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ABSTRACT The state and disturbance estimations are an indispensable part of the state-of-the-art model-
based controllers as related to the artificial pancreas, supporting the decision-making and self-tuning of the
algorithms. They are not just important when state-feedback kind of controller structure is applied, but also
play a crucial role in the estimation of, for example, the amount of the acting drug (insulin) in blood or
meal intake estimation which has determining role in the short and long term effectivity of the given therapy.
This information is also important for physicians to support them in knowledge-based decision-making to
be sure a given therapy or device works well. This article compares three observers – a linear-parameter-
varying (LPV) dual Kalman filter (KF), a LPV joint KF, and a nonlinear sliding mode observer (NSMO) –
designed with two individualized models – Hovorka and Identifiable Virtual Patient model (IVP). The article
also statistically quantifies the effect of the observer algorithm and model structure on the accuracy of the
estimation of plasma insulin, rate of glucose appearance, and glucose. Data for the analysis was generated by
the UVa-Padova simulator. Results indicated that, for the rate of glucose appearance and the plasma insulin,
the type of model and the observer structure explain less than 10% of the variability in the error, while the
inter-patient variability contributes to the error more than 50%. This reveals a limiting factor in the estimation
accuracy that might be improved by model parameter adaptation.

INDEX TERMS Kalman filters, sliding mode observers, artificial pancreas, model identification, linear
parameter varying model, estimation.

I. INTRODUCTION
Amajor hurdle in artificial pancreas (AP) applications is data
scarcity. In practice, the typically utilized information is the
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Continuous Glucose Monitoring Sensor (CGMS) measure-
ments and demographic data such as body weight. As the
physiology and processes of a human organism is a complex
system – a network of multitudinous interconnected subsys-
tems – it is cumbersome to describe them with a limited
number of measurable variables. Observers are applied to
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provide information about the inner state variables. Applica-
tion for observers ranges from meal detection [1] to meal-
announcement free control [2]–[4] or insulin limitation for
hypoglycemia avoidance [5].

The most well-known of the observers in the field are
the different realizations of the Kalman filter (KF) [6]; their
performance is evaluated on different terms (general, fault
detection, insulin estimation) in [7]–[9], respectively. Despite
the prevalence of KFs, other observers have been applied,
such as moving-horizon estimators [10], [11], extended-state
observers [4], [12]–[14] or sliding mode observers [3], [15].
Among them, sliding mode observers are appealing since
they are robust, have a simple structure, and can reconstruct
disturbances [3].

A crucial element in the observer design is the model. The
medium-complexity Hovorka model [16] has been widely
used to design observers for glucose control [2], [17]. How-
ever, its large number of parameters could complicate model
identification and observer tuning. For this reason, the use
of simpler models might be desirable. Extensions of the
Bergman’s minimal model [18], such as the Identifiable Vir-
tual Patient model (IVP) [19] might be an appealing option
in this regard, as shown in [3] and [8]. Necessarily, a price
to pay for model simplification is a loss of accuracy in
modelling certain physiological behaviours. For example,
while renal glucose clearance is considered in the Hovorka
model, the IVP does not. Nevertheless, to the best of the
authors’ knowledge, no study has yet evaluated whether the
larger flexibility offered by the Hovorka model in modelling
complex behaviours has a notable impact on the observer
performance, compared to other simpler models.

This article extends the results of a preliminary work pre-
sented in [20]. It aims to fill the two above-mentioned gaps
through an in-silico analysis with the UVa-Padova simula-
tor [21]. The contributions of the article are the following:
• To evaluate the effect of the observer structure on the
estimation performance by comparing three observers:
two KFs and a sliding mode observer, which is simpler
to tune.

• To evaluate the impact of model complexity by design-
ing the above observers with two models of differ-
ent complexity: a model with medium complexity (the
Howorka model) and a simpler one (IVP model).

The parameters of the models have been identified for
the adult cohort in the simulator, and a genetic algorithm-
based approach has been employed to tune the KFs. Finally,
the individual factors (observer type and model structure)
were evaluated with statistical methods such as analysis of
variance (ANOVA) and multiple comparisons.

The paper is constructed in the following way. First,
Section II describes the Methods. The applied models
are introduced in Section II-A, theoretical background of
the identification in Section II-B and sensitivity anal-
ysis in Section II-B2, followed by the explanation of
the observers in Section II-C and II-D. Results about
identification and the statistical analysis are provided in

Section III. Finally, Section IV closes the paper with the
conclusions.

II. METHODS
A. MODELS DESCRIPTION
One goal of this research is to determine how the model
complexity affects the performance of the observer. To this
end, the well-accepted Hovorka model in [16] was compared
to IVP presented in [19]. For convenience, a brief description
of the models is provided in this section.

1) IDENTIFIABLE VIRTUAL PATIENT MODEL
The IVP model [19] is a compromise between Bergman’s
model [18] and the Hovorka model regarding structural com-
plexity and accuracy. Its equations are described below:

İSC (t) = −
1
τ1
· ISC (t)+

1
τ1CI

· u(t) (1)

İP(t) = −
1
τ2
· IP(t)+

1
τ2
· ISC (t) (2)

İEFF (t) = −p2 · IEFF (t)+ p2 · SI · IP(t) (3)

Ġ(t) = −(GEZI + IEFF (t)) · G(t)

+EPG+ RA(t) (4)

where ISC (t) and IP(t) represent the subcutaneous and plasma
insulin concentrations (mU/L), respectively. IEFF (t) is the
insulin effect

(
min−1

)
and G(t) is the plasma glucose con-

centration (mg/dL). The inputs of the model are the subcuta-
neous insulin infusion u(t) (µU/min), and the rate of glucose
appearance RA(t) (mg/dL/min) from the meal absorption.
Note that the RA(t) is generally unknown due to the com-
plexity of meal absorption dynamics, influencing factors like
nutritional composition and alcohol intake. Hence, the RA(t)
will be estimated in this work. Lastly, τ1 and τ2 (min) refer
to the insulin absorption time constants, p2 is the kinetic
rate for insulin action

(
min−1

)
, SI is the insulin sensitivity

(mL/µU/min),EGP is the hepatic glucose production,GEZI
is the glucose effectiveness at zero insulin

(
min−1

)
and CI

denotes the insulin clearance (mL/min).

