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Abstract: Laser speckle contrast imaging (LSCI) is a method to visualize and quantify tissue
perfusion and blood flow. A common flaw in LSCI variants is their sensitivity to the optical setup
parameters and that they operate well only on statistics of undistorted laser speckle patterns. The
signal saturation of the sensors makes the contrast calculation misleading, hence the illumination
level must be well controlled. We describe the theoretical explanation for the saturation-caused
degradation. We introduce a linear extrapolation method to eliminate the overexposure induced
error up to an extent of 60-70% saturated pixel count. Depending on the contrast value and
use case, enables to use 3-8 times higher external illumination level with no deterioration of
the contrast calculation and thus the measured blood flow index. Our method enables a higher
signal-to-noise ratio in darker areas by allowing the use of higher illumination, utilizing a larger
portion of the dynamic range of the sensors, and making the illumination level setting less
cumbersome.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Laser Speckle Contrast Imaging (LSCI) was first introduced for the study of blood perfusion in
[1]. The technique is applied in a wide spectrum of areas and used in the biomedical field for
non-invasive measurement of the microcirculation and blood perfusion on the brain surface [2]
and skin [3], it is used in retina diagnostics [4] and general clinical applications [5,6], as well as
for semen motility qualification [7]. LSCI largely builds on the coherent property of laser light;
interference occurs when coherent light is reflected from various geometries. An imaging device
captures the interference in a from of a random pattern. Then, statistics of the random pattern
can be used to derive relative flow speeds. The relation between the laser speckle statistics and
flow rate (blood flow index) depends on multiple factors, including the quality of the laser, the
optical arrangement, the characteristics of the sensor and the calibration methods [8–15].

Two of the issues are the over- and underexposure. Underexposure deteriorate the calculated
statistics of the speckle pattern and decrease the signal-to-noise ratio due to small discrete
values. This issue is addressed in [16] with a correction term. Despite that overexposure alters
significantly the speckle statistics as well, for the best of our knowledge, no publication has dealt
with the saturation effect. As a rule of thumb, it is recommended to set the average of the detected
intensity pattern near or below the middle of the dynamic range of the sensor, so that saturation
and clipping is avoided [17]. We argue that even small percentages of the saturated pixels can
alter the speckle statistics and derived blood flow indices. Furthermore, the constant need for
adjusting the exposure places an additional burden on researchers and developers of LSCI. We
believe, that making LSCI methods more robust against saturation, several low intensity and low
signal to noise ratio related artifact [18] can be reduced by allowing higher illumination.

In this study, we analyze the effect of overexposure on speckle statistics and propose a
compensation method, which provides consistent results in a wide range of exposures. The
correction algorithm uses extrapolation of the function of contrast degradation and the ratio of
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saturated pixels. We show the capabilities of our algorithm with numerical simulations and on
real world measurements as well.

2. Laser speckle statistics

LSCI utilizes the statistics of the random speckle pattern based on a measure of contrast κ. As
random pattern changes in accordance with the movement of the scatterers, the flow rate ∝ 1τc.
The different τc decorrelation times are then mapped to a contrast map calculated as:

κ2s =
σ2(Is)

⟨Is⟩2 , (1)

where σ(Is)
2 and ⟨Is⟩ are the sample variance and the sample mean calculated in a sliding window

of a small neighborhood (e.g N × N = 5 × 5). The reduced second moment υ2 depending on T
exposure time and τc is given in the following model [19]:

υ2(T , τc) =
β

T2

∫ T

0

∫ T

0
ρ|gn

1(t
′−t′′)|2 + (1 − ρ)|gn

1(t
′−t′′)|2dt′dt′′, (2)

where ρ is the ratio of the dynamic scatterers and (1− ρ) is the ratio of the static scatterers to total
scatterers, and t′−t′′ give the time differences during the exposure, β is a normalization factor
depending on the speckle size [20], detector physical resolution and additional factors of the
experimental setup [21,22]. g1 is the electric field autocorrelation, which according to [1] gives
us gn

1(t) = exp(−(t/τc)n) relation, where τc is the correlation time. The value of n depends on the
type of flow dynamics [13]. The contrast values are usually averaged on multiple consecutive
frames to improve the signal-to-noise ratio. There are other approaches using temporal or
spatiotemporal contrast calculations [10,23,24].

It is important to note, that the outlined methods rely on undistorted speckle patterns, meaning
there should be no significant alteration found compared to the ideal Gaussian distribution.
Overexposure results in clipped signals and truncated distribution, making the calculations
misleading. Our aim is to compensate the saturation effect on contrast calculation during the
preprocessing of overexposed speckle patterns.

