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Abstract: This paper proposes enhanced prediction and control design methods for improving traffic
flow with human-driven and automated vehicles. To achieve accurate prediction for the entire
time horizon, data-driven and model-based prediction methods were integrated. The goal of the
integration was to accurately predict the outflow of the traffic network, which was selected as the
highway section in this paper. The proposed novel prediction method was used in the optimal
design for calculating controlled inflows on highway ramps. The goal of the design was to reach
the maximum outflow of the traffic network, even against disturbances on uncontrolled inflows of
the network. The control design leads to an optimization problem based on the min–max principle,
i.e., the traffic outflow is considered to be maximized by controlled inflows and to be minimized by
uncontrolled inflows. The effectiveness of the prediction and the control methods through simulation
examples are illustrated, i.e., traffic outflow can be maximized by the control system under various
uncontrolled inflow values.

Keywords: traffic control; data-driven modeling; automated vehicles; mixed traffic

1. Introduction and Motivation

Providing control strategies for automated vehicles has become a subject of significant
focus in research and development centers of vehicle industry. An important task is to
design a velocity profile for vehicles in order to guarantee effective, comfortable, safe
and economical traffic by exploiting vehicle dynamics and environmental circumstances,
e.g., certain characteristics of fuel consumption, delivered cargo, road inclinations, speed
limits, traffic flow and traffic forecast. The complexity of the control task results in vari-
ous performance requirements which must be simultaneously guaranteed by the control
system [1].

Existing control solutions result in speed profiles for automated vehicles, which differ
from the speed selection strategy of human drivers. The reason for this is that the control
systems of automated vehicles can obtain information on the road ahead, e.g., the usage
of the road capacity or the upcoming downhill terrain characteristics. At the same time,
most of these data are not available for human drivers. It can be shown that the speed
selection of automated vehicles and human-driven vehicles are not independent from each
other. Consequently, the motion of human-driven vehicles must be adapted to automated
vehicles. Moreover, the ratio of automated vehicles (κ) in the entire traffic network also
influences the characteristics of the traffic flow through the modification of traffic speed.

1.1. Motivation Example on the Variation of Traffic Flow

Figure 1 presents an illustration of the impact of κ on the variation in average traffic
speed. In this scenario, a 20 km-long three-lane (outer, middle and inner lanes) segment of
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the hilly Hungarian M1 highway is modeled in a VISSIM traffic simulator. In the simulation
scenario, the speed limit is 130 km/h, except for the section between 6 and 8 km, where the
speed limit is 90 km/h. Without automated vehicles (κ = 0%), the average traffic speed is
close to the speed limit, as can be seen in Figure 1a. When there is an increased number of
automated vehicles on the highway (κ = 20%), the average traffic speed varies due to the
automated vehicles, whose speed profiles are also influenced by the uphill and downhill
sections. The latter case results in an approximately 2% decrease in energy consumption,
within the entire traffic, compared to the previous case, i.e., without automated vehicles.
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(a) Without automated vehicles, κ = 0%
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(b) Ratio of the automated vehicles is κ = 20%

Figure 1. Average traffic speed of the traffic in the example.

Figure 2 shows further examinations of the traffic flow in the distinct segments of the
highway. q denotes the inflow of the motorway (veh/h). Figure 2a,b show the results of
the scenario in the cases of the previous example, i.e., κ = 0% and κ = 20%, respectively. In
these examples, the inflow into the highway section is qin = 3000 veh/h. Figure 2c presents
the result of the scenario, in which the ratio of automated vehicles is κ = 50%. Moreover,
Figure 2d presents the result of the scenario, in which the inflow into the highway section is
significantly increased to qin = 5000 veh/h, and κ = 20%. Through the illustrations, it can
be concluded that increasing the ratio κ and/or increasing the inflow qin has a significant
impact on traffic flow.
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(a) qin = 3000 veh/h, κ = 0%

0 2 4 6 8 10 12 14 16 18 20
400

600

800

1000

1200

1400

1600

Station (km)

V
ol

um
e 

(v
eh

/h
)

 

 

Outer lane
Middle lane
Inner lane

(b) qin = 3000 veh/h, κ = 20%
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(c) qin = 3000 veh/h, κ = 50%
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(d) qin = 5000 veh/h, κ = 20%

Figure 2. Illustration of the traffic flow depending on the inflow and the ratio of automated vehicles.

