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Abstract. In this paper, we introduce a new technique for change detection in
urban environment based on the comparison of 3D point clouds with signif-
icantly different density characteristics. Our proposed approach extracts mov-
ing objects and environmental changes from sparse and inhomogeneous instant
3D (i3D) measurements, using as reference background model dense and regular
point clouds captured by mobile laser scanning (MLS) systems. The introduced
workflow consist of consecutive steps of point cloud classification, crossmodal
measurement registration, Markov Random Field based change extraction in the
range image domain and label back projection to 3D. Experimental evaluation
is conducted in four different urban scenes, and the advantage of theproposed
change detection step is demonstrated against a reference voxel based approach.
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1 Introduction

The progress of real time Lidar sensors, such as rotating multi-beam (RMB) Lidar scan-
ners, open several new possibilities in comprehensive environment perception for au-
tonomous vehicles (AV) and mobile city surveillance platforms. On one hand, RMB
Lidars directly provide instant 3D (i3D) information facilitating the detection of mov-
ing street objects and environmental changes. On the other hand, with registering the
i3D measurements to a detailed 3D city map, the detected objects and changes can be
accurately localized and mapped to a geo-referred global coordinate system.

Using new generation Geo-Information Systems, several major cities maintain from
their entire road network dense and accurate 3D point cloud models obtained by Mo-
bile Laser Scanning (MLS) technology. As a possible future utilization, these MLS
point clouds can be efficiently considered by the AV’s onboard i3D environment sens-
ing modules as highly detailed reference background models. In this context,change
detection between the instantly sensed RMB Lidar measurements and theMLS based
reference environment model appears as a crucial task, which indicates a number of key
challenges.

Particularly, there is a significant difference in the quality and the density character-
istics of the i3D and MLS point clouds, due to a trade-off between temporal and spatial
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resolution of the available 3D sensors. RMB Lidar scanners,such as the Velodyne HDL-
64 provide sequences of full-view point cloud frames with 10-15fps, and the size of the
transferable data is also limited enabling real time processing. As a consequence the
measurements have a low spatial density, which quickly decreases as a function of the
distance from the sensor, and the point clouds may exhibit particular patterns typical to
sensor characteristic, such as the ring patterns of the Velodyne sensor (see Fig. 1(c)).
Although the 3D measurements are quite accurate (up to few cms) in the sensor’s local
coordinate system, the global positioning error of the vehicles may reach several meters
in city regions with poor GPS signal coverage.

Recent MLS system such as the Riegl VMX450 are able to providedense and ac-
curate point clouds from the environment with homogeneous scanning of the surfaces
(Fig. 1(a)-1(b)) and a nearly linear increase of points as a function of the distance. The
point density of MLS point clouds is with 2-3 orders of magnitude higher than the
density of i3D scans which makes direct point-by-point comparison inefficient. On the
other hand, due to the sequential environment scanning process, the result of MLS is a
static environment model, which can be updated typically with a period of 1-2 years in
large cities. Therefore, apart from the changes caused by moving objects we must ex-
pect various differences caused by environmental changes such us altering the buildings
and street furniture, or seasonal changes of the tree-crowns or bushes etc.

(a) MLS reference point cloud (b) MLS classification result

(c) Output: classification result of a selected i3D RMB Lidar frame

Fig. 1. Overview on the proposed approach: based on reference MLS data (a,b), the goal is sepa-
ration of static scene elements and moving objects/changes on instant RMB Lidar frames (c)
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2 Previous Work

In the recent years various techniques have been published for change detection in point
clouds, however, the majority of the approaches rely on dense terrestrial laser scanning
(TLS) data recorded from static tripod platforms [1, 2]. As explained in [1], classifica-
tion based on calculation of point-to-point distances may be useful for homogeneous
TLS and MLS data, where changes can be detected directly in 3D. However, the point-
to-point distance is very sensitive to varying point density, causing degradation in our
addressed i3D/MLS cross-platform scenario. Instead, [1] follows a ray tracing and oc-
cupancy map based approach with estimated normals for efficient occlusion detection,
and point-to-triangle distances for more robust calculation of the changes. Here the
Delaunay triangulation step may mean a critical point, especially in noisy and cluttered
segments of the MLS point cloud, which are unavoidably present in a city-scale project.
[2] uses a nearest neighbor search across segments of scans:for every point of a seg-
ment they perform a fixed radius search of 15 cm in the reference cloud. If for a certain
percentage of segment points no neighboring points could befound for at least one
segment-to-cloud comparison, the object is labeled there as moving entity. A method
for change detection between MLS point clouds and 2D terrestrial images is discussed
in [3]. An approach dealing with purely RMB Lidar measurements is presented in [4],
which use a ray tracing approach with nearest neighbor search. A voxel based occu-
pancy technique is applied in [5], where the authors focus ondetecting changes in point
clouds captured with different MLS systems. However, the differences in data quality
of the inputs are less significant than in our case.

