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Abstract— This paper considers the instability of a Lurye
system consisting of an uncertain, discrete-time, linear time-
invariant plant in feedback with a slope-restricted nonlinearity.
There is a large literature on analyzing the stability of such
systems. This includes various conditions for proving stability
of the Lurye system, including the Circle criterion and the
use of O’Shea-Zames-Falb multipliers. In many cases, these
conditions are sufficient but not necessary to prove stability.
In contrast, there is also some work to construct specific
nonlinearities that demonstrate the instability of the Lurye
system (with the nominal plant dynamics). This paper considers
a more general case where the plant has dynamic uncertainty.
The goal is to construct both an instance of the uncertain
model and a corresponding nonlinearity that combined make
the Lurye system unstable. A limit cycle oscillation is also
computed to verify the instability. A simple example is provided
to demonstrate the results.

I. INTRODUCTION

There is a large literature on robust stability of sys-
tems with uncertainties and/or nonlinear perturbations. This
includes the structured singular value (also known as µ)
analysis for uncertain Linear Time-Invariant (LTI) systems
with dynamic and parametric uncertainty [1], [2], [3]. Com-
putational methods have been developed to compute multi-
pliers (also known as D/G-scales) that prove lower bounds
on the robust stability margin [1], [2], [3], [4]. Moreover,
there are methods to calculate an upper bound along with
a corresponding instance of a destabilizing uncertainty. The
most notable solution is the µ power iteration [5].

The Integral Quadratic Constraint (IQC) framework pro-
vides more general tools to assess the robust stability of
uncertain systems with static or dynamic nonlinear elements
in addition to LTI uncertainties [6]. Algorithms have been
developed to compute multipliers that prove lower bounds on
the robust stability margin. However, there are fewer results
to compute upper bounds even though that calculation is
often constructive and yields an instances of the destabilizing
perturbation. The significance of the methods mentioned thus
far is that they consider multiple sources of uncertainty
at the same time. It is well known in the robust control
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literature that specific combinations of uncertainties often
lead to stability issues that a loop-at-a-time analysis does
not necessarily reveal [3, Section 9.6] [7].

Note that these frameworks, especially the IQC frame-
work, have their roots in the absolute stability problem,
which is concerned with the stability of the so-called
Lurye system. In this paper, we consider the Lurye system
as the feedback interconnection between a discrete-time,
Single-Input Single-Output (SISO), LTI system and a slope-
restricted, memoryless nonlinearity. The goal is to find a non-
linearity with minimal slope that, when combined with the
plant, leads to a limit cycle oscillation of the Lurye system.
Lower bounds on this minimal slope can be obtained using
the circle criterion or the O’Shea-Zames-Falb multipliers [8],
[9], [10], [11], [12], [13], [14].

However, the computation of an upper bound is a more
challenging problem that has attracted less attention. The
smallest destabilizing linear gain, called the Nyquist gain,
provides a simple upper bound [15]. Recently, a method
for calculating a tighter upper bound for Lurye systems was
given in [16]. In contrast to the ad-hoc construction in [17]
and [18], this method provides a systematic construction
of the destabilizing nonlinearity corresponding to the upper
bound.

In the present paper, we demonstrate that the automatic
construction of a destabilizing nonlinearity in [16] can be
extended to uncertain systems. This extension is critical for
practical applications where the model is only an approxi-
mation of the real plant. This analysis is also relevant, since
adverse combinations of the nonlinearity and uncertainty can
cause unexpected stability issues that are not necessarily
discovered when they are investigated separately, similarly
to loop-at-a-time analysis.

The uncertainty is assumed as a single SISO dynamic
block. Our goal is to obtain a nonlinearity with minimal slope
and the corresponding uncertainty sample that destabilize the
Lurye system. Similarly to [16], this calculation provides
an upper bound on the stability margin but with uncertainty
in the system also taken into account. This is achieved by
presenting a graphical interpretation of the main result in [16]
which is instrumental in obtaining a closed form solution.

The most closely related work is [19], that also considers
the simultaneous presence of a nonlinearity and uncertainty.
It builds on the describing function approach [20] which
uses the linearization of the nonlinear component subjected
to sinusoidal input. Hence, describing functions produce
an approximation where only the first harmonic of the
true input signal to the nonlinearity is considered. In [19],
describing functions are applied to find an approximation of
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Fig. 1. Lurye system with uncertainty.

the destabilizing nonlinearity when the system is uncertain.
No approximation is involved in the method presented in this
paper, as the exact destabilizing nonlinearity is obtained.