2.1. Effect of signal saturation

Several previous studies [21,22,25] detail the statistical properties of the speckle pattern. Working
with biological samples and realistic sensors, the recorded speckle pattern becomes a composite
of multiple origins. Three major factors can be distinguished in this composite: a static element,
a dynamic element and a factor, which accounts for the camera noise. The static component
can be modeled as a single fully developed speckle pattern. The component of interest is the
dynamic one, which is described by the integration of the varying speckle pattern in the time
domain over a single exposure. The general composite of the factors can be modeled by the sum
of three random variables as [26]:

Is = (1 − ρ)S(λS) + ρD(αD, βD) +W, (3)

where S is a random variable of exponential distribution, representing static scatterers. Dynamic
scatterers are described with the random variable D of gamma distribution. The gamma
distribution can be defined by αD>0 shape and βD>0 rate parameters. Camera noise is taken
into account as a random variable of normal distribution W and ρ is the ratio of the dynamic
scatterers to total scatterers (as in Eq. (2)).

In the followings, we focus only on large signal behavior, thus we simplify by assuming the
camera noise to be negligible W ≈ 0. Since the sum of different multiple gamma distributions
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can be estimated by a single near gamma distributed gamma-series [27,28], we handle Is as a
single one, regardless of static scatterer content. The described model does not include several
realistic image acquisition and laser source error phenomena (such as laser bandwidth, pixel
cross talk, shoot noise, speckle oversampling). In order to handle these effects, we implemented
a numerical approach that is described in the following sections.

Let Ii be the individual samples with gamma distribution, so the probability density function
can be described as:

f (Ii) =
βα

Γ(α)
Iα−1
i e−βIi , (4)

and the cumulative distribution function is:

F(Ii) =
γ(α, βIi)

Γ(α)
, (5)

where Γ(α) =
∫ ∞

0 tα−1e−tdt is the gamma function, and γ(α, βIi) =
∫ βIi
0 tα−1e−tdt is the lower

incomplete gamma function. In order to calculate the contrast, the expected value and the
variance of Eq. (4) is needed. The two values are calculated as E(f ) = α/β and σ2(f ) = α/β2

based on the contrast calculation equations κ2s = 1/α for the unsaturated reference distribution.
Next, let us investigate the saturated case by defining it with the following cumulative (truncated)

distribution function:

Fsat(Ii) =

{︄
F(Ii), if Ii<Isat

1, otherwise.
, (6)

where Isat is the saturation threshold. The expected value of the truncated gamma distribution in
the undistorted [0, Isat] region is:

E(γ(α, βIsat)) =
1
β

γ(α + 1, βIsat)

γ(α, βIsat)
(7)

The expected value of the saturated distribution E(fsat) can be calculated by weighting the
truncated gamma distribution by Fsat(Ii) and adding the saturation threshold Isat weighted by
1 − Fsat(Ii):

E(fsat) =
α

β

γ(α + 1, βIsat)

Γ(α + 1)
+ Isat (1 − Fsat(Ii)) (8)

Variance is calculated based on the expression of moments σ2(x) = E(x2) − E(x)2, and that the
combined variance is the sum of the individual variances of independent samples:

σ2(fsat) =
α

β2
γ(α + 2, βIsat)

Γ(α + 1)
− E(fsat)

2 + I2
sat
(︁
1 − Fsat(Ii)

)︁
. (9)

The contrast equals to 1/α in the limiting case when Isat → ∞, and it becomes zero when
Isat → 0.

For completeness, it is important to mention that the quantization of very low intensity values
cause a different kind of distortion in the observed contrast values. As it is described in [16], the
effect of the bit depth b on the contrast can be modeled by defining κ2 corrected contrast:

κ2 ≈ κ2s

(︃
1 +

Isat

E(f )(2b − 1)

)︃
. (10)

Equations (8)–10 enable to simulate and analyze both the effect of under- and overexposure.
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2.2. Analytical solution for the reference contrast

We refer to the contrast, which we could observe under ideal conditions as the reference contrast.
The reference contrast 1/α can be calculated by using higher-order partial derivatives of the
saturation ratio and sample mean with respect to the saturation threshold (Isat). For ease of
notation we introduce saturation ratio R and notation Y as:

R = 1 − Fsat(Ii) (1)

Y = E(fsat) − IsatR =
α

β

γ(α + 1, βIsat)

Γ(α + 1)
(2)

Note, that the saturation ratio is equal to the complementary cumulative distribution function
(tail distribution). The shape and rate parameters of the distribution can be calculated in the
following way:

Let A =
∂2Y
∂I2

sat
=

1
Γ(α)

βαe−βIsat
[︂
αIα−1

sat − Iαsatβ
]︂
, (3)

and let B =
∂R
∂Isat

= −
1
Γ(α)

βαIα−1
sat e−βIsat , (4)

then
A
B
= −α + βIsat, (5)

∂

∂Isat

A
B
= β, (6)

(︂ ∂
∂Isat

A
B

)︂
Isat −

A
B
= α (7)

Though the result is theoretically feasible, it is unsuitable for practical application. First and
second order derivatives and their ratio are required for the implementation, which makes the
solution sensitive to noise and numerically unstable in the case of small differences.