3 Proposed Change Detection Method

We assume that the reference MLS data is accurately geo-referred, and the i3D Lidar
platform also has a coarse estimation of its position up to maximum 10 m translational
error. Initially, the orientation difference between the car’s local and the MLS point
cloud’s global coordinate systems may be arbitrarily large(see Fig. 2). The proposed
approach consists of four main steps: ground removal by point cloud classification,
i3D–MLS point cloud registration, change detection in the 2D range image domain,
and label backgrojection to the 3D point cloud.

Theground removal step separates terrain and obstacle regions using a locallyadap-
tive terrain modeling approach, expecting inhomogeneous RMB Lidar point clouds with
typically non-planar ground. First we fit a regular 2D grid with fixed rectangle side
length onto the horizontalPz=0 plane, using the Lidar sensor’s vertical axis as thez

direction. We assign eachp point of the point cloud to the corresponding cell, which
contains the projection ofp toPz=0. After excluding the sparse grid cells, we use point
height information for assigning each cell to the corresponding cell class. All the points
in a cell are classified as ground, if the difference of the minimal and maximal point
elevations in the cell is smaller than an elevation threshold (used 25cm), moreover the
average of the elevations in neighboring cells does not exceeds an allowed height range.
The result of ground segmentation is shown in Fig. 1(b) and 1(c), which confirms that
our technique handles robustly the various i3D and MLS Lidarpoint cloud types.



4 B. Gálai, C. Benedek

For point cloud registration we adopt our latest technique [6] for matching point
cloud measurements with significantly different density characteristics. The registra-
tion process includes three steps.First, following the removal of ground points, we
search for distinct groups of close points in the remaining obstacles cloud, and assign
each group to an abstract object. For handling difficult scenarios with several nearby ad-
jacent objects, we adopted a hierarchical 2-level model [7], which separates first large
objects or object groups at a coarse grid level with large cells, then in the refinement it
can efficiently separate the individual objects within eachgroup.Second, we coarsely
align the two point clouds by considering only the center points of the previously ex-
tracted abstract objects. We apply here the generalized Hough transform to extract the
best similarity transformation in the sense that when applying the transformation to the
object centers in the first frame as many of these points as possible overlap with the ob-
ject centers in the second frame [6].Third, we run a point-level refinement on the above
approximate global transform, applying the Normal Distribution Transform (NDT) for
all object points. The success of the registration process from an extremely weak initial
point cloud alignment is demonstrated in Fig. 2.

Fig. 2. Demonstration of the proposed point cloud registration step (Deák t́er, Budapest). Blue
and red points represent the i3D and MLS point clouds, respectively.

The change detection module receives a co-registered pair of i3D and and MLS
point clouds, where the terrain is already removed (see Fig.2 right image). Our pro-
posed solution extracts changes in the range image domain. Creating a range image
Ii3D from the RMB Lidar’s point stream is straightforward as its laser emitter and re-
ceiver sensors are vertically aligned, thus every measuredpoint has a predefined vertical
position in the image, while consecutive firings of the laserbeams define their horizon-
tal position. Geometrically, this mapping is equivalent toprojecting the 360◦ obstacle
point cloud to a cylinder surface, whose main axis is equal tothe vertical axis of the
RMB Lidar scanner. Using Velodyne HDL-64 sensor with 15 Hz rotation frequency, the
typical size of thisIi3D range image is64× 1024. Since the the above projection only
concerns the obstacle cloud (without the ground), and several fired laser beams do not
produce reflections at all (such as those from the direction of the sky), several pixels of
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the range map will be assigned to zero (i.e. invalid) depth values. Moreover, such holes
may also appear in the range maps due to noise or quantizationerrors of the rotation
angles. On account of this artifact we interpolate the pixelvalues which have in their 8-
neighborhood at least four valid (non-zero) neighboring depth values, as demonstrated
in Fig. 3. A sample full-view i3D range image is shown in Fig. 4(a).