The rest of the paper is structured as follows. The discrete-
time uncertain Lurye stability problem is formulated in
Section II. The preliminary results for nominal systems
from [16] are given in Section III. Section IV contains the
main contribution of the paper, i.e. the extension of the
analysis method to uncertain systems with a SISO dynamic
block. A numerical example is provided in Section V, and
concluding remarks are made in Section VI.

II. PROBLEM FORMULATION

Consider the Lurye system in Fig. 1 with a discrete-
time, uncertain system G(z, ∆) in negative feedback with
a nonlinearity φ : R −→ R. The uncertain system G(z, ∆)
is defined with the standard Linear Fractional Transformation
(LFT) used in robust control [3]. Let RH∞ denote the set
of stable, rational, dicrete-time, LTI systems. Define the H∞
norm of a stable LTI system ∆ as the maximum gain of the
system over all frequencies, i.e.

||∆||∞ := max
ω∈[0, π]

σ̄
(
∆
(
ejω
))

(1)

if ∆ ∈ RH∞ and ||∆||∞ =∞ otherwise. Here, σ̄
(
∆
(
ejω
))

denotes the largest singlular value of ∆
(
ejω
)
. Then G(z, ∆)

is given by the interconnection of a 2×2 system M ∈ RH∞
and a SISO uncertainty ∆ ∈ RH∞ with ||∆||∞ ≤ 1 as
depicted in Fig. 1.

The transfer function M(z) is partitioned as

M(z) =

[
M11(z) M12(z)
M21(z) M22(z)

]
. (2)

It is assumed that G(z, ∆) is robustly stable, i.e. it is
stable for all ||∆||∞ ≤ 1. By the small gain theorem [3,
Theorem 9.1], this is equivalent to ||M11||∞ < 1. The exact
relation between G(z, ∆) and the entries of M(z) is:

G(z, ∆) = M22(z) +
M21(z)M12(z) ∆(z)

1−M11(z) ∆(z)
. (3)

Finally, the nonlinearity φ is assumed to have a slope
between 0 and k ≥ 0, i.e.

0 ≤ φ(y2)− φ(y1)

y2 − y1
≤ k ∀y1 6= y2. (4)

S(0, k) denotes the set of such slope-restricted nonlinearities.
The special case S(0,∞) corresponds to monotone nonlin-
earities with no upper bound on the slope. We remark that
the set S(0,∞) also includes multi-valued functions [16].

Our goal is to find the smallest k∗ ≥ 0 for which there
exist an uncertainty ||∆∗||∞ ≤ 1 and nonlinearity φ∗ ∈
S(0, k∗) such that the Lurye system is unstable. This problem
is challenging. Instead of a direct solution, lower bounds on
k∗ can be computed using IQCs [6] and O’Shea-Zames-Falb
multipliers [9], [21]. This paper focuses on a complementary
approach to obtain an upper bound on k∗. Specifically, we
compute a ku ≥ k∗ along with ∆u(z) and φu such that: (a)
||∆u||∞ ≤ 1, (b) φu ∈ S(0, ku), and (c) the Lurye system
of G(z, ∆u) and φu has a limit-cycle oscillation.

III. BACKGROUND: RESULTS FOR NOMINAL SYSTEMS

This section briefly reviews existing methods for Lurye
systems with no uncertainty [16]. These results form the ba-
sis for our main contribution with uncertainty in Section IV.
To simplify notation, denote the nominal plant with ∆ = 0
by G0(z) := G(z, 0). Let argG0

(
ejω
)

be the phase of
G0(z) at the frequency ω, i.e. the angle of G0

(
ejω
)
. In this

paper, the phase is always understood to be between 0 and
2π. The following is the basic result for the nominal case.

Theorem 1 ([16]): Let G0 ∈ RH∞ and integers 0 <
α < β be given. Assume α and β are co-prime. Define the
frequency ω := α

β π with corresponding period T = 2β if α
is odd and T = β if α is even. There exists a nonlinearity
φ ∈ S(0, ∞) such that the Lurye system of G0 and φ has a
non-trivial T -periodic solution if

π − π

T
≤ argG0

(
ejω
)
≤ π +

π

T
.