2) HOVORKA MODEL
The Hovorka or Cambridge model is considered a medium
complexity model by the AP scientific community. The
model consists of 8 dynamic states and a couple of additional
algebraic equations if the carbohydrate absorption sub-model
is lumped, and replaced with the RA(t) term, as in the IVP
model previously described. The dynamic equations are given
by [16]:

Q̇1(t) = −F01c(t)− FR(t)− x1(t)Q1(t)+ k12Q2(t)

+EGP0(1− x3(t))+ RA(t), (5)

Q̇2(t) = Q1(t)x1(t)− (k12 + x2(t))Q2(t), (6)

İ (t) =
S2(t)
τSVI

− keI (t), (7)

ẋ1(t) = −ka1x1(t)+ kb1I (t), (8)
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ẋ2(t) = −ka2x2(t)+ kb2I (t), (9)

ẋ3(t) = −ka3x3(t)+ kb3I (t), (10)

Ṡ1(t) = u(t)−
S1(t)
τS

, (11)

Ṡ2(t) =
S1(t)
τS
−
S2(t)
τS

, (12)

where Q1(t) (mmol/kg) is the glucose content in the acces-
sible compartment, Q2(t) (mmol/kg) is the glucose content
in the non-accessible compartment, RA(t) (mmol/kg/min) is
the rate of glucose appearance, I (t) (mU/L) is the plasma
insulin concentration. x1(t)

(
min−1

)
is the remote effect of

insulin on glucose distribution, x2(t)
(
min−1

)
is the remote

effect of insulin on glucose disposal, x3(t) (1) is the remote
effect of insulin on endogenous glucose production in the
liver. S1(t) (mU/kg) is the insulin in the accessible compart-
ment and S2(t) (mU/kg) is the insulin in the non-accessible
compartment. Input of the system u(t) (mU/kg/min) is
the insulin infusion. The parameters: k12

(
min−1

)
is the

transfer rate from the non-accessible compartment to the
accessible, EGP0 (mmol/kg/min) is the endogenous glu-
cose production in case of zero insulin level, ke

(
min−1

)
is the insulin clearance. The patient’s insulin sensitivities
on transport, disposal and, glucose production are deter-
mined by the ka1,2,3

(
min−1

)
and kb1,2 (L/mU/min/min),

kb3 (L/mU/min) parameters. The insulin absorption time
constant is denoted by τS (min) [16].
Supplementary algebraic equations are defined by:

F01c(t) =

{
F01, if G(t) ≥ 4.5 mmol/L
F01G(t)/4.5, otherwise,

(13)

FR(t) =

{
0.003VG(G(t)− 9), if G(t) ≥ 9 mmol/L
0, otherwise,

(14)

G(t) =
Q1(t)
VG

, (15)

where F01c (mmol/kg/min) is the glucose consump-
tion of the central nervous system, while F01 repre-
sents the consumption at ambient glucose concentration,
FR (mmol/kg/min) is the renal excretion of glucose in the
kidneys, G(t) (mmol/L) is the actual output of the system:
blood glucose concentration, VG (L/kg) is the glucose distri-
bution volume [16].

The units of the models can be converted in the follow-
ing way: 1 (mmol/L) = 18 (mg/dL) for the blood glucose
level, 1 (mmol/kg/min) = 180/Vg (mg/dL/min) for the
rate of appearance, where Vg(dL/kg) is the glucose distri-
bution volume. The conversion between the insulin infusion
is 1 (mU/kg/min) = 1000/BW (µU/min), where BW (kg)
is the body weight. Note that the IVP model expresses the
variables relative to the volumes, while the Hovorka model,
relative to the body weight.

B. IDENTIFICATION OF THE MODELS
The UVa-Padova simulator was selected to identify the mod-
els in Section II-A. The simulator received the approval of the
Food and Drug Administration to be used as a substitute for
preclinical trials with animals [22]. Also, the simulator model
could fit glucose profiles from clinical data [23], and its meal
model reconstructed the RA with more accuracy than other
models in the literature [24]. Finally, it includes a realistic
cohort of virtual subjects [25].

We identified two parameter sets: a population value
parameter set (or average model) and individualized param-
eter set. The population value parameter set was determined
from the average subject in the simulator. The individualized
parameter sets were obtained by identifying two of the most
sensitive parameters for each of the 10 individuals in the
adult cohort (of the academic version of the simulator), while
the remaining parameters were set to their corresponding
values in the average model. The identification procedure
followed the pathway of [26]: checking the structural iden-
tifiability, ranking the sensitive parameters, and identifying
the parameters.

1) IDENTIFIABILITY ANALYSIS
Structural identifiability defines the possibility of determin-
ing under ideal conditions (e.g. absence of noise) a unique
value (structurally globally identifiable) or a finite set of
values (structurally locally identifiable) for model unknown
parameters, with the only information of the inputs and
outputs [27]. To analyse the structural identifiability, the
generating series (GS) approach was used since it is a trade-
off method between computational cost and provided infor-
mation regarding other techniques in the literature [27].
The analysis was performed with the GenSSI 2.0 software
described in [28].

The inputs considered in the identifiability analysis were
the insulin infusion and RA. Since the RA was available for the
identification, parameters related to the carbohydrate absorp-
tion dynamics – the glucose distribution volume in the IVP
model [19] and the parameters DG (amount of carbohydrates
digested), AG (carbohydrate bioavailability), tmaxG (maxi-
mum time for the rate of glucose appearance) in the Hovorka
model [16] – were excluded from the analysis. In addition,
the weight BW in the Hovorka model is known, thus it was
neither considered in the identification.

2) SENSITIVITY ANALYSIS
A global sensitivity analysis was performed with a twofold
purpose: 1) to reduce the number of parameters to be identi-
fied in the Hovorka average model, and 2) to select the two
parameters to be individualized in the personalized IVP and
Hovorka models. The same parameters included in the iden-
tifiability analysis were considered in the sensitivity analysis.

For the sensitivity analysis, the AMIGO2 Matlab toolbox
was utilized [29]. The sensitivity is calculated by chang-
ing the parameters which result in various trajectories.
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Different measures can be applied to these trajectories,
the most common ones are the root-mean-square deviation
and the mean absolute deviation. In order to get a more
robust result, several steps are taken. The simulations of the
trajectories are repeated with different initial conditions or
input schemes. The sensitivity values are normalized at each
time instance for all the parameters. The toolbox utilized
the Latin Hypercube Sampling (LHS). The LHS method
provides an even distribution of all the parameters in the given
range, with a relatively low amount of necessary samples. The
parameter bounds were calculated by applying to the nominal
values in [30] and [19] a deviation of ±5σ , where σ denotes
the standard deviation provided in the referred articles, but
saturating to 0 if negative values appeared. The simulation
of a given parameter set is only considered in the calculation
of the sensitivity if the BG remained in the following range:
1.8 < BG < 25 mmol/L in order to avoid entirely unrealistic
trajectories.