3. Simulation

In order to investigate the practical effects of saturation, we performed a thorough image-based
numerical simulations using the methods and models presented in Refs. [29], [30], [31].

To model a realistic camera and laser source, the following effects are incorporated in the
simulations: (i) fixed pattern noise and shot noise modeled by Poisson distribution, (ii) finite bit
length data representation by rounding to 12-bit integer, (iii) lateral pixel crosstalk implemented
as 7x7 Gaussian kernel, (iv) speckle size, and (v) static scatter content. The simulated wavelength
was λ = 820nm and the sensor size was 256x256 pixels. The images were scaled with different
illumination values, rounded, then normalized to unity by Isat = 212. The saturation effect was
modeled by clipping the intensity.

First, speckle patterns were generated with increasing illumination (β rate parameter). The
used parameters were α = 4, the mean speckle size was 4 pixels, shot noise σn = 0.01, lateral
pixel crosstalk σp = 0.5, and σλ = 3nm. First, the illumination level (Iunsat) was set to the
maximum level, where the speckle pattern had no saturated value (R = 0). Relative to this value,
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Fig. 1. Density functions of 256x256 pixels of simulated speckle patterns are shown.
The used parameters are α = 4, speckle size 4 pixels, shot noise σn = 0.01, lateral pixel
crosstalk σp = 0.5, static scatterer ρ = 0. Subplot b) shows the speckle pattern at maximum
light intensity (Iunsat) where no saturation occurred. The subplots a), c), d) correspond to
0.25, 2.5, 4 times this intensity. The contrast and saturation ratio of the four speckle patterns
are Ks = 0.46, 0.47, 0.41, 0.27 and Rs = 0%, 0%, 9.1%, 43.5%, respectively.

the intensity was varied in 0.25Iunsat, 1Iunsat, 2.5Iunsat, and 4Iunsat steps. The resulting images and
their probability distributions are presented in Fig. 1.

The detailed relation between the contrast, the observed mean illumination and the saturation
ratio is shown in Fig. 2. To calculate the saturation ratio Rs, the intensity levels are first binarized;
0 is assigned if there is no saturation, 1 if the pixel value reached Isat. Then, the binary map is
averaged in N × N neighborhoods:

Rs = ⟨bin(Ii)⟩, where (18)

bin(Ii) =

{︄
0, if Ii<Isat

1, otherwise.
(19)

Fig. 2. Subplot a) shows the contrast values and the saturation ratio as a function of the
mean observed illumination. The yellow markers corresponds to the numerical simulation
of Fig. 1. Subplots b) and c) show the linear and the exponential components of the contrast
approximation as a function of the saturation ratio.
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It can be seen that the contrast value decreases as more and more pixels become saturated.
The reason behind this is that the mean value of the pattern is increasing asymptotically to the
saturation level, while the standard deviation is decreasing.

The contrast κs can be approximated as a function of the saturation ratio Rs, with a linear and
two exponential components:

κs(Rs) ≈ p1 · Rs + p0 + a1e−b1Rs − a2e−b2(1−Rs). (20)

Fig. 2(c) shows the detrended, exponential component only, with contrast values for the same
examples.

Next, we investigated the contrast deterioration as a function of various flow rates and imaging
parameters: (i) as a function of α shape parameter, (ii) speckle size, (iii) pixel cross talk and (iv)
shot noise. It can be seen in Fig. 3 that the main tendency of contrast deterioration does not alter
under various scenarios.

Fig. 3. The upper subplots show the contrast value as a function of the saturation ratio under
various parameter sweeps: shape parameter, speckle size in pixels, pixel crosstalk, and shot
noise. In the bottom row, the detrended contrast values are plotted with solid curves and
their fitted model (the exponential terms of Eq. (20) only) as black dashed curves. While a
parameter is changed, the others remained static as α = 2, speckle size 4 pixels for subplot
a) and speckle size 1 for b-d), shot noise σn = 0, static scatterer ratio ρ = 0, lateral pixel
crosstalk σp = 0.5.