�

The full proof of Theorem 1 can be found in [16].
That proof relies on the following method for the con-
struction of the exact nonlinearity φ that, when combined
with the plant, leads to a limit cycle oscillation. Define
VT :=

[
1 ejω . . . ej(T−1)ω

]T
, UT := ReVT , and YT :=

Re
(
G0

(
ejω
)
VT
)
. If α is odd then construct a nonlinearity

φ : R→ R by linearly interpolating YT and −UT within the
range of YT , and extrapolating the first and last element of
−UT outside the range of YT . The resulting nonlinearity is
odd, it satisfies φ ∈ S(0, ∞), and it causes the Lurye system
of G0 and φ to have a T -periodic solution. The vectors UT
and YT are the limit cycle input/output signals of G0 starting
from the appropriate initial condition. If α is even then a
similar construction can be made from UT and YT as defined
above. However, one additional step is required to compute a
constant offset to UT and YT so that φ(0) = 0. Moreover, if
α is even then the constructed nonlinearity is not necessarily
odd.

Theorem 1 provides an analysis condition and nonlinearity
construction at the fixed frequency ω = α

β π. Similarly
to comparable robust stability tests [1], [2], this result is
applied by choosing a sufficiently dense frequency grid and
performing the computations at each point in the grid. This
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Fig. 2. Loop transformation that maps S(0, k) to S(0, ∞).

amounts to choosing pairs of α and β that adhere to the
assumptions of Theorem 1 (0 < α < β, α and β are coprime)
that in turn select a subset of [0, π]. Since the calculations
involved in Theorem 1 are practically instantaneous, this
is easily doable for a the range of 1 ≤ α, β ≤ 100 for
example, which results in 3043 frequency points in [0, π].
In our experience, the computations over such a grid take no
more than 3 seconds on a regular computer.

Theorem 1 is extended to slope-restricted nonlinearities in
S(0, k) with k <∞ by the following result.

Theorem 2 ([16]): Let G0(z) ∈ RH∞ and integers 0 <
α < β be given. Assume α and β are co-prime. Define the
frequency ω := α

β π with corresponding period T = 2β if
α is odd and T = β if α is even. There is φ ∈ S(0, k)
with k < ∞ such that the Lurye system has a non-trivial
T -periodic solution if

π − π

T
≤ arg

[
G0

(
ejω
)

+
1

k

]
≤ π +

π

T
. (5)

�

For the proof of this theorem, the reader is again referred
to [16]. The main idea of the proof, which is also applied
in this paper, is the application of the loop transformation in
Fig. 2. Here, φ ∈ S(0, k), and the nonlinearity transformed
by the feedback with the 1/k term belongs to S(0, ∞)
(hence possibly multi-valued).

Figure 3 provides a geometric interpretation of the condi-
tion in Theorems 1 and 2. The frequency response of G0 at
ω = α

β π is depicted in the complex plane by the green dot.
The blue dashed line in the figure marks the boundary of the
guaranteed instability region. If G0

(
ejω
)

is to the left of this
boundary (as shown) then the Lurye system is unstable for
some φ ∈ S(0, ∞). According to Theorem 2, the stability
boundary shifts leftward when considering nonlinearities in
S(0, k) with decreasing values of k. The solid blue line
in Fig. 3 corresponds to the limiting boundary. In other
words, it gives a value ku for which there is a nonlinearity
in S(0, ku) causing the Lurye system to limit cycle with
frequency ω. This minimum value, denoted ku, is determined
in the following corollary [22].