If a general nonlinear system is defined in the form of
0 = f (ẋ, x, p, u, t), where p are the parameters, then the
sensitivities sp = ∂x

∂p can be given with the Jacobians: ∂sp
∂t =

∂f
∂x sp +

∂f
∂p s.t. sp(0) = 0.

The toolbox normalizes with the value of the parameter and
with the value of the output in the given discrete step:

Sp,k =
pi
y(k)

sp,k (16)

where Sp,k is the normalized or relative sensitivity of the
parameter p in the k − th discrete step, y(k) is the output
and pi is the i − th sample from the LHS. The ranking of
the parameters is based on the final measure defined by:

δmsqrp =
1

nenlhsnk

√√√√ ne∑
e=1

nlhs∑
i=1

nk∑
k=1

(
Sp,k

)2 (17)

where ne is the number of different setups for experiments
(initial conditions or input schemes), nlhs is the number of
sampled values of the parameters, nk is the number of discrete
points at which the system is evaluated.

3) IDENTIFICATION
On the one hand, in the identification of the average models,
all the sensitive and mildly sensitive parameters are consid-
ered, as suggested in [26]. The insensitive parameters were set
to the nominal parameters in [16] for the Hovorka model, and
the means of the parameters listed in [19] were considered for
the IVP model. On the other hand, two parameters in the sen-
sitive group were individualized for the personalized models.
The remaining parameters were fixed to the corresponding
values in the average model. To identify the Hovorka model,
the parametrization of the model in terms of insulin sensitiv-
ities (Si1 = kb1/ka1, Si2 = kb2/ka2 and Si3 = kb3/ka3 ) was
utilized as in [16].

The identification consisted of two optimization problems:
one that identifies insulin-related states by minimizing the
normalized root-mean-square error (NRMSE) of the plasma

insulin; and another one that identifies the insulin effect and
glucose-related parameters by minimizing the NRMSE of the
glucose measurement. The NRMSE is defined by:

NRMSE(x) =

√∑N
i=1 (xmodel − xUVa)

2

N


·

(
1

xmaxUVa − x
min
UVa

)
, (18)

where xmodel represents the glucose or plasma insulin
obtained by the IVP or Hovorka models. xUVa denotes
the ‘‘real’’ measurements, whereas the superscripts max
and min refers to the maximum and minimum values of
these measurements, respectively. This two-step optimiza-
tion procedure targets a better identification of the insulin
pharmacokinetics, as discussed in [19]. The inputs to the
optimization problem were the glucose, the plasma insulin,
the insulin infusion, and the meal disturbance. We generated
these inputs from a 3-meal simulation of the average adult
patient (for average models) or the adult cohort (for person-
alized models). Of note, the full knowledge of these inputs is
impractical for real applications, but they were used in this
study to ensure accurate identification of the parameters.

The genetic algorithm (GA) in the Global Optimization
Toolbox of Matlab 2018b (ga function) was utilized to solve
the above-described optimization problem. The algorithm
was configured with its default settings [31].

Finally, the identification of the models was assessed in
terms of the NRMSE using, as in the identification, a 3-meal
scenario, but with different instances of variability.

C. KALMAN FILTERS
Besides the estimation of the state variables, our goal was
to estimate the RA as well. To do so in the case of KFs,
the engineer has two main options. The most straightforward
and largely applied technique is the augmentation of the state
vector with the parameter or disturbance term, giving rise to
the joint KF (JKF) [32]. Another possibility is to use sep-
arate KF for the state and parameter/disturbance estimation
problem; this observer is called the dual KF (DKF) [32].
Both observers hypothesize that the parameters are static: in
the prediction phase, the parameter in the next step holds
the value of the previous step. For the application of the
observers, the models are either discretized by the Euler or
Complete method. In addition, the benefits of linear param-
eter varying (LPV) formulation were exploited in this arti-
cle to handle non-linearities in KFs design. Consequently,
more complex KF-based algorithms (such as Extended KF
or Unscented KF) were avoided [7].

1) QUASI LPV REPRESENTATIONS
LPV modeling technique is an approach to handle the non-
linearities of the given system. If one the parameters is not
a free signal such as an inner state variable, then it is called
quasi-LPV or qLPV. The continuous time qLPV state-space
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representation (qLPV-SS) is defined as follows [33]:

ẋ(t) = A(p(t))x(t)+ B(p(t))u(t), (19a)

y(t) = C(p(t))x(t)+ D(p(t))u(t), (19b)

where the p(t) = [p1(t) . . . pR(t)] parameter vector consists
of the so-called scheduling parameters pi(t). p(t) ∈ �R

⊂

RR is an R-dimensional real vector within the set � =

[p1,min, p1,max]× [p2,min, p2,max]× . . .× [pR,min, pR,max].
Either the IVP or the Hovorka model accept a qLPV-SS

representation:
• IVPmodel. Selecting p(t) = G(t) as scheduling param-
eter leads to the following qLPV representation:

A
(
p(t)

)
=



−GEZI +
EGP
p(t)

− p(t) 0 0 1

0 − p2 p2 SI 0 0

0 0 −
1
τ2

1
τ2

0

0 0 0 −
1
τ1

0

0 0 0 0 0


,

(20)

B =
[
0 0 0

1
τ1 CI

0
]T
, (21)

C =
[
1 0 0 0 0

]
, (22)

D = [0]. (23)

where the additional 5th state variable is the estimated
disturbance, namely the RA:

• Hovorka model. Taking:

p(t) = [
EGP0 − F01c(t)− FR(t)

Q1(t)
,Q1(t),Q2(t)]

the qLPV representation is as (24)–(27), shown at the
bottom of the page.

Since the selected parameters are not directly measurable,
they have to be estimated by the observer and can introduce
additional inaccuracies compared to an LPVmodel where the

parameters are measurable. The additional 9th state variable
is the estimated disturbance, namely the RA(t).

2) APPLIED KALMAN FILTERS
Utilizing the benefits of the discretized LPV representation,
a linear discrete Kalman filter can be applied to the nonlinear
system [34], [35]. In the case of the JKF, the dimension of the
covariance matrix is extended by the number of parameters.
In this case, because of the supposition of the parameters,
the exact discretization method cannot be applied. This is due
to the arising singularity issue, thus explicit Euler method is
applied:

A
[
p[k]

]
= I+ TsA

(
p(kTs)

)
, (28)

B
[
p[k]

]
= TsB

(
p(kTs)

)
, (29)

C
[
p[k]

]
= C

(
p(kTs)

)
, (30)

D
[
p[k]

]
= D

(
p(kTs)

)
, (31)

where the parentheses indicate the continuous LPV repre-
sentations of state-space matrices, while the brackets the
discretized ones of the corresponding model. Sample time is
denoted by Ts, while the discrete step by k .