1.2. Brief Literature Overview on the Related Achievements

Since automated vehicles have a significant impact on traffic flow, it is necessary to
take the modeling and control design of the traffic system into consideration. A com-
prehensive overview of different classical control solutions for ramp metering has been
proposed by [2,3]. Moreover, the vehicle-to-infrastructure (V2I) communication provides
new perspectives in the control of the traffic system, because a huge amount of data about
the motion of the vehicles in the traffic network can be obtained [4]. This allows a more
sophisticated prediction of the upcoming traffic scenario, in which the effectiveness of the
traffic control can be improved.
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The exploitation of the result of the traffic flow analysis in the modeling and control of
automated vehicles is one of the hot topics among researchers, as can be seen in (e.g., [5]).
The most important approaches of traffic flow modeling were summarized by [6]. The
analysis of the traffic flow, in which semi-automated and automated vehicles travel along-
side human-driven vehicles, was proposed by [7]. Stability issues of the traffic flow of
connected and automated vehicles were examined by [8]. In [9], it has been shown that
automated vehicles have only slightly negative effects but significant positive effects on
the traffic flow depending on the penetration rate of the automated vehicles and the traffic
scenario. Interactions between automated and human-driven vehicles were presented
in [10]. The authors in [11] highlighted new achievements in the construction of a macro-
scopic fundamental diagram for traffic flow with automated vehicles. The presented data
analysis results revealed that the traditional triangular fundamental diagram structure
remains applicable to describe the traffic flow characteristics of traffic with automated
vehicles. For mixed traffic, a parsimonious formula was provided to estimate the fun-
damental diagram with measures from pure human-driven traffic and pure automated
vehicle traffic. Control-oriented applications are strongly connected to the modeling of
traffic flow. For example, in [12], a network-level coordination for automated vehicle
control and traffic light control was presented, i.e., a distributed optimization scheme to
reduce the computational complexity and to improve the effectiveness of coordination
was developed. A more complex problem was that of control in mixed traffic, because the
motion of automated vehicles and the motion of human-driven vehicles simultaneously
impact the traffic flow. The interactions between human-driven and autonomous vehicles
in optimal control synthesis for tolls were studied by [13].

Based on the huge amount of data on traffic, a novel data-driven approach for the
analysis and modeling of traffic flow dynamics was proposed by [14]. Traffic flow predic-
tion using a deep-learning algorithm was presented by [15]. In that study, a deep-learning
architecture model was applied by using auto-encoders as building blocks to represent
traffic flow features for prediction. Similarly, Lasso regression was used for traffic flow
prediction in [16]. Cell phone information-based big data analysis and control for trans-
portation purposes was proposed by [17]. The work of [18] focused on generating models
for microscopic traffic simulation, which was built upon real-world data. The identification
and prediction of traffic flow states based on the big data analysis method was presented
by [19]. An increased number of achievable information on traffic flow was used for
training deep neural networks, which were then able to predict traffic flow under urban
traffic scenarios, as can be seen in [20]. A deep learning method using convolutional neural
network and long short-term memory architectures for monitoring traffic flow in urban
region was provided by [21]. The fusion-based technique resulted in high accuracy based
on the evaluation through simulation scenarios.

1.3. Proposed Methodology of the Paper

The overview of the literature shows that several approaches exist for modeling
traffic flow dynamics, but most of these are related to pure human-driven or automated
vehicles. The modeling and analysis of mixed traffic flow is an emerging research field, in
which partial solutions have been achieved. Modeling methods with classical model-based
approaches do exist [11], as do those with unconventional, e.g., network-level [12] or
data-driven approaches [20]. Methodologically, the classical traffic modeling methods are
based on physical relationships, in which the nonlinear characteristics of the traffic flow
are described. The advantage of these methods is that the traffic flow model provides
theoretical fundamentals for designing a controller with guaranteed performances [22].
Nevertheless, their drawback is the increased uncertainty concerning the modeling of
short-time traffic flow, due to robustness features. In the case of data-driven modeling
methods, the actual measured information on the traffic flow is highly relevant, i.e., the
short-time prediction of forthcoming traffic flow can be more accurate due to the actual
information. However, the data-driven modeling solutions also have disadvantages. In
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the case of neural-network-based formulation, the evaluation of the prediction/control
process is challenging, while in the case of a regression-based formulation, the accuracy of
long-time prediction can be limited.

In spite of the various existing methods, it is difficult to find a systematic control-
oriented modeling method which exploits the advantages of data-driven analysis. The aim
of this paper was to integrate data-driven traffic flow prediction in a polynomial model-
based traffic flow model and thus, improve the accuracy of the prediction. The proposed
novel prediction method for control design purposes was applied, i.e., an optimization
problem of traffic flow volume with a ramp metering by the min–max principle was
provided. The resulting control system provides robustness against disturbances of the
system, i.e., the uncontrolled inflows of the traffic network. A novel contribution of this
paper is that the proposed prediction model is able to handle the presence of automated
vehicles in the traffic network at the level of data-driven prediction as well as at the level of
the polynomial traffic flow model.