Corollary 1 ([22]): Let G0(z) ∈ RH∞ and integers 0 <
α < β be given. Assume α and β are co-prime. Define the
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Fig. 3. Geometric interpretation of Theorem 2 and Corollary 1 with the
response of the nominal system G0 at a fixed frequency ω = α

β
π.

frequency ω := α
β π with corresponding period T = 2β if α

is odd and T = β if α is even. Assume (5) in Theorem 2
holds. Let G

(
ejω
)

=: R(ω)+jI(ω) with the assumption that
R(ω) < 0. The smallest k, for which there is a nonlinearity
in S(0, k) that, when combined with the plant, leads to a
limit cycle oscillation, is given by

ku =
− sin

(
π
T

)

|I(ω)| cos
(
π
T

)
+R(ω) sin

(
π
T

) . (6)

Proof: Based on the highlighted triangle in Fig. 3, ku
has to satisfy the equation

tan
( π
T

)
=

I(ω)

R(ω) + 1
ku

. (7)

This equation is true if I(ω) ≤ 0. Solve for ku to obtain

ku =
tan
(
π
T

)

I(ω)−R(ω) tan
(
π
T

) . (8)

Rewrite tan
(
π
T

)
in terms of sin

(
π
T

)
and cos

(
π
T

)
and use

the symmetry of the problem to replace I with |I|. This
yields (6).

It is emphasized that ku given in Corollary 1 is only an
upper bound on the true stability boundary. Specifically, let
k∗ ≥ 0 denote the smallest value for which there exists
a nonlinearity φ∗ ∈ S(0, k∗) such that the Lurye system
of the nominal plant G0 and φ∗ is unstable. Theorem 2
gives a condition that is sufficient (but not necessary) for the
existence of a destabilizing nonlinearity. Hence the value of
ku given in Corollary 1 is only an upper bound, i.e. ku ≥ k∗.

IV. RESULTS FOR UNCERTAIN SYSTEMS

The main result of the paper is presented in this section.
First, it is shown that for a fixed frequency ω, the image
of the function G

(
ejω, δ

)
for δ ∈ C, |δ| ≤ 1 is a disk in

the complex plane. Then, a geometric argument, similar to
that in the proof of Corollary 1, is used to derive ku for the
destabilizing nonlinearity with the uncertain plant.

The next lemma states that G
(
ejω, δ

)
in (3) maps the unit

circle |δ| = 1 to a circle. With some abuse of notation, we
drop the dependence on frequency and treat the entries of M



as complex variables in the lemma. Moreover, the complex
conjugate of z ∈ C is denoted by z.

Lemma 1: Consider the function G : C −→ C defined by:

G(δ) := M22 +
M21M12δ

1−M11δ
(9)

with M11, M12, M21, M22 ∈ C, and |M11| < 1. G maps
the unit circle {ejϑ : ϑ ∈ [0, 2π]} to the circle {C + %ejϑ :
ϑ ∈ [0, 2π]} with center and radius defined by:

C := M22 +
M11M21M12

1− |M11|2
and % :=

|M21M12|
1− |M11|2

. (10)

Proof: The statement of the lemma follows from
standard complex analysis results [23].

Hence, it is established that for fixed ω, {G
(
ejω, ejϑ

)
:

ϑ ∈ [0, 2π]} is a circle. It can also be shown that the interior
of the unit circle is mapped to the interior of the circle
given by the center and radius in (10). Thus the image of
G
(
ejω, ∆

)
for ||∆||∞ ≤ 1 is indeed a disk in the complex

plane at each frequency.
For simplicity, the remainder of the section omits the

dependence of the variables on the frequency, e.g. the entries
of M are written without the ejω argument. The unit disk
is mapped by G

(
ejω, ∆

)
to a disk with center C and

radius % as defined in (10). We differentiate between two
distinct cases when calculating the worst-case uncertainty
and nonlinearity: (a) the disk with center C and radius %
touches the side of the instability boundary as in Fig. 4
(Section IV-A) and, (b) the disk touches the corner of the
instability boundary (Section IV-B).

A. Disk touches the side of the instability boundary

Let CR and CI denote the real and imaginary parts of
C. The frequency response of the uncertain system at a
fixed frequency is illustrated in Fig. 4 for the case when
CI < 0. Using the symmetry of problem, it is easy to write
the following results so that they are true for any sign of
CI , i.e. in terms of |CI |. In this section, it is assumed that
|CI | > % cos

(
π
T

)
, which means that the uncertainty disc is

”sufficiently” far from the real axis. Section IV-B describes
the case when this assumption is violated.