On the contrary, the DKF can be implemented using the
exact discretization given by:

A
[
p[k]

]
= eA

(
p(kTs)

)
Ts , (32)

B
[
p[k]

]
= A−1

(
p(kTs)

)(
eA(p(kTs))Ts − I

)
· B
(
p(kTs)

)
,

(33)

C
[
p[k]

]
= C

(
p(kTs)

)
, (34)

D
[
p[k]

]
= D

(
p(kTs)

)
, (35)

As a result of the LPV discretization, the discrete propaga-
tion can be expressed in the following state-space form:

x̂−[k] = A
[
p[k]

]
x̂[k − 1]+ B

[
p[k]

]
u[k − 1], (36)

P−[k] = A
[
p[k]

]
P[k − 1]AT [p[k]]+Q, (37)

P−p [k] = Pp[k − 1]λ−1, (38)

A
(
p(t)

)
=



p1(t) k12 0 −p2(t) 0 −EGP0 0 0 1
0 −k12 0 p2(t) −p3(t) 0 0 0 0

0 0 −ke 0 0 0 0
1

τSVI
0

0 0 kb1 −ka1 0 0 0 0 0
0 0 kb2 0 −ka2 0 0 0 0
0 0 kb1 0 0 −ka3 0 0 0

0 0 0 0 0 0 −
1
τS

0 0

0 0 0 0 0 0
1
τS

−
1
τS

0

0 0 0 0 0 0 0 0 0



, (24)

B =
[
0 0 0 0 0 0 1 0 0

]T
, (25)

C =
[

1
VG

0 0 0 0 0 0 0 0
]
, (26)

D = [0], (27)
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where u[k − 1] is the integral of the continuous input from
(k − 1)Ts to kTs. The x̂− and P− are the predicted state vari-
ables and error covariance, respectively, while x̂ and P are the
posteriori state estimate and posteriori error covariance. The
Q process noise covariancematrix is the tuning parameter and
the λ is the forgetting factor.
In the update phase, the predicted values are corrected with

the new measurements:

K[k] = P−[k]CT
·
[
p[k]

](
C
[
p[k]

]
P−[k]CT [p[k]]+ R

)−1
,

(39)

x̂[k] = x̂−[k]+K[k]
(
y[k]− C

[
p[k]

]
x̂−[k]

)
, (40)

P[k] =
(
I−K[k]C

[
p[k]

])
P−[k]. (41)

The main differences between the filters are summarized
in Table 1, where n is the number of state variables and p is
the number of parameters.

TABLE 1. Comparison of JKF and DKF.

3) KALMAN FILTER TUNINGS
The study included 4 different KFs. The filters can be catego-
rized by type and utilized model. Henceforth, a specific filter
is identified by a consequent notation: the model name (IVP
or Hovorka), followed by the abbreviation of the filter type
(DKF or JKF). During the tuning process, the virtual patient
and the observer utilized the samemodel, either the IVP or the
Hovorka; dissimilarity between them was caused by a fixed
+30% variability in all the model parameters. This amount
of variability is in physiologically relevant ranges according
to [19], [30]. The Q covariance matrix had non-zero elements
only in the main diagonal.

To lessen the human factor, and make the comparison
between observers fairer, we tuned the Q matrix with Matlab
GA. The optimization is done on a 24-hour-long BG trajec-
tory of a virtual patient with parameter variability. The opti-
mization is driven by a cost function where only the transients
were considered, as we observed in previous simulations
that the filters cannot compensate for the steady-state offset.
If the whole trajectory would be taken into account, the opti-
mizer would adjust the transient to reduce the cost function;
however, it can result in distorted, unfavourable responses,
as shown in Fig. 1. The result of a tuning considering only
the transient is denoted by ‘‘A’’, while a tuning taking into
account the steady-state also is denoted by ‘‘B’’. Although
‘‘B’’ yields a lower NRMSE compared to ‘‘A’’, the latter one
is preferred, since it provides a more realistic waveform.

The elements lying in the main diagonal of the Q covari-
ance matrix were the tuning parameters, also known as genes

of an individual. The lower bounds of the parameters were set
to zero. The upper bounds were set to a value at least as large,
as if this value would be the only non-zero element in the Q
matrix, the filter would still converge to the measurements.
The numerical results are shown in Table 4.

FIGURE 1. Effect of not compensating the steady state offset.

Since this tuning method utilizes all the state variables,
it can be applied only in-silico, due to the non-measurable
variables in clinical practice. This was a reasonable compro-
mise to make since our main goal was to provide uniform
settings during the investigations. There is a significant dif-
ference in the number of state variables between the models,
the DallaManmodel (used by the UVa-Padova simulator) has
20 state variables, the Hovorka model has 8 state variables
and the IVP model has 4 state variables. There are three
equivalent variables between the models (with different units
of measurement), namely the BG, Ip, and RA. To achieve
that these common variables are presented with the same
weights in the cost functions (44)-(45), two coefficients are
introduced. By applying the weights 9

5 and
3
5 in (45), the error

in the BG, Ip and RA yields the same amount of cost in the
Hovorka and the IVP model independently of their corre-
sponding system order.

During the tuning process, it has been observed that the GA
could overfit the optimization scenario and small-amplitude
oscillations could appear or the shape of the trajectory can
be unrealistic as shown in Fig. 1. To avoid this artefact,
a measure of oscillation is formulated and penalized in the
cost function. The penalizing coefficient, xosc, is calculated
in the following way:

xosc =
n∑
i=3

| sgn(xi − xi−1)− sgn(xi−1 − xi−2) |, (42)

k =

{
10, if xosc > threshold
1, otherwise

(43)

where x is the state vector of the applied models, n is the
number of samples, and the thresholds were dependent on
the direction changes of the reference trajectory. These num-
bers were determined in a way, to ensure that the estimated
trajectory has the same number of direction changes as the
reference. The k penalizing coefficient increases the cost by
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an order of magnitude, enforcing the GA to find a solution
under the threshold. We found that the CGMS noise does
not affect significantly the final result, thus the generated
measurement data was the true blood glucose values of one of
the models. Taking into account the aforementioned factors,
the cost functions JIVP and JHovorka have been developed for
each virtual patient model:

JIVP = k(eG + eIeff + eIp + eIsc + eRA ) (44)

JHovorka = k
(9
5
(eG + eIp + eRA )+

3
5
(eQ2 + ex1 + ex2

+ ex3 + eS1 + eS2 )
)

(45)

where e denotes the NRMSE of the given state variable
(see the corresponding notations in [16] and [19] or in
Section II-A) and k is the penalizing coefficient.