(a) Raw i3D range image (b) Interpolated range image

Fig. 3. Range image segment from the Velodyne i3D sensor

The reference background range image is generated from the 3D MLS point cloud
with ray tracing, exploiting that that the current positionand orientation of the RMB
Lidar platform are available in the reference coordinate system as a result of the point
cloud registration step. Thereafter simulated rays are emitted into the MLS cloud from
the moving platform’s center position with the same vertical and horizontal resolution
as the RMB Lidar scanner. To handle minor registration issues and sensor noise, each
range image pixel value is determined by examining multipleMLS points lying inside a
pyramid around the simulated RMB Lidar ray. For a given pixelof the MLS range map
the depth values of the corresponding points are weighted with a sigmoid function:
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whereKi,j is the number of MLS points in the(i, j) pyramid,Di,j
k is distance of

thek-th point from the ray origin, and the weightswi,j
k are calculated using a sigmoid

function (l = 0.5 andm = 5 parameters were empirically set). This calculation formula
ensures that the nearest points within the pyramid receive the highest weights, but due
to the smoothing effect of weighted averaging, the presenceof outlier points, or highly
scattered regions (such as vegetation) do not cause significant artifacts. A sample MLS
range image generated by the above process is shown in Fig. 4(b).

In the next step, the calculated RMB Lidar-basedIi3D, and MLS-basedIMLS range
images are compared using a Markov Random Field (MRF) model,which classifies
each pixel of the range image lattice as foreground (FG) or background (BG). Fore-
ground pixels represent either moving/mobile objects in the RMB Lidar scan, or various
environmental changes appeared since the capturing date ofthe MLS point cloud.

Two sigmoid functions are used to define fitness scores for each class:

FBG(i, j) = 1−
1

1 + e(d
i,j−ai,j)

, FFG(i, j) = 1−
1

1 + e−(di,j−ai,j)
, (2)
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(a) Filtered & interpolated Velodyne (i3D) range image

(b) MLS based range image from the actual position of the Velodyne platform

(c) MRF based change mask in the range image domain

(d) Back projection of the change mask to the Velodyne point cloud

Fig. 4. Demonstration of the proposed MRF based change detection process in the range image
domain, and result of label back projection to the 3D point cloud

(a) Voxel based method(b) Proposed method

Fig. 5. Comparison of the voxel based reference and the proposed range image based approach:
a sample bike shed from a magnified image part of the scene in Fig. 4.
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wheredi,j = Ii3D(i, j) andai,j = IMLS(i, j).
To formally define the range image segmentation task, we assign to each(i, j) pixel

of the pixel latticeS a li,j ∈ {FG,BG} class label so that we aim to minimize the
following energy function:

E =
∑

(i,j)∈S

VD(di,j |li,j) +
∑

(i,j)∈S

∑

(m,n) ∈Ni,j

β · 1{li,j 6= lm,n}, (3)

whereβ > 0 is a smoothness parameter for the label map (usedβ = 0.5), andNi,j the
four-neighborhood of pixel(i, j). VD(di,j |li,j) denotes the data term, derived as:

VD(di,j |li,j = BG) = − log(FBG(i, j)), VD(di,j |li,j = FG) = − log(FFG(i, j))

The MRF energy (3) is minimized via the fast graph-cut based optimization algorithm
[8], which process results in a binary change mask in the range image domain, as shown
in Fig. 4(c). The final step islabel backprojection from the range image to the 3D point
cloud (see Fig. 4(d)), which can be performed in a straightforward manner, since in our
i3D range image formation process, each pixel represents only one Velodyne point.

4 Experiments

We have evaluated the proposed change detection technique in four test scenarios. Each
test sequence contains70 consecutive time-frames from the RMB Lidar sensor, where
each i3D frame has a GPS-based coarse location estimation for the point cloud centers,
with maximum few meters position error. The MLS reference cloud is accurately geo-
referred, and we assume that it only contains the static scene elements such as roads,
building facades, and street furniture. For each RMB Lidar frame, we execute the com-
plete workflow of the proposed algorithm.

The Ground Truth (GT) labeling of the RMB Lidar’s i3D point clouds was done in a
semi-automatic manner. First, using the registered i3D andMLS frames, we applied an
automated nearest neighbor classification with a small distance threshold (3 cm), there-
after the labeling of the changed regions was manually revised. As evaluation metrics,
we calculated the Precision, Recall and F score values of thedetection output at point
level, based on comparison to the GT.