Taking the symmetry of the problem into account, the
highlighted triangle in Fig. 4 reveals that

tan
( π
T

)
=

|CI | − % cos
(
π
T

)

− 1
ku
− CR + % sin

(
π
T

) . (11)

Note that this is only true if |CI | > % cos
(
π
T

)
since otherwise

the worst-case point is on the real axis. Solve for ku to obtain

ku =
sin
(
π
T

)

%− CR sin
(
π
T

)
− |CI | cos

(
π
T

) . (12)

Denote the point where the circle touches the instability
boundary by Gu = C + %ejϑu . Based on Fig. 4,

ϑu = −sign(CI)
(π

2
+
π

T

)
. (13)

CR(ω)

CI(ω)

−1/ku

π
T

π
T

k
=
∞
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Fig. 4. Geometric interpretation of the main result with the response of
the uncertain system G(z, ∆) at a fixed frequency ω = α

β
π.

To express the worst-case uncertainty, write Gu as

Gu = M22 +
M21M12δu
1−M11δu

, (14)

where δu ∈ C, |δu| = 1 is the value of the uncertainty at the
frequency ω. Expressing δu, we get

δu =
Gu −M22

M21M12 + (Gu −M22)M11
. (15)

The LTI worst-case uncertainty ∆u(z) is obtained by
interpolating δu by a stable all-pass system. Lemma 2 in
Appendix A proves that this is always possible and provides
the interpolation method that results in ∆u(z). We remark
that δu can also be interpolated with a nonrational LTI system
and the resulting interpolant yields the same limit cycle.

B. Disk touches the corner of the instability boundary

As explained in Section IV-A, the derivation there is
not valid if |CI | ≤ % cos

(
π
T

)
. In this case, the worst-case

corresponds to the uncertainty disk touching the point where
the stability boundary intersects the real axis. Hence, the
distance between C and the −1/ku point is %, i.e.

(
CR +

1

ku

)2

+ C2
I = %2. (16)

From this,

ku =
1√

%2 − C2
I − CR

. (17)

The worst-case point on the disk is Gu = −1/ku. Substitut-
ing this into (15) yields

δu =
− 1
ku
−M22

M21M12 −
(
M22 + 1

ku

)
M11

. (18)

The worst-case LTI uncertainty ∆(z), that interpolates δu
at frequency ω, is again obtained by applying Lemma 2 in
Appendix A.

We remark that in this case, the destabilizing nonlinearity
is a linear gain, i.e. φu = ku. We established in the
derivation above that G

(
ejω, ∆u

)
= Gu = −1/ku. Hence,
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kuG
(
ejω, ∆u

)
+ 1 = 0. Then, the Nyquist criterion implies

that the Lurye system with G(z, ∆u) and φu = ku enters
into a limit cycle with frequency ω.

C. Limit cycle in the time domain
The limit cycle with the input and output series UT and

YT is not necessarily attractive. Hence, the system usually
only exhibits the oscillation in the time domain with the right
initial conditions. These initial conditions are derived next.
Assume the state-space representation of G(z, ∆u) is given.
For any initial state x0 and input series U , the output series of
the system is Y = Φx0 + ΓU , where Φ and Γ are composed
of the state-space matrices. Construct Y and U by stacking
YT and UT enough times so that dimY = dimU = dimx0,
and calculate the initial condition as x0 = Φ−1 (Y − ΓU).

V. NUMERICAL EXAMPLE

A numerical example is provided to illustrate the results
of Section IV. The nominal system,

G0(z) =
0.1z

z2 − 1.8z + 0.81
, (19)

is taken from Example 1 in [13]. This example also occurs
in [17] and [18] where conditions for a limit cycle oscillation
are constructed by hand. In contrast, the systematic construc-
tion of Section IV is demonstrated next with uncertainty
added to the example. The uncertain system is obtained
by introducing 15% uncertainty across all frequencies, i.e.
G(z,∆) = G0(z) (1 + 0.15∆(z)), where ||∆||∞ ≤ 1. This
system is written as G(z,∆) = FU (M(z), ∆(z)) with

M(z) =

[
0 0.15

G0(z) G0(z)

]
. (20)

First, consider the nominal system G0(z) in which case
Theorem 2 and Corollary 1 is applied to construct a desta-
bilizing nonlinearity. We conduct these calculations on the
frequency grid {αβ π : α and β are relative primes, 1 ≤ α <
β ≤ 100}, which is found sufficiently dense, as increasing
its density any further does not change the results. The
critical frequency of 2π/7 is obtained with the slope bound
ku,0 = 13.03. The corresponding nonlinearity is constructed
using the method in the proof of Theorem 1. The result is
depicted by the solid green line in Fig. 5.