D. SLIDING MODE OBSERVER
In this research, the performance of two KFs (see
Section II-C) were compared to an NSMO, which has a
simpler structure and tuning. The NSMO has several appeal-
ing features such as finite-time convergence of the mea-
surable states despite matching disturbances or the ability
to reconstruct disturbances without assuming that they are
constant [36]. These features have motivated the design of
sliding mode observers for a wide range of applications in
the literature, including anti-disturbance control [37], [38],
and fault detection and isolation [39], [40].

The NSMO used in this work was proposed by
[36, Section 3.5], which extends the results of [41] or [42] for
non-linear models. Shtessel et al. [36] considers a nonlinear
system given in the unmeasurable-measurable form:

ẋ1(t) = A11x1(t)+ A12x2(t)+ φ1(x, u, t)
ẋ2(t) = A21x1(t)+ A22x2(t)+

+φ2(x, u, t)+ D2d(t) ,
y(t) = C2x2(t)

(46)

where y(t) ∈ Rny is the measurable output and x(t) :=
col(x1(t), x2(t)) ∈ Rnx denotes the system state, where x2(t)
represents the last ny elements of x(t). Plus, u(t) ∈ Rnu

is the known input; whereas, d(t) ∈ Rnd is the unknown
input appearing only in the measurable states x2(t). Finally,
φ1(x, u, t) and φ2(x, u, t) denote the nonlinear terms; andA11,
A12, D2, and C2 refer to the system matrices with the proper
dimension. Notice that the IVPmodel and the Hovorka model
accept the form of (46) as shown below:
• IVP model. Taking d(t) := RA(t), y(t) := G(t) and
x(t) := [ISC (t), IP(t), IEFF (t),G(t)]T , the equations
(2–4) can be converted into (46) with the following
matrices:

A11 :=

−1/τ1 0 0
1/τ2 −1/τ2 0
0 p2SI −p2

 ,
A12 = AT21 := 03x1
A22 := −GEZI

φ1(t) :=

 u(t)
τ1CI
02x1

 , φ2(t) := EGP− G(t)IEFF (t),

C2 = D2 = 1

• Hovorka model. For x(t) := [S1(t), S2(t), x1(t), x2(t),
x3(t),Q2(t),Q1(t)]T , d(t) := RA(t) and y(t) := G(t),
the equations (5 -12) can be transformed into (46) with:

A11 =



−
1
τs

0 0 0 0 0 0

1
τs
−

1
τs

0 0 0 0 0

0
1
τsVI

− ke 0 0 0 0

0 0 kb1 − ka1 0 0 0
0 0 kb2 0 − ka2 0 0
0 0 kb3 0 0 − ka3 0
0 0 0 0 0 0 − k12


A21 :=

[
01x5 −EGP0 k12

]
,A12 := 07x1 ,A22 := 0

φ1(t) :=

 u(t)
05x1

x1(t)Q1(t)− x2(t)Q1(t)

 ,C2 := 1/VG ,D2 := 1

φ2(t) := −Fc01(t)− x1(t)Q1(t)− FR(t)+ EGP0

The equations for the NSMO read as [3], [36]:
˙̂x1(t) = A11x̂1(t)+ A12x̂2(t)+ φ1(x̂, u, t)
˙̂x2(t) = A21x̂1(t)+ A22x̂2(t)+

+φ2(x̂, u, t)+ D2 · C
−1
2 · κ · v(t)

ŷ(t) = C2x̂2(t)

(47)

with v(t) the discontinuous term defined by

v(t) := sign(y(t)− ŷ(t)) (48)

If the positive gain κ in (48) is chosen sufficiently larger
than d(t), then the output error (ey(t) := y(t) − ŷ(t))
will converge in finite time to 0 [36, Chapter 3]. In this
work, the maximum value of the disturbance d(t) was set to
30 mg/dL/min after exhaustive simulations under the same
conditions as in the KFs tuning. Moreover, the estimation
error of the unmeasurable states (e1(t) := x1(t) − x̂1(t)) will
converge to 0 asymptotically. However, no gains applied to
the unmeasurable states, which might be affected by mod-
elling errors.

In addition, an estimation of d(t) can be realized by using
the discontinuous term [36, Chapter 3]. Once the sliding
motion is attained, i.e. ey(t) = ėy(t) = 0, the output error
dynamics is described by:

0 = A21e1(t)+ φ2(x, u)− φ2(x̂, u)+ D2d(t)− veq(t)

(49)

where veq is the so-called equivalent output error injection
[36, Chapter 3]. Because of the asymptotic convergence of
e1(t), veq asymptotically tends to D2d(t). As a result, an esti-
mation of d(t) is given by:

d̂(t) = D∗2 · veq(t) (50)

where D∗2 = (DT2D2)−1D2.
One of the main drawbacks of the NSMO is the

chattering, that is, a zigzag behaviour of the estimated
states variables that occurs when the continuous observer
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in (47–48) is discretizedwith explicit methods [43]. To reduce
the chattering, Acary and Brogliato [43] presented an implicit
Euler discretization technique for control purposes. In [3],
that technique was applied to sliding mode observers. How-
ever, it required the estimation of the disturbance in the
discretization, which reduces the performance. To overcome
this problem, the approach of [44] was applied in this article.

The discretized equations of the NSMO, using the implicit
Euler method, are given by

x̂1[k] = (Inx−ny + Ts · A11x̂1[k − 1]
+Ts · A12x̂2[k − 1]
+Ts · φ1(x̂[k − 1], u[k − 1])

x̂2[k] = Ts · A21x̂1[k − 1],
+(Iny + Ts · A22)x̂2[k − 1]
+Ts · φ2( ˆx[k − 1], u[k − 1])
+Ts · D2 · C

−1
2 · κ · v[k]

(51)

where v[k] ∈ signm(ey[k]) and signm(·) is the mul-
tivalued sign function used in [43]. Although the term
v[k] = signm(ey[k]) appears on the right hand of (51),
the system is causal. To get an explicit expression of v[k],
Kikuuwe et al. [44] used ŷ[k] = C−12 (y[k]−ey[k]) to express
the output error ey[k] as ey[k] = e∗[k − 1] − β[k − 1]v[k].
As an example, consider the implicit discretization equations
of the observer (51) for the IVP model in (2 - 4) given by:

ISC [k]− ISC [k − 1]
Ts

=
ID[k]
τ1CI

−
ISC [k]
τ1

(52)

IP[k]− IP[k − 1]
Ts

= −
IP[k]
τ2
+
ISC [k]
τ2

(53)

IEFF [k]− IEFF [k − 1]
Ts

= −p2 · IEFF [k]+ SIp2IP[k]

(54)
G[k]− G[k − 1]

Ts
= EGP+ κC−12 v[k]

−(GEZI + IEFF [k])G[k] (55)

By solving the above system of equations together with the
expression ŷ[k] = C−12 (y[k]− ey[k]), one can obtain ey[k] =
e∗[k − 1] − β[k − 1]v[k]. Once e∗[k − 1] and β[k − 1] are
calculated – they are not given for lack of space – the observer
injection term becomes:

v[k] ∈ signm(e∗[k − 1]− β[k − 1]v[k]) (56)

To obtain a causal expression for v[k] two properties of
convex sets were applied [43]:
• The inverse function of b ∈ signm(a) is determined by

b ∈ signm(a)↔ a ∈ N[−1,1](b) (57)

with N[−1,1] the normal cone onto the convex set [−1, 1]
at point b.

• Given a positive scalarM ∈ R and a closed convex non-
empty set, C ⊆ R it follows that:

M (b− a) ∈ NC (b)↔ b = proj(C; a) (58)

where proj(C; a) is the Euclidean projection of the
point a into C .

Finally, the application of the above properties to (56) leads
to:

v[k] = proj([−1, 1];β[k]−1e∗[k]) (59)

Note that, unlike in [3], the above explicit expression for
v[k] does not depend on the disturbance since neither β[k]
nor e∗[k] do it.

E. IN-SILICO COMPARISON
1) GENERAL DESCRIPTION
The purpose of the comparison is to study the impact on the
estimation performance of the following factors:
• ‘‘Model’’: the structure of the model was considered
by comparing the IVP model (Section II-A1) with the
Hovorka model (Section II-A2).

• ‘‘Observer’’: the observers were assessed with the com-
parison of the NSMO (Section II-D) and the KFs
(Section II-C3).

We performed 6 simulations – one for each combination
of models and observers – with the academic version of the
UVa-Padova simulator [21], which was extended with added
features for intra-patient variability generation. The scenario
consisted in a 24-h simulation including three meals (45 g
at 7 h, 70 g at 14 h, and 60 g at 21 h) and multiple sources
of variability, namely, CGMS error according to the default
model in the simulator; sinusoidal-based circadian insulin
variation with uniformly-distributed amplitude of ±30%;
and, variability of subcutaneous insulin absorption according
to a uniform distribution of ±30%. For each of the 10 virtual
adults, we repeated the simulation three times with different
variability instances.

Remark that when comparing different types of observers,
tuning may bias the results. For the fairness of the compari-
son, as indicated in Section II-C3 and Section II-D, we tuned
the three observers for them to perform similarly under the
same tuning scenario. To this end, we set the Q matrix of the
KFs by optimization, and the disturbance bound of theNSMO
by exhaustive simulations.

2) STATISTICAL ANALYSIS
We used the root-mean-square error (RMSE), the median
absolute error (MAE), and the maximum absolute error
(MaxAE) to study the estimation accuracy of the BG, Ip,
and RA. To avoid influencing the metrics with the initial
condition transient, we neglected the first 30 min of the
simulation when computing the metrics.

For each signal, a multifactorial ANOVA determined
whether the factors ‘‘Model’’ and ‘‘Observer’’ and their inter-
action explained the variability found in the performancemet-
rics. Since all the simulations shared the cohort of patients and
the meals, the hypothesis of independence was unmet [45].
For this reason, we considered as new covariates the factor
‘‘Subject’’ – the identifiers for each of the virtual subjects –
together with the interactions ‘‘Subject:Model’’ and
‘‘Subject:Observer’’.
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When a factor (or interaction) was significant, a pairwise
comparison was performed to determine which level (or
combination of levels in the interaction) cause the factor (or
interaction) to be significant. Given the skewness of the dis-
tribution, the sign test was selected to determine if the median
difference between the performance metrics of the groups is
significantly different from 0 at a 0.05 confidence level [46].
The Benjamini-Hochberg p-value correction approach [47]
was applied to control the false discovery rate in the case of
multiple comparisons.

TABLE 2. Virtual patient model parameters. The parameter τ2 was
obtained as the mean of the values included in [19].

The ANOVA and sign test only inform whether the
observed differences among the levels of a factor are non-
random (statistically significant difference) or they originated
from the randomness of the simulations. However, these tests
do not inform about the magnitude of these differences or
their practical relevance. To analyse this information, we cal-
culate two metrics: the eta-squared (η2) – which measures the
proportion of variance associated with each factor [48] –, and
the 95% confidence interval around the median difference
(with the correction in [49] to control the false coverage rate).

III. RESULTS AND DISCUSSION
A. MODELS IDENTIFICATION
1) VIRTUAL PATIENT MODEL
The analysis of the structural identifiability of the IVP model
determines that all the parameters are structurally locally
identifiable when the plasma insulin is measured, which is
coherent with the results in [19]. The sensitive parameters
are SI , EGP, CI , and GEZI ; whereas, parameters τ1, and p2
are mildly sensitive. The only insensitive parameter is τ2; its
nominal value was used instead of being identified.

Among the sensitive parameters, we individualize SI and
CI because they are related to the steady state conditions of
all the state variables. Table 2 shows the identified parameters
for the 10 virtual adults in the UVa-Padova simulator.

TABLE 3. Hovorka’s model parameters.

2) HOVORKA MODEL
Likewise the IVP model, the Hovorka model parameters are
structurally locally identifiable if the plasma insulin is known.
The sensitive parameters of this model are Vi, ke, Si1, k12, Si2,
F01, Si3; the mildly sensitive are EGP, τs and Vg and finally,
the insensitive parameters are the remaining ones. As stated
in Section II-B, the sensitive and mildly sensitive parameters
are included in the identification of the average model, while
the insensitive ones are fixed to the nominal values in [16].
Parameters Vi and Si1 are selected to be individualized, since
they are the most sensitive gains of the insulin subsystem
and glucose subsystem, respectively. Table 3 includes the
identified parameters.

3) IDENTIFICATION ASSESSMENT
The identified parameters of the average models
(Tables 2 and 3) accurately fit the glucose; they achieved
an NRMSE of 9.87% for the IVP model and 6.32% for the
Hovorka model.