The prediction and control process is illustrated in Figure 3. The proposed prediction
method has two components, namely data-driven prediction and model-based prediction.
Their outputs are the predicted flow volumes (qN , q1) at the end of the highway section on
a pmax horizon. The outputs of the predictions were integrated into a final prediction qout,
which is used in the control process. The output of the control comprises the controlled
inflows on N number of ramps ri on horizon pmax. The control inputs on the entire horizon
are used in the prediction process and their values at the k + 1 step are used as control
inputs of the traffic network. Different measurements on the traffic network for each
prediction block are used as inputs and thus, the control loop is closed.
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Figure 3. Illustration of the prediction and control process.

The paper is organized as follows. In Section 2, the data-driven estimation of the
traffic flow is presented. This is performed through a two-step analysis. First, a subset
selection method is applied, which is able to prioritize the main attributes based on their
relations to the measured signals. Second, a linear regression model using the least squares
(LS) method is applied to derive a relationship between the attributes and the traffic flow.
Section 3 proposes an enhanced traffic flow model, which results from the interconnection
of the data-driven prediction and the classical traffic flow modeling. Section 4 proposes the
traffic flow control. The effectiveness of the novel optimal control is demonstrated through
simulation scenarios. In this paper, the VISSIM complex traffic simulator was used the
modeling and simulation of the traffic network, while the WEKA data-mining software
was used in the LS-based analysis, as can be seen in [23]. Finally, Section 6 summarizes
with some concluding remarks.
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2. Data-Driven Prediction of the Traffic Flow

In this section, data-driven analysis for the prediction of traffic flow dynamics is
proposed. The purpose is to find a mathematical structure, which can be used to model the
real-time prediction of the forthcoming traffic flow values.

2.1. Brief Overview of Data-Driven Analysis

In this paper, LS-based estimation with subset selection was used to generate predic-
tion models for the traffic flow. In the following, the most important features, based on the
work of [24], are briefly summarized.

The difficulty in data-driven estimation is that a model should be obtained from a
large number of measurements. Consider a dataset with n independent instances, b input
variables and one output variable. The instances are written in the form of n× b dimension
design matrix X. Let ζ∗ be the parameter vector of the true prediction model M(ζ∗).
Through the application of X and ζ∗, the resulting output vector y is determined as

y = Xζ∗ + ε, (1)

where ε is the noise vector, whose elements have normal distribution N(0, σ2) with σ
variance. It is assumed that σ2 is known or can be estimated, which is denoted by σ̂2.

If the number of inputs b of the model increases, the number of subset models also
increases by 2b, which may lead to a computationally unfeasible LS estimation task. There-
fore, the effective estimation requires the determination of preferences among the sets of
variables in ζ. The subset selection is based on the instances X, whose subset models are
generated. In the generation of subset models, it is necessary to reduce the complexity of
the estimation problem, while information loss from the data must be limited [25].

The goal of the subset selection is to find the attributes of ζ∗, which have a significant
impact on y. Consider instance i from vector y as

yi = εi +
b

∑
j=1

ζ∗j xi,j, (2)

where ζ∗j values are the elements of vector ζ∗. For the selection of the relevant subsets,
it is necessary to analyze the sensitivity of yi depending on xi,j. Since the attributes are
time-domain variables, the partial derivatives of (2) are computed as

∂yi
∂xi,j

= ζ∗j . (3)

The partial derivatives are computed for all n instances using the measured signals (3).
This results in n number of derivatives for all attributes. If the deviation of the resulting
partial derivatives for a given attribute is small, then it has a significant impact on y. This
attribute is incorporated in the prediction model and ζ̂ j is estimated with high effectiveness.
However, if the deviation of the resulting ζ∗j values is high, then attribute j may not be part
of the prediction model.

The decision to incorporate j into the prediction model was made based on the
probability density function, which is fitted in a Gaussian form:

Gj(ζ
∗
j ) =

1
σj
√

2π
e
− 1

2

( ζ∗j −µj
σj

)2

, (4)
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where µj and σj are the mean and the deviation of ζ∗j , respectively. The relevance of an
attribute can be expressed by integrating the Gaussian function and taking into account
the sign of ζ∗j together with the scaling of σj as

Dj(ζ
∗
j ) =

1
σj

∞∫
−∞

sign(ζ∗j )Gj(ζ
∗
j )dζ∗j . (5)

where Dj(ζ
∗
j ) expresses the relevance of an attribute on y. In the subset selection, it is

necessary to compute its value for all attributes b. In the selection procedure, the values of
Dj(ζ

∗
j ) are arranged in descending order and the first l number of attributes is selected for

taking part in the prediction model. l is a previously defined scalar value, which is required
to select as small as possible values to result in a relatively simple prediction model for
real-time computation.