Next, consider the effect of the uncertainty using the
results given in Section IV. Note that ||M11||∞ = 0 < 1
so that the uncertain system G(z, ∆) is robustly stable. The
resulting critical frequency is 2π/9, and the slope bound

shrinks to ku = 6.96 which is noticeably smaller than
ku,0 = 13.03. The worst-case uncertainty sample at the
critical frequency is δu = 0.06 − 0.99j. The interpolation
technique in Appendix A yields ∆u(z) = 1−0.44z

z−0.44 . The con-
structed destabilizing nonlinearity is depicted by the dashed
red line in Fig. 5. The figure shows that the presence of
the uncertainty makes this nonlinearity substantially different
compared to the nominal case.

Fig. 6 is a graphical representation of the phase condition
of Theorem 2 over a frequency grid. Note that in Theo-
rem 2, only the frequency points that are rational fractions
of π are considered. In Fig. 6, the dots corresponding to
those frequencies are connected to make the data easier to
interpret, but the connecting lines have no meaning (other
than for visual purposes). The phase bounds π ± π

T in (5),
which demarcate the boundary of the instability region, are
represented by the light blue dots around π, in the bottom
of the figure. The red area shows the range of values the
phase can attain with the variation of the uncertainty. If
we decrease k below ku, this area moves away from the
boundary of the instability region, while increasing k moves
it further into the instability region. The enlarged section on
the right demonstrates that for k = ku = 6.96, the uncertain
area touches the boundary at the critical frequency 2π/9. At
all other frequency points on the grid, the uncertain area is
outside the instability region.

Finally, a time domain simulation is presented. Fig. 7
depicts the output of the Lurye system in Fig. 1 for random
samples of the uncertainty as well as for the nominal
(∆(z) = 0) and worst-case (∆(z) = ∆u(z)) values. For
all samples, the initial conditions are chosen such that the
input and output sequence of the systems most closely
resemble the sequence corresponding to the limit cycle. The
initial state is determined by finding the least-squares optimal
solution of the equation Y = Φx0 + ΓU from Section IV-
C. Fig. 7 demonstrates that the amplitude of the oscillation
decays for the nominal system and for random samples
of the uncertainty, but the system with ∆u enters into a
sustained limit cycle. This illustrates the combined effect
of the uncertainty and nonlinearity can coupling together to
create a limit cycle instability.

VI. CONCLUSIONS

A method is presented for the instability analysis of a
discrete-time Lurye system in the presence of a SISO dy-
namic uncertainty block and a slope-restricted nonlinearity.
An upper bound of the minimal slope is determined for
which there exist a nonlinearity and a worst-case uncertainty
that can cause the Lurye system to enter into a limit cycle
oscillation. The destabilizing nonlinearity and uncertainty
sample are also constructed. A numerical example is given
that demonstrates how the presence of uncertainty decreases
the required slope of the destabilizing nonlinearity compared
to the nominal case.
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APPENDIX

A. SISO interpolation
Lemma 2 below provides an discrete-time interpolation

result. A similar result for continuous-time systems is given
in the proof of Theorem 9.1 (Small Gain Theorem) of [3].

Lemma 2: Given are a frequency ω0 ∈ [0, π], and a
complex number δ0 ∈ C with |δ0| = 1. There exists a
SISO LTI system ∆(z) ∈ RH∞ such that ∆

(
ejω0

)
= δ0

and ||∆||∞ ≤ 1.
Proof: Consider the system F (z) = 1−pz

z−p . For any
p ∈ R and ω ∈ [0, π],

∣∣F
(
ejω
)∣∣ = 1. Write δ0 = ejϑ0 and

choose ∆(z) = F (z) with

p = − sin ω0+ϑ0

2

sin ω0−ϑ0

2

. (21)

If sin(ω0) sin(ϑ0) < 0, then |p| < 1 and hence ∆(z) ∈
RH∞. Otherwise set ∆(z) = −F (z) with

p =
cos ω0+ϑ0

2

cos ω0−ϑ0

2

(22)

to obtain the stable interpolant.