Both models achieve a low NRMSE for the plasma insulin.
However, the IVP model fits the plasma insulin better
(3.69% vs. 6.38%). The main difference between the models
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is that the Hovorka model has a slower response due to a
higher order in the insulin pharmacokinetics model.

Moreover, fit degrades when the average models are used
for the different adult subjects in the cohort (see Fig. 2),
specially for the BG fit provided by the Hovorka model. The
larger degradation of the fit in the Hovorka model might
be related to an over-parametrization of the insulin effect
subsystem: Whereas the simulator model uses two compart-
ments to describe the insulin effect [21], the Hovorka model
adds an additional compartment to describe the insulin effect
on the glucose transport, i.e. the state variable x1(t). Also,
it turns out that Si1 is a sensitive parameter that was chosen to
individualize the model. This denotes a structural deficiency
of the Hovorka model concerning the Dalla Man model. This
over-parametrization could cause some overfitting problems,
which make the model sensitive to different patients.

FIGURE 2. Evaluation of the NRMSE for the identificated IVP and Hovorka
models.

Model individualization improves the fit and reduces the
difference in terms of NRMSE between both models. No sta-
tistically significant evidence exists to consider that the
median difference in the NRMSE of the glucose between
both models is different from 0, according to the sign test,
at a confidence level of 0.05. Model individualization also
reduces the variability of the plasma insulin, but the IVP
model improves the accuracy of the Hovorka model.

Since the individualized models fit the plasma insulin and
the plasma glucose better than the average model, we used
the individualized models to design the observers.

B. IN-SILICO COMPARISON
1) RATE OF GLUCOSE APPEARANCE
Overall, observers imprecisely estimate the RA, since the
CGMS noise and model uncertainties are coupled with the
estimation. For example, in Fig. 3, the estimated RA has
negative values: an unphysiological behaviour for a scenario
without exercise.

The type of model significantly contributes to the vari-
ability of RMSE and MAE (Table 5) in the statistical sense
(P-value<0.05). Observers designed with the IVP model
underperform the observers designed with the Hovorka

TABLE 4. KF tuning table. The notations indicate the element of the Q
matrix. As an example 2,2 is the element in the second row and in
the second column.

FIGURE 3. Population plot of the estimation of the rate of glucose
appearance. Thick lines represent the median of the estimation for the
10 patients and the shaded areas represent the median absolute
deviation.

TABLE 5. Summary of ANOVA results of rate of glucose appearance.
It summarizes three metrics: the root-mean-square error (RMSE),
the mean absolute error (MAE) and the maximum absolute error (MaxAE).
Terms ‘‘η2’’ and ‘‘P’’ denote the eta squared effect size measurement and
the P-value of the ANOVA F-statistics, respectively. The asterisk (*)
indicates a P-Value lower than 0.05.

model (Fig. 4) in terms of RMSE and MAE because the
former overestimates the RA after the postprandial peak
and underestimate it in the steady-state (Fig. 3). The pair-
wise comparisons also confirm the superiority of Hovorka-
based observers (Table 6 and Table 7). However, the median
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TABLE 6. Pairwise comparison of the median difference of the
root-mean-square error for the rate of glucose appearance
(in mg/dL/min) between the levels of the significant factors. Values are
expressed as median (mean absolute deviation). The P-values and
confidence intervals (CI) corresponded to the sign test with corrections of
false discovery rate and false coverage rate. An asterisk indicates a
significant result at 0.05 level.

TABLE 7. Pairwise comparison of the median difference of the mean
absolute error for the rate of glucose appearance (in mg/dL/min)
between the levels of the significant factors. Values are expressed as
median (mean absolute deviation). The P-values and confidence
intervals (CI) corresponded to the sign test with corrections of false
discovery rate and false coverage rate. An asterisk indicates a significant
result at 0.05 level.

difference is 0.04 mg/dL/min for both RMSE and MAE,
which might be negligible from the application side.

The observer structure also has a statistically significant
effect on MAE (the influence on RMSE is not statistically
significant, but it is closed to be it). Specifically, DKF
observers overperform NSMO and JKF in 0.04 mg/dL/min
in the median for the MAE (Fig. 7) and in 0.05 mg/dL
for the RMSE (Fig. 6). Conversely, NSMO and JKF behave
similarly, although the NSMO observers have a higher peak
during the transient (Fig. 3), not considered in the calculation
of the metrics (see Section II-E2).
Unlike the analysis of RMSE and MAE, ANOVA of

MaxAE identifies a statistically significant effect of the
interaction between the model and the observer (Table 5).
The DKF observer designed with the Hovorka model illus-
trates the importance of this interaction since it has the
largest MaxAE (Fig. 4); it even underperforms the observers
designed with the IVP, which differs from the conclusions of
RMSE and MAE.

TABLE 8. Summary of ANOVA results of plasma insulin. It summarizes
three metrics: the root-mean-square error (RMSE), the mean absolute
error (MAE) and the maximum absolute error (MaxAE). Terms ‘‘η2’’ and
‘‘P-value’’ denote the eta squared effect size measurement and the
P-value of the ANOVA F-statistics, respectively. The asterisk (*) indicates a
P-Value lower than 0.05.

Finally, although the ANOVA identifies the type of model,
the observer structure, or its interaction as statistically

TABLE 9. Pairwise comparison of the median difference of the
root-mean-square error for the plasma insulin (in mU/L) between the
levels of the significant factors. Values are expressed as median (mean
absolute deviation). The P-values and confidence intervals (CI)
corresponded to the sign test with corrections of false discovery rate and
false coverage rate. An asterisk indicates a significant result at 0.05 level.

TABLE 10. Pairwise comparison of the median difference of the mean
absolute error for the plasma insulin (in mL/U) between the levels of the
significant factors. Values are expressed as median (mean absolute
deviation). The P-values and confidence intervals (CI) corresponded to the
sign test with corrections of false discovery rate and false coverage rate.
An asterisk indicates a significant result at 0.05 level.

significant factors, the analysis of the η2 determines that these
factors contribute less than 1% to the variability of the metrics
(Table 5). In contrast, ‘‘Subject’’ and ‘‘Model:Subject’’
explain more than 90% of the variability, evincing that no
observer technique managed to cope with the large inter-
patient variability of the simulation. In addition, this result
unveils the limitations of the personalized models used to
design the observer, even though we identified these models
with the knowledge of the plasma insulin and meal rate of
appearance.