In the next step, the coefficients of the linear prediction modelM(ζ̂) was computed.
The prediction was formed as

ŷ = Xl ζ̂, (6)

where ζ̂ contains the coefficients of the attributes and Xl is an n× l dimension subset of
matrix X. The purpose of ζ̂ selection is to find a prediction model from the entire model
space M = {M(ζ) : ζ ∈ Rb}, whose accuracy has the highest value on the given dataset.
The accuracy is scaled by the distance D between the candidate model and the true model,
which is defined as

min
ζ̂
D(M(ζ∗),M(ζ̂)) = min

ζ̂

||y− Xl ζ̂||2
σ2 , (7)

where || · || denotes the L2 norm, y is the measured output, and σ2 is the variance of noise
ε. The minimization in (7) can be solved as an LS optimization problem [24]. The result of
the entire analysis is a linear model, which depends on the relevant attributes.

2.2. Data-Driven Prediction of Traffic Flow

The result of data-driven analysis is applied for the prediction of the traffic flow, which
has inflows of the highway on controlled gates. In the first step, the relevant attributes
based on the analysis of Dj(ζ

∗
j ) must be selected. In the second step, the prediction model

is formed (6) and the outflow of the traffic system qN(k) is approximated through q̂N(k) as

q̂N(k + 1) = ωqN +
k

∑
c=k−j

( N

∑
i=0

αi,c

(
qi(c) + ri(c)

)
+

N

∑
i=1

βi,cvi(l) +
N

∑
i=1

γi,cρi(l) + δlκ(c)
)

, (8)

where j is a design parameter which represents the previous data. In (8), parameters
ωqN , αi,l , βi,c, γi,c, δc are the members of ζ̂ and the following data in the prediction are
incorporated:

• qi(c)+ ri(c) are the inflows of each segment, in which ri is the inflows on the controlled
ramps, considering the information of current k and the past j;

• vi(c) is the average traffic speed on each segment, considering the information of
current k and past j;

• ρi(c) is the traffic density on each segment, considering the information of current k
and past j information;

• κ is the ratio of automated controlled vehicles, considering the information of current
k and past j.
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Parameters ωqN , αi,l , βi,c, γi,c, δc are computed through the optimization algorithm (7). The
result of the regression is a linear function of q̂N(k + 1) in the form of (8), which approxi-
mates qN(k + 1) as

qN(k + 1) = q̂N(k + 1) + eqN (k + 1), (9)

where eqN (k + 1) is prediction error. Since eqN (k + 1) is unknown, it is handled as a
disturbance of the system.

The linear regression form of the system with eqN (k + 1) can be transformed into a
state-space representation, such as

qN(k + 1) = δqN (k) + AqN x(k) + BqN u(k) + DqN w(k), (10)

where x represents the state vector of the system, which contains the measured actual
and past values of the process. Thus, most of the components in the regression (8) are
incorporated in x, such as

x(k) =



[q1(k− j) . . . qN(k)]T

[v1(k− j) . . . vN(k)]T

[ρ1(k− j) . . . ρN(k)]T

[κ(k− j) . . . κ(k)]T

[r1(k− j) . . . rN(k− 1)]T

[κ(k− j) . . . κ(k− 1)]T

[q0(k− j) . . . q0(k− 1)]T


, (11)

where the number of states is M. Furthermore, the control inputs of the system are the sig-
nals, with which the traffic system (8) in k can be influenced such as u =

[
r1(k) . . . rN(k)

]T .
The unknown signals of (8) in k and the prediction error in k + 1 are comprised in
w(k) =

[
q0(k) eqN (k + 1)

]
. Thus, the control inputs of the system are the inflows on

controlled ramps, and the disturbance is the uncontrolled inflow into the traffic network.
Although (10) provides accurate information on the outflow of the system, the rela-

tionship between u(k), w(k) and qN(k + 1) was not sufficiently identified because of state
vector x(k), whose elements play a significant role in the value of the outflow. Since (10)
does not provide information on the impact of u(k) and w(k) on x(k), it is necessary to
expand the traffic flow model with further relationships:

xi(k + 1) = ωi + Aix(k)+Biu(k) + Diw(k), (12)

where xi(k) represents the ith state (i = 1 . . . M) in x(k). In (12) δi, Ai, Bi, Di are parameter
vectors, which are estimated by an LS method through traffic data. The relationships (10)
and (12) result in the control-oriented state-space representation of the system:[

qN(k + 1)
x(k + 1)

]
= ω + Ax(k)+Bu(k) + Dw(k), (13)

where the vector ω and the matrices A, B, D are yielded by ωqN , ωi and AqN , BqN , DqN , Ai, Bi, Di.
Note that if qN(k) is incorporated in x(k), then (13) is reduced to:

x(k + 1) = ω + Ax(k)+Bu(k) + Dw(k). (14)

The resulting state-space form of the system provides an efficient representation of the
traffic flow dynamics which can be used for control design purposes.