4. Correction of overexposure

The goal of this section is to compare the compensation of the contrast distortion of partially
saturated images. We demonstrated in the previous sections, that the contrast value decreases as
more and more pixels saturate. It can be seen in the detrended contrast curves (Fig. 3), which are
the exponential components of the fitted values that the low and high saturation sides can differ
significantly (a1 ≠ a2 and b1 ≠ b2). The reason for the difference is that the high and low part of
the PDF of the intensity is affected differently by various imaging distortions. This observation
suggests that a precise extrapolation cannot be done when near half of the pixels are saturated.

Next, we investigate whether the unsaturated case can be estimated by extrapolation from
an artificially generated saturation ratio and contrast curve. Such curves, similar to Fig. 2 and
Fig. 3, may be generated from the recorded images by lowering the threshold value step by step,
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clipping the images and recalculating their contrast maps. The dynamic range of the initial
image is limited by the threshold of the sensor as I0 ∈ [0, Isat]. Let us divide this range into M
evenly distributed artificial threshold values. After consecutively clipping the original image at
each threshold, we get M contrast κi and saturation ratio Ri maps using Eq. (1), Eq. (18), where
i ∈ [1, M].

We have compared two straightforward function extrapolation strategies. As a reference
solution, we fitted the Eq. (20) with M = 7 threshold levels with constrained nonlinear least-
squares optimization. In addition, we explored the near linear behavior of the contrast decreasing
in lower contrast cases with a simple and effective linear function. The presented simulation
contained the following parameter settings: α = 1, 2, 5, 8, 20, 50, speckle size 2 pixels, shot noise
σn = 0.01, lateral pixel cross talk σp = 0.5, static scatterer ratio ρ = 0.2.

After parameter fitting, each of them was evaluated at Rs = 0 point to get the unsaturated
estimate. The simulation was repeated at 100 illumination levels in the range of 0.25Iunsat to
5Iunsat. The outcome is presented in Fig. 4(a). The Eq. (20) based extrapolation method resulted
in precise, but slow and noisy estimates.

Fig. 4. Comparison of different extrapolation methods: a) contrast and saturation ratio
point pairs are fitted by Eq. (20) and evaluated Rs = 0; b) linear fitting using Eq. (22); c)
residual multiplicative error scatter plot and trend of selected, low contrast (κs<0.3) points;
d) linear fitting with residual error correction optimized for low contrast values by Eq. (24).

Next, the contrast κs is approximated by a linear function of the saturation ratio and the
measured (partially saturated) contrast value:

κcorr,linear = p1(κs, Rs) · Rs + p0(κs, Rs). (21)

In order to further minimize the computational requirements, we took the advantage that
setting the threshold level to 0, the resulting contrast becomes 0 at saturation ratio 1, thus there is
no need for further contrast calculations in addition to the already known κs and Rs. Thus this
estimation simplifies to:

κcorr,linear =
κs

1 − Rs
. (22)

The results are shown in Fig. 4(b). As expected, this method produced low estimation error at
low contrast values where the contrast function is more linear.

As a continuation, we also analyzed the residual error of the fitting process. Generally, due
to the independent distortion sources, error compensation is not feasible, though, for a certain
condition range, it is beneficial to reduce the extrapolation imprecision. In order to explore
that, multiple simulation setups were used with a wide parameter span. The error was sought
as the ratio of the expected and the estimated contrast values κunsat/κcorr,linear. The relation that
describes the error can be derived as the quotient of Eq. (20) and Eq. (22), and by substituting
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Rs = 0. The quotient can be approximated with good accuracy by a rational function in the range
of Rs ∈ [0, 1] in the following form:

κunsat

κcorr,linear
=

(p0 + a1)(1 − Rs)

p1Rs + p0 + a1e−b1Rs − a2e−b2(1−Rs)
≈

1 + c1Rs

1 + q1Rs + q2R2
s
. (23)

The gathered data and the results of the approximate model (Eq. (23)) is presented in Fig. 4(c)
as black dots. For different parameter settings, where the exponential terms of Eq. (20) are small
the extrapolation error behaved similarly, independently from the actual contrast value. This
observation helps to correct some errors of the simple extrapolation for a wide range of setups.
As a rule of thumb, low contrast values (κs<0.3 − 0.4, which corresponds to higher flow rate or
long exposure time, small speckle size, etc.) satisfy this condition. Including this term in the
correction process, the simplified linear extrapolation becomes:

κcorr =
κs

1 − Rs

1 + c1Rs

1 + q1Rs + q2R2
s
, (24)

where the parameters are c1 = −0.8, q1 = −0.85, q2 = 0.25 for the selected low contrast region.
The corresponding corrected curves can be seen in Fig. 4(d). The simulations of Fig. 3 is repeated
using Eq. (24) and can be seen in Fig. 5. The advantage of this form is that it can be evaluated
using image operators without pixel-wise fitting routines. Note, to correct the overexposure, κs
and Rs must be calculated for each image, while c1, q1, q2 only once. On the other hand, the
parameters of the correction term may differ for different setups and need to be customized.