2) PLASMA INSULIN ESTIMATION
Model structure and observer type cause remarkable differ-
ences in the RMSE, MAE, and MaxAE (Fig. 5). Indeed,
ANOVA supports for the three metrics significant differ-
ences between the IVP and Hovorka models on the one side
and between the DKF, JKF, and NSMO on the other side
(Table 8).
The post-hoc analyses in Tables 9 - 11 determine that

no significant differences between the NSMO and the JFK
exist, which agrees with Fig. 6, where the responses of both
observers mostly overlap. DKF observers are the only ones
that statistically differ; they lower, in the median, the RMSE
in 0.5 mU/L, the MAE in 0.3 mU/L, and the MaxAE
in 2.92 mU/L. Since the gain related to the Ip in the KFs is
near 0 and, it is exactly 0 for the NSMO, the only difference
between observers is the discretization method: whereas the
NSMO and the JFK are based, respectively, on an implicit and
explicit Euler method, the DKF employs a zero-order hold
discretization that leads to more accurate results.

The IVP model significantly improves the performance of
the estimation compared to the observers designed with the
Hovorka model – with median reductions of 0.92, 0.72, and
5 mU/L in the RMSE, the MAE, and the MaxAE,
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TABLE 11. Pairwise comparison of the median difference of the
maximum absolute error for the plasma insulin (in mL/U) between the
levels of the significant factors. Values are expressed as median (mean
absolute deviation). The P-values and confidence intervals (CI)
corresponded to the sign test with corrections of false discovery rate and
false coverage rate. An asterisk indicates a significant result at 0.05 level.

FIGURE 4. Grouped boxplot for the rate of glucose appearance. It
represents the mean absolute error (MAE), maximum absolute
error (MaxAE) and the root-mean-square error (RMSE) of the rate of
glucose appearance (in mg/dL/min). The length of the box corresponds
to the interquartile range, the black solid line is the median and the
yellow cross is the mean.

FIGURE 5. Grouped boxplot for the plasma insulin. It represents the
mean absolute error (MAE), maximum absolute error (MaxAE) and the
root-mean-square error (RMSE) of the plasma insulin (in mU/L).
The length of the box corresponds to the interquartile range, the black
solid line is the median and the yellow cross is the mean.

respectively. In Section III-A3, we already observed these dif-
ferences between models when analysing the fit of the identi-
fied models, indicating that the use of the observer could not
cope with the deficiencies of the models. The superiority of
the IVP is related to a quicker response in the Ip dynamics
than the Hovorka model (Fig. 6). The slower dynamics of the
Hovorka model might be explained by the 2-compartment

model that describes the subcutaneous absorption with an
equal transfer rate between compartments.

The interaction between the type of model and the observer
structure is not significant. This result agrees with Fig. 5,
where the DKF always reduces the RMSE compared to the
JKF and NSMO, regardless of the utilized model.

The type of model contributes more to the perfor-
mance of the observer than the observer structure does
(Table 8). However, as observed in the analysis of the RA,
the variability explained by ‘‘Subject’’ and the interactions
‘‘Model:Subject’’ and ‘‘Observer:Subject’’ – 67.6% of the
RMSE, 68.0% of the MAE, and 62.7% of the MaxAE – is
much larger than the sum of type of model, observer structure
and interaction – 11.1% of the RMSE, 12.2% of the MAE,
and 15.7% of the MaxAE. Again, this reveals the limitation
of the observers to overcome the inter-patient variability.

FIGURE 6. Population plot for the estimation of the plasma insulin. Thick
lines represent the median for the 10 subjects in the cohort, and the
shaded area the mean absolute deviation.

TABLE 12. Summary of ANOVA results of CGMS. It summarizes three
metrics: the root-mean-square error (RMSE), the mean absolute
error (MAE) and the maximum absolute error (MaxAE). Terms ‘‘η2’’ and
‘‘P’’ denote the eta squared effect size measurement and the P-value of
the ANOVA F-statistics, respectively. The asterisk (*) indicates a P-Value
lower than 0.05.

3) GLUCOSE MEASUREMENT
The ANOVA in Table 12 determines that the type of model,
the observer structure, and its interaction significantly explain
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the variance of the RMSE, the MAE, and the MaxAE.
Although all the levels in the interaction between the type
of model and the observer structure are statistically differ-
ent, the median differences are, at most, 0.10 mg/dL for
the RMSE, 0.07 mg/dL for the MAE, and 0.4 mg/dL for
the MaxAE. Such minor differences are negligible from the
clinical point of view.

Unlike the analysis of the RA and the Ip, the type of model,
the observer structure, and its interaction fully explain the
variability of the performance metrics – 98.7% of the RMSE,
98.9% of the MAE, and 97.6% of the MaxAE. Since glucose
is the only signal available online, the observers handle the
inter-patient variability, which contributes less than 1% to the
variability.

IV. CONCLUSION
We designed three observers (dual Kalman filter, Joint
Kalman filter, and non-linear slidingmode observer) based on
two glucose-insulin models (Hovorkamodel and IVPmodel).
The most sensitive parameters of these models were individ-
ualized for the 10-adult cohort in the UVa-Padova simulator.

A statistical analysis quantified the impact of the observer
structure and model type on the performance of the observers
in terms of root-mean-square error, mean absolute error, and
maximum absolute error in the Ip, glucose, and RA. It was an
in-silico analysis; hence simulator accuracy might compro-
mise the results. UVa-Padova simulator includes a realistic
cohort of subjects [25], accurately fits the glucose profiles of
clinical trials [23], and improves the estimation of the meal
absorption compared to other models in the literature [24].
However, like any other simulator, it cannot fully represent
all the complex mechanisms involved in the glucose-insulin
system. Repeating this study with clinical data would be
desirable, but considering the rate of glucose appearance
would be unfeasible since its measurement requires elaborate
and expensive procedures.

For the Ip and RA, the low values of η2 indicate that
the observer structure negligibly impacts the global perfor-
mance. Although statistically significant differences between
observer structures exist, these differences are either too
marginal or are due to causes beyond the observer structure.
For example, the method used to discretize the plant model
caused the differences between observers in plasma insulin;
the observer type barely contributed to these differences.

The type of model influenced the performance of Ip and
RA estimations more than the observer one. This result is
evident in the estimation of the Ip where the same advantages
of the IVP model, shown in the identification procedure,
appeared after designing the observers, regardless of the
observer structure.

Finally, the large values of the η2 for the ‘‘Subjects’’ and
‘‘Model:Subjects’’ factors evince the lack of robustness of the
observers against the inter-patient variability. Observers with
a more complex structure – for example, moving horizon esti-
mators [10] or observers based on neuro-fuzzy systems [50].
New strategies to improve the personalization of the models

must be explored and compared in the future to study if they
increase the robustness.
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