2.3. Illustration of the Traffic Flow Prediction

The effectiveness of the data-driven prediction of the forthcoming traffic flow is
illustrated through the following simulation scenarios. In the example, a 7 km-long hilly



Energies 2022, 15, 187 8 of 16

section of M1 highway between Budapest and Vienna with two lanes was considered. The
section is divided into N = 5 segments and the speed control of the automated vehicles is
designed through [1]. The collection of the data was carried out with the VISSIM traffic
simulator. More than 200 traffic simulations were performed with various κ = 0; 10; 20–50%
and q0 = 750; 1000; 1250–5000 veh/h average inflow values, while the vehicles randomly
arrive into the network at all entrances.

The data-driven analysis based on the results of a large number of traffic simulations
was performed. In the analysis, the data-mining WEKA software was used, in which the
pace regression algorithm was implemented [23]. The analysis yields linear regression for
q5(k) in the form of (8). Throughout the analysis, j = 1 past data were also considered
with a 5 min horizon backwards. The subset selection has 6 relevant attributes, which are
v5(k− 1), q4(k) and ρ3(k), ρ3(k− 1), ρ5(k), ρ5(k− 1).

Figure 4 illustrates the effectiveness of the regression analysis, comparing q5(k) and
q̂5(k) of the training set. The pace regression method results in 94.1% accuracy, which
means that most of the q5(k) are close to q̂5(k).

Figure 4. Relationship between q5 and q̂5.

Time-domain simulations of the examination are shown in Figure 5. Two scenarios
are illustrated, i.e., an average traffic flow q0(k) = 3000 veh/h and a rush traffic flow
q0(k) = 5000 veh/h with a congestion at the beginning of the simulation. Figure 5
illustrates that the generated prediction model is able to accurately approximate q5(k) in
both scenarios.
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Figure 5. Examples with the results of the data-driven analysis.

The examples show that the proposed data-driven model can be effective with regard
to making a traffic flow prediction. The results of the prediction are satisfied under normal
and congested traffic circumstances. However, the resulted prediction model (14) cannot be
used for control purposes alone, because it is based on a linear formula, which is effective
for short-term prediction. For long-term prediction, the nonlinear characteristics of the
traffic flow must be taken into consideration, which is achieved by the interconnection of
the data-driven prediction and the conventional traffic modeling approaches.

3. Formulating Control-Oriented Traffic Flow Prediction Model

In this section, the control-oriented model for traffic flow dynamics, in which the data-
driven prediction model and traffic modeling principles are used together, is proposed.

In the formulation of traffic dynamics, the traffic network is gridded into N number
of segments. The traffic flow of each segment is represented by a dynamical equation,
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which is based on the law of conservation. The relationship contains the sum of inflows
and outflows for a given segment i. Traffic density ρi (veh/km) is expressed as

ρi(k + 1) = ρi(k) +
T
Li
[qi−1(k)− qi(k) + ri(k)], (15)

where k is the index of the discrete time step; T is the discrete sample time; Li is the length
of the segment; qi (veh/h) and qi−1 (veh/h) are the inflow of the traffic in segments i and
i− 1, and finally, ri (veh/h) is the sum of the controlled ramp inflow.

Another important relation of the traffic dynamics is the fundamental relationship
which creates a connection between outflow qi(k), traffic density ρi(k) and average traffic
speed vi(k) [26]. The fundamental relationship is formed as

qi(k) = ρi(k)vi(k). (16)

Conventionally, the fundamental relationship is derived through historic measurements
and depends on several factors, as can be seen in, e.g., [27,28]. vi(k) and qi(k) are formed in
the traffic flow model as nonlinear functions of traffic density [29], such as vi(k) = Fv(ρi(k))
and qi(k) = Fq(ρi(k)), where Fv,Fq are nonlinear functions. In the modeling of the traffic
flow dynamics, the impact of κ on vi(k) can be considered in the nonlinear function of F ,
such as

qi(k) = F (ρi(k), κ(k)). (17)

Function F can be effectively formulated through polynomial relationships [30]. An
example of qi, which depends on the ρi and the presence of automated vehicles in the
traffic, is illustrated in Figure 6.
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Figure 6. Illustration of the relationship between ρi, qi (green: without automated vehicles; black:
with automated vehicles).