Fig. 5. Linear extrapolation with residual error corrected repetition of the simulations
presented in Fig. 3. The dash lines are the expected, unsaturated contrast value levels.

5. Measurement

In this section, the application of Eq. (24) is tested in laboratory experiments. A laser spot
was generated by an uncollimated single-mode laser diode driven by a constant current source
(RLD82PZJ1, 820 nm central wavelength, 220 mW, ROHM Co., Ltd., Japan). The laser diode
was placed in a mount with a thermoelectric cooling stage (LDM9T, Thorlabs, Newton, NJ, USA)
and driven by a current generator (LDP-VRM 01-12 CA, Picolas GmbH, Germany). The images
were acquired with a 10 cm focal length and f/11 aperture objective and a monochrome camera
of 1536x2048 pixels resolution and 3.45×3.45 µm2 pixel size (Basler ACA2040-55um, Basler
Vision Technologies, Germany). Given the linearly polarized laser diode and an additional static
and a rotated linear polarizer (Thorlabs, Newton, NJ, USA) the illumination level was varied in
wide range.

The first set of measurements observed a static white carton paper and a small area of the
backside of a hand with different exposure times (5, 10, 20 ms) and changing illumination level.
The contrast and Eq. (24) were calculated in a 7x7 pixels sliding window, than averaged for
2x2 mm2 area to make a single measurement dot as shown in Fig. 6. The points shown in the



Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 21531

figure belongs to the original and corrected 1/κ2s values. Working with in vivo samples we found
that the contrast and saturation ratio curves tends to be linear, with less non-linearity than the
ideal scenarios. As Fig. 3 parametric analysis showed, non-idealities separately already result in
flattening of the contrast curve. Thus the compensation may be more effective in real applications
than the numerical simulations suggest.

Fig. 6. Speckle contrast of the same areas at different illumination levels varied in 1:15 ratio.
Red dots scaled on the right axis are the ratio of saturating pixels. Scaled on the left axis,
the uncorrected values are shown as blue dots, the corrected values as green dots. Subplots
show measurements of 2 mm by 2 mm areas of a) static white paper and b-d) back of a hand
with 5, 10, and 20 ms exposure times.

As a final experiment, we observed human fingers. 25 frames were taken at 5 ms exposure time
first at non-saturating light level, then at three times larger illumination, causing significant area
getting overexposured. The spatial contrast is calculated in 11x11 pixels windows and averaged
for the frames. Figure 7 shows both the uncorrected and corrected perfusion maps.



Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 21532

Fig. 7. Contrast correction of an overexposured image using Eq. (24). a) the perfusion
map generated at medium illumination. The maximum intensity was set to 50% mean value
of the sensor’s dynamic range resulting in no saturating pixels. b) perfusion map with
overexposured regions using three times higher intensity. Strong distortion can be seen at
saturated regions, and better signal to noise ratio at darker areas. c) local mean with color
coded saturation (yellow to red areas). d) compensated perfusion map using the proposed
linear extrapolation method. The perfusion is estimated as 1/κ2.

6. Discussion

The computational requirement of the presented linear and corrected extrapolation method is
slightly above the standard contrast calculations. This may restrict its real time application in
time critical applications, such as to visualize blood flow changes in vivo intraoperative situations
[6].

The contrast range reported in practical applications lies in the range of 0.04<κ<0.6 restricted
by noise, pixel cross-talk, finite laser spatial coherence length and exposition length [31].
Considering these two limiting cases, we showed that up to 50-60% saturating pixel ratio and low
contrast range (κ<0.3 − 0.4) simple, linear extrapolation method enables external illumination
increase with low blood flow index distortion.

7. Conclusions

Our work suggests that overexposured laser speckle images can be compensated to a wide extent,
and common targets can be viewed with better signal-to-noise ratio and more uniform perfusion
visualization. Such situations of high dynamic range targets occur during laparoscopic surgeries,
various clinical practical situations of diagnosing burn wounds, skin microvasculature, liver,
esophagus, and the large intestine. Furthermore, the strict illumination control to avoid any
saturation can be waived.
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