Since we have not found any similar i3D-MLS crossmodal change detection ap-
proach in the literature, we adopt a voxel based technique [5] as reference, which was
originally constructed for already registered MLS/TLS point clouds. Therefore by test-
ing both the proposed and the reference models, we apply the same registration work-
flow introduced in Sec. 3, and only compare the performance ofthe voxel based and the
proposed range image based change detection steps. The reference voxel based tech-
nique fits a regular 3D voxel grid to the registered point clouds, thereafter a given RMB
Lidar point is classified as foreground if and only if its corresponding voxel does not
contain any points in the MLS cloud. We tested this method with multiplew voxel sizes,
which parameter naturally affects both the detection performance and the computational
time. With larger voxels, we cannot detect some changes in cluttered regions, where the
objects can be close to each other and to various street furniture elements. On the other



8 B. Gálai, C. Benedek

Table 1. Quantitative comparison of the Voxel based (VOX) and the proposed MRF-range image
based (MRF) methods on the four test scenes, considering all regions(left), and only the crowded
sidewalk areas (right)

Overall test set Sidewalk areas only
Scenes PrecisionRecallF scorePrecisionRecallF score

Deák
VOX 0.99 0.87 0.93 0.81 0.71 0.76
MRF 0.99 0.90 0.94 0.87 0.89 0.88

Astoria
VOX 1.00 0.94 0.97 0.88 0.81 0.84
MRF 0.95 0.98 0.97 0.84 1.00 0.91

Kálvin
VOX 1.00 0.94 0.97 0.89 0.96 0.92
MRF 1.00 0.97 0.98 0.87 0.99 0.93

Fővám
VOX 0.98 0.70 0.82 0.84 0.64 0.73
MRF 0.94 0.83 0.88 0.81 0.97 0.88

hand, maintaining and processing a fine 3D grid structure with small voxels requires
more memory and processing time. The results shown in the upcoming comparative
experiments correspond to the voxel sizew = 30 cm, since we observed with this
parametrization approximately the same running speed as using our proposed MRF-
range image based model: the change detection step in each frame takes here around
80 msec on a desktop computer, with CPU implementation. Notethat by decreasing
thew parameter to20 cm and10 cm, respectively, the calculation time of the voxel
based model starts to rapidly increase (120 msec and 510 msec/frame, resp.), without
significant performance improvements.

(a) Voxel based method (b) Proposed method

Fig. 6. Results for a sample region captured at Fővám t́er, Budapest, by (a) the voxel based ap-
proach, (b) the proposed method. Red and blue points represent the detected background and
foreground points respectively. Differences are marked with greenellipses.

The comparative results considering the complete dataset are shown in Table 1 (left
section), which confirms that the proposed method has an efficient overall performance,
and it outperforms the voxel based method in general with 1-6% F scores in the differ-
ent scenes. We have experienced that the main advantage of the proposed technique
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is the high accuracy of change detection in cluttered streetregions, such as sidewalks
with several nearby moving and static objects. As shown in Table 1 (right section), if
we restrict the quantitative tests to the sidewalk areas, our method surpasses the voxel
approach with 7-15% gaps in three scenes. Similar trends canbe observed from the
qualitative results of Fig. 5. and 6, which show successful detection samples of small
object segments and fine changes with our proposed method, and corresponding lim-
itations of the voxel based approach. As shown in Fig. 6. the voxel based technique
results in many falsely ignored moving object segments, in particularly in the regions
were people were standing next to static objects. On the other hand, vehicles on the
roads with relatively large distances from the street furniture elements can be well sep-
arated even with large voxels, therefore the difference between the two methods is less
significant in the road regions of the test scenes. Fig. 7 shows another test scene.

We display in Fig. 8 synthesized view, visualizing the pointclouds of moving ob-
jects detected by the i3D RMB Lidar over the geo-referred MLSbackground data1.

(a) MLS scan from Ḱalvin tér (b) Detected changes at Kálvin tér

Fig. 7. Left: MLS laser scan of a tram stop in Kálvin tér, Budapest.Right: Detected changes at
the tram stop. Red, blue and green points represent background objects, foreground objects and
ground regions, respectively.

5 Conclusion and Future Work

We introduced a new method for change detection between different laser scanning
measurements captured at street level. The results show that even small and detailed
changes can be observed with the proposed method, which cannot be achieved with
voxel based techniques. Future work will present a deeper investigation of various back-
ground change classes, and tests with lower resolution Lidar sensors.
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(a) (b)

Fig. 8. Synthesized view for demonstrating geo-referred moving object detection: object point
clouds (tram, car, pedestrians) detected on two subsequent i3D Velodyne frames (marked with
blue) are put in and displayed in the MLS reference point cloud
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