The dynamics of the traffic flow based on (15) and (17) is written as

ρi(k + 1) = ρi(k) +
T
Li
[qi−1(k)−F (ρi(k), κ(k)) + ri(k)], (18)

which contains the nonlinear characteristics of the fundamental diagram F . The advantage
of the expression (18) is that it incorporates the nonlinear behavior of the traffic flow
dynamics, and thus, (18) can be effective for the long-term prediction of qi(k + 1) through
ρi(k + 1). However, F is derived based on historic measurements, which means that it has
an increased error in terms of short-term prediction. Consequently, (18) uses only a small
number of actual data.

The following model combines the data-driven prediction model and the conventional
traffic model. The purpose of this solution is to eliminate the drawbacks of each method in
the prediction. The highway in the case of the conventional traffic model is formed as a
queue with one segment i = 1, while in the case of the data-driven model, the highway
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is divided into N number of sections. The prediction of the outflow of the highway is as
follows:

qout(k + 1) = λ(p)
∣∣

p=1qN(k + 1) + (1− λ(p)
∣∣

p=1)q1(k + 1), (19)

where qN(k+ 1) is the prediction from the data-driven model and q1(k+ 1) is the prediction
from the traffic model. The following form is applied: q1(k + 1) = F (ρi(k + 1), κ(k + 1)), in
which κ(k + 1) = κ(k). Moreover, the forgetting factor λ(p) ∈ [0; 1], is introduced, which
depends on the step of the prediction p. In the case of p = 1, λ(p) has high value, while
the increase in p leads to the reduction in λp. Through the modification of λ, a balance
of the prediction can be achieved. In a short-term prediction, qN has priority, while in a
long-term prediction, q1 has priority.

The prediction of the outflow at k + 2 is formed as

qout(k + 2) = λ(p)
∣∣

p=2qN(k + 2) + (1− λ(p)
∣∣

p=2)q1(k + 2). (20)

The factors are the following. q1(k + 2) is expressed in the following form:

q1(k + 2) = F (ρ1(k + 2), κ(k + 2)) =

= F
(

ρ1(k + 1) +
T
L1

[
q0(k + 1)− qout(k + 1) + r1(k + 1)

]
, κ(k)

)
, (21)

and thus, qout(k + 1) is also used in the prediction. qN(k + 2) is expressed based on (14),
such as

qN(k + 2) = δqN (k + 1) + AqN x(k + 1) + Bu(k + 1) + Dw(k + 1), (22)

where x(k + 1) results from (14) and u(k) = r1(k) for all k.
Through the proposed traffic model, the prediction of the traffic flow can be updated

through the results of the data-driven analysis. Through the increase in the value p, the
impact of the data-driven model through λ(p) is reduced; consequently, the emphasis of
the nonlinear characteristics of the traffic flow is considered.

4. Optimal Control Design for Traffic Flow Maximization

The design of an optimal control was based on the previously formed enhanced traffic
flow model. The purpose of the control design is to guarantee the maximum outflow of the
traffic network qN through the inflow of the controlled ramp ri. Since the system contains
disturbances, their impact on qN must be reduced. This leads to an optimization task.

In the control design of the traffic system, the following performance requirements
must be guaranteed.

1. It is necessary to achieve the maximum outflow of the traffic network qout(k + 1),
such as:

z =
pmax

∑
p=1

qout(k + p), z2 → max, (23)

where pmax represents the length of the horizon. This performance specification is
advantageous compared to the classical solution, which is based on the setting of
ρi related to critical density ρi,crit, as can be seen in, e.g., [1]. Namely, the setting of
ρi requires preliminary knowledge on the critical density of the traffic flow. Nev-
ertheless, it depends on several factors, as can be seen in [31]. At the same time,
in the proposed control strategy, data are obtained from the traffic system through
data-driven analysis. This means that the result of the optimization can be effective
without a fixed fundamental diagram.
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2. In the control task, the control inputs must be as small as possible. The control input
ri(k), i = 1 . . . N is a positive variable, which has physical limits. Moreover, it is
necessary to limit its variation to prevent the rapid change during the actuation.
Therefore, two constraints on ri(k) are defined, such as

ri(k) ≥ max(0, ri(k− 1)− ∆ri), (24a)

ri(k) ≤ min(ri,max, ri(k− 1) + ∆ri), (24b)

where ri,max is the maximum of ri(k) and ∆ri is its maximum variation.

