4] × [ −5 , 5] . (66) 

e solved the semidefinite problem described in Corollary 2 with 

onstants, c = 0 . 1 , and c = 1 . 
2 3 
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Fig. 4. Computed Lyapunov function V for the Van der Pol system (65) and its Lie derivative L f V . The red rectangle denotes polytope X , the solid black line is the limit 

cycle, the outermost blue contour line illustrates L sup 
M 

, the maximal level set in X , the shaded light blue region is �c 3 ,M \ �◦
c 2 ,M 

, the red dot points out the minimum value 

of the Lyapunov function. The shaded light green regions highlight the set, in which the Lie derivative of the Lyapunov function is positive. 
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strange attractor. The blue trajectory constitutes a numerically approximated solu- 

tion of the Lorenz system. 
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With α1 = 0 , we neglect the central condition (C3), but with a 

onzero α2 = 0 . 1 , we relax the Lyapunov inequality. As we noted 

n Remark 10 , this relaxation is necessary as the limit cycle of Van

er Pol system does not have a closed-form expression [48] . 

The values of the Lyapunov function along the periodic orbit are 

etween [0.0309,0.0386]. The maximal level set inside X belongs 

o c max = 2 . 8612 ( Fig. 4 ). The minimum value of the computed Lya-

unov function and the maximum value of its Lie derivative in X 

re 

V (−1 . 5765 , 0 . 4412) = 0 . 0266 , 

L f V (1 . 3176 , −0 . 7941) = 0 . 0069 . 
(67) 

.5. The Lorenz system 

Here, we illustrate the proposed approach on the well-known 

orenz system with a change of coordinates as proposed by Jones 

nd Peet [23] . A tight attractive forward invariant domain (i.e., 

ttractor) is computed both by Goluskin [18] , Jones and Peet 

23] with a 8th degree polynomial. In this case study, we do not 

ddress to find the minimum volume attracting cover of the Lorenz 

ttractor, but demonstrate the operations of our approach, and 

ompute a Lyapunov function in the form of a fraction of 6th and 

th degree polynomials. 

We consider the dynamics of state variables x 1 = z 1 / 50 , x 2 =
 2 / 50 , and x 3 = (z 3 − 25) / 50 , where z = (z 1 , z 2 , z 3 ) satisfies the fol-

owing dynamic equations: 
 

˙ z 1 = σ (z 2 − z 1 ) , 
˙ z 2 = z 1 (ρ − z 3 ) − z 2 , 
˙ z 3 = z 1 z 2 − βz 3 . 

(68) 

here ρ = 28, σ = 10, and β = 8/3. The final dynamical model is 

s follows: 
 

˙ x 1 = σ ( x 2 − x 1 ) , 
˙ x 2 = x 1 ( ρ − 50 x 3 − 25 ) − x 2 , 
˙ x 3 = 50 x 1 x 2 − β ( x 3 + 0 . 5 ) . 

(69) 

The system has a chaotic attractor, “to which almost every tra- 

ectory tends” [18] . To compute a Lyapunov function, we consider 

he following vector of rationals: 

(x ) = 

(
ψ 1 (x ) 

ψ 2 (x ) q −1 (x ) 

)
, where q (x ) = 1 + x � x. (70) 
12 
ote that q is the polynomial, which is advised by Reznick [49] to 

elp proving non-negativity of polynomials that are not sums of 

quares of polynomials. It can be shown, that π admits a preferred 

nnihilator. 

The quadratic decomposition (41) of the Lie derivative is com- 

uted as proposed in Remark 8 . The factorizations (28) for the 

oundary LMIs (54) , and the affine annihilators were computed 

umerically using samples (K2) and LFR operations as described 

n Remark 6 . The dimensions of the final LMIs in (53) are 14 and

1, respectively, the dimension of the boundary LMI in (54) is 8. 
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[

We solved the semidefinite problem over 

 = [ −0 . 8 , 0 . 8] × [ −1 , 1] × [ −1 , 1] , (71)

ith α1 = 0 , α2 = 8 / 3 (as suggested by Goluskin [18] ), and c 3 = 1 .

urthermore, we were looking for the smallest possible value c 2 , 

hich turned to be 0.032. Though the value of c 2 was minimized 

hrough the optimization, its optimal value does not guarantee the 

east possible volume for L 

inf 
M 

. The minimal (red) and maximal (yel- 

ow) invariant level set of the Lyapunov function, and the region 

here the Lie derivative is positive (green) are illustrated in Fig. 5 . 

he volume of the minimal attracting level set (red) is approxi- 

ately 0.3 cubic units. 

. Conclusions 

In this paper, we formulated Lyapunov-type conditions to com- 

ute a common closed-form local Lyapunov function for multiple 

ocal (point-like, periodic, or strange) attractors of a nonlinear au- 

onomous system. The presented method is a non-trivial extension 

f the DOA computation approaches of Polcz et al. [44 , 46] , Trofino

nd Dezuo [59] with the novel numerical computational frame- 

ork of Polcz et al. [43] . Instead of the classical Lyapunov stability 

oncept Isidori [22 , Thm. 10.1.3] that is used in Polcz et al. [44 , 46] ,

rofino and Dezuo [59] , we considered the extended notion of a 

yapunov function introduced in Björnsson et al. [2] . 

Unlike the polynomial approaches, the use of LFT framework 

akes possible to cope with models in a form of fractions of poly- 

omials and compute rational Lyapunov functions in a natural, ef- 

cient way. The method of corner points, the affine annihilators, 

nd Finsler’s lemma allow to formulate local LMI conditions for 

tability analysis. The approach is illustrated on four planar bench- 

ark models. Differently from the state-of-the art SOS approaches 

18,23] , we computed a (6,4)-degree rational Lyapunov function 

or the Lorenz system with a specific denominator suggested by 

eznick [49] . 

One drawback of the presented approach is that it requires a 

reliminary knowledge on the behavior of the system to select 

 polytope, in which the analysis is performed. A possible com- 

utational difficulty of the presented approach is the exponential 

rowth of LMIs as the number of corner points increases exponen- 

ially with the number of state variables. In the case of a higher 

rder system, it is suggested to use simple interval constraints on 

he state variables if necessary, and perform global analysis with 

espect to certain state variables when possible ( Remark 9 ). 

Further research will be focused on the computational 

tability analysis of semistable non-negative dynamical models 

e.g., biochemical reaction networks) having a complex structure of 

quilibria. It is also motivating to study the possibilities how the 

dvantageous features of the SOS methodology and the polytopic 

ramework with Finsler’s lemma can be combined. 
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