The traffic system has also disturbances within the inflow data, q0(k) . . . q0(k + pmax)
because the number of future entering vehicles is unknown, even if the routes of the
automated vehicles are assumed to be known. Due to the κ ratio of automated vehi-
cles, q0(k) . . . q0(k + p) can be divided into known (q+0 (k + p)) and unknown (qu

0 (k + p))
disturbances in the following way:

q0(k + p) = q+0 (k + p) + qu
0 (k + p), ∀p = 1 . . . pmax. (25)

The known disturbances can be incorporated in the traffic flow maximization procedure as
constant values. Thus, only a part of the disturbances, i.e., the unknown disturbances, can
be handled in a worst-case scenario.

The form of the control task requires three components. First, the performance in (23)
was used as an objective of optimization. Second, the performance (24) is handled as a
constraint in the control design. Third, disturbance qu

0 (k + p) in (25) must be minimized in
z2. Thus, the control design leads to a min–max task:

min
qu

0 (k)...q
u
0 (k+pmax)

max
ri(k),...ri(k+pmax)

z2, (26)

with the following constraints:

qout(k + p) = λ(p)qN(k + p− 1) + (1− λ(p))q1(k + p− 1), (27a)

ri(k + p) ≥ max(0, ri(k + p− 1)− ∆ri), ∀i ∈ [1; N], p ∈ [1; pmax] (27b)

ri(k + p) ≤ min(ri,max, ri(k + p− 1) + ∆ri), ∀i ∈ [1; N], p ∈ [1; pmax] (27c)

qu
0 (k + p) ≥ qu

0,min(k + p), ∀p ∈ [1; pmax] (27d)

qu
0 (k + p) ≤ qu

0,max(k + p), ∀p ∈ [1; pmax] (27e)

where qu
0,min(k + p), qu

0,max(k + p) are the bounds of the unknown disturbance. The results
of the optimization are the intervention signals ri(k), . . . ri(k + pmax) and the values of the
unknown disturbances qu

0 (k) . . . qu
0 (k + pmax). The control signal at time step k is ri(k).

The solution of task (26) requires the joint handling of the minimization and maxi-
mization tasks. In practice, these are separated and an iterative solution is applied.

• First, the minimization task is solved for initial fixed values qu
0,min(k + p), qu

0,max(k + p).
The solution is achieved by an optimization algorithm, which is able to handle nonlin-
ear constraints, as can be seen in, e.g., [32]. This results in ri(k), . . . ri(k + pmax values,
which are used as fixed values during the solution of the maximization task in (26).

• Second, the maximization task is also solved by using qu
0,min(k + p), qu

0,max(k + p)
values. The maximization task also results in ri(k), . . . ri(k + pmax) values.

• The iteration procedure is stopped, when the relative errors of the solutions qu
0,min(k +

p), qu
0,max(k + p), ri(k), . . . ri(k + pmax) in the actual and the previous steps are smaller

than a predefined value.

5. Simulation Examples

In this section, the effectiveness of the proposed method is illustrated through sim-
ulation examples. In the examples, a 5 km-long highway section with three lanes for
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was selected illustration purposes. In the example, κ = 35% was set, meaning that the
traffic flow contains a significant number of automated vehicles. Several simulations were
performed in the VISSIM traffic simulator in order to determine the function F . The
illustration of a selected scenario is shown in Figure 7a. Figure 7a shows the variation of
traffic flow volume, depending on highway section (axis X) and on time (axis Y). Here,
the values of the volume in several small sections of the highway depending on the time
are shown. There is a congestion at the end of the highway section at 10 min, which has
a significant impact on the entire highway section. The reduced traffic flow has reached
the 1 km section point at 20 min. The example shows that the dynamics of the traffic
flow is close to the experience in the context of highway scenarios. In the illustration, the
simulated data are synchronized, which is guaranteed by the data acquisition process in
VISSIM. Figure 7b shows the derived fundamental diagram of the highway. The data for
the determination of F were obtained by various VISSIM simulations. The volume–density
pairs of all simulation scenarios on this figure were matched through their time stamp in
VISSIM. F was approximated to a sixth-order polynomial form.

(a) Volume on the highway section
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(b) Fundamental diagram of the highway

Figure 7. Simulation example of the selected highway section.

The effectiveness of the outflow prediction is illustrated in Figure 8. The example
presents the effectiveness of the integration of the data-driven and the classical traffic
models for the prediction of the forthcoming traffic flow. Figure 8 shows the real outflow,
which is approximated in three ways. First, q1 illustrates the prediction made by the
classical traffic model (18). In the simulation, the model uses q0(k) as new data and ρ1(k)
as its state in all time step k. Although the model predicts the forthcoming congestion for
high p values, it has a higher prediction error at low p values. Second, the data-driven
prediction is shown by qN . The prediction model (14) uses q0(k) as new data for all k
step and x(k) states in the computation of x(k + 1). This model is unable to predict non-
linearities due to its linear form. Consequently, qN predicts the real outflow for small
p values, while for increased p values, q5 significantly differs from the real-traffic flow.
Third, the results of the interconnected model are shown in Figure 8. In the interconnection
between q1 and qN , the λ function is selected as λ = 1− p/10 if p < 10, otherwise λ = 0.
The selection guarantees the smooth transition between the interconnected signals. The
predicted outflow approximates the real outflow on the entire term of the prediction.
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Figure 8. Illustration of the outflow prediction.
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The operation of the controlled system is shown in Figure 9. In the example, the
5 km-long-highway section has an on-ramp at the highway segment 1 km. The inflow on
the ramp r can be controlled by traffic light. The purpose of the control is to guarantee
the maximum outflow at the end of the highway section through the actuation of r. The
inflows represent a traffic scenario, in which there is a rush hour in the middle of the
simulation. The q0 inflow is shown in Figure 9a and the inflow demand on the on-ramp
rdem is shown in Figure 9b. The inflow rdem is limited by the computed r, which results
in the real inflow rreal . In the simulation, the variation limit is set to ∆ri = 100 veh/h.
Another result of the min–max optimization task is qu

0 , which is illustrated in Figure 9c.
The limits of qu

0 are qu
0,min = 0 veh/h and qu

0,max = 400 veh/h. The role of the computation
of qu

0 is to characterize the worst-case scenario. For example, between 250 s and 1000 s,
the worst-case is qu

0 = qu
0,max, which facilitates reduced outflow through a congestion.

Although qu
0 overestimates the real value of the unknown qu

0 , it guarantees the avoidance
of the traffic jam. The achieved outflow of the highway is illustrated in Figure 9d. It can be
seen that the performance of the control, i.e., the maximization of the outflow, is achieved.
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(a) q0 inflow into the highway section
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(b) Inflow on the highway ramp
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0 on the highway section
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(d) Outflow with control intervention

Figure 9. Simulation on the controlled highway section.

Figure 10 presents two counter examples to illustrate the effectiveness of the proposed
control strategy. Figure 10a illustrates the scenario without control, which means that the
rdem inflow enters the highway. Due to the increasing q0 and rdem, the traffic flow on the
highway is over saturated, which leads to a congestion, between 900 s and 1500 s. The
comparison of Figures 9d and 10a shows the effectiveness of the traffic control system, i.e.,
the outflow is significantly higher due to the avoidance of congestion.

The following simulation example is shown in Figure 10b,c. In this scenario, the
control strategy is modified by the simplification of the optimization task (26), which leads
to the following form:

max
ri(k),...ri(k+pmax)

pmax

∑
p=1

qout(k + p)2, (28)

such that

qout(k + p) = λ(p)qN(k + p− 1) + (1− λ(p))q1(k + p− 1), (29a)

ri(k + p) ≥ max(0, ri(k + p− 1)− ∆ri), ∀i ∈ [1; N], p ∈ [1; pmax], (29b)

ri(k + p) ≤ min(ri,max, ri(k + p− 1) + ∆ri), ∀i ∈ [1; N], p ∈ [1; pmax]. (29c)

This means that the worst-case scenario is not considered during optimization. This results
in increased inflow on the ramp, as can be seen in Figure 10b. In this scenario, the limitation
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of the inflow started at 450 s, while in the scenario of Figure 10b, r is reduced after 250 s.
Although the achieved outflow is similar until 1000 s, its significant reduction in the
simulation between 1000 s and 1500 s was due to the over saturation of the traffic flow.
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(a) Outflow without control intervention
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(b) Inflow on the highway ramp
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(c) Outflow with control intervention

Figure 10. Counter examples for the examination of the control.

6. Conclusions

This paper proposed an effective method for the prediction and maximization of traffic
outflow on a highway. The results of the simulations showed that the prediction through
the integration of data-driven and model-based methods can be improved compared to
each prediction. Moreover, the examples on the control illustrated that maximum outflow
during the entire traffic flow process can be achieved. Therefore, the proposed prediction
and control design methods can be efficiently used as a theoretical control basis for highway
traffic applications. Nevertheless, the proposed method requires a large number of data,
from which the data-driven model is to be generated. Since the data-driven and model-
based prediction blocks contain a large number of parameters, the implementation of the
method for different types of highway sections (e.g., varying lane numbers and section
lengths) can require the calculation of parameters.

The future challenge of the method is to improve the model-based prediction through
learning-based features. Instead of using parameters in physical-based relationships, a
possible way to achieve the traffic flow model is to tune the model parameters through the
learning process. It requests enhanced learning features, with which the structure and the
parameters of the model can be automatically selected, as can be seen in, e.g., [33]. Using
this improvement, the advantages of the model-based prediction on an increased horizon
can be exploited.
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