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Abstract— This article presents a method for structured robust
control design for systems with a mixture of parametric and
dynamic uncertainty. The proposed method alternates between
an analysis step and a synthesis step. Samples of the paramet-
ric uncertainty are computed during the analysis steps, thus
yielding an array of uncertain systems containing only dynamic
uncertainty. The controller is then synthesized on this array of
uncertain models. This synthesis step itself involves an alternation
between constructing a D-scale for each of the uncertain systems
and tuning a single controller for the entire collection of scaled
plants. The controller tuning is performed using structured
control design techniques. The proposed method is utilized to
design a flutter suppression controller for a flexible aircraft.
The aircraft dynamics are described by both a high-fidelity
and a reduced-order model. The design objectives for flutter
suppression are to achieve robust stabilization in the presence
of mixed uncertainty. The proposed structured design method
yields a single, low-order, linear time-invariant (LTI) controller,
which increases the flutter speed by 15%. Additional robustness
analyses and high-fidelity simulations are provided to assess the
controller performance.

Index Terms—µ-synthesis, flutter control, mixed uncertainty,
structured synthesis, uncertain systems.

I. INTRODUCTION

THERE are a variety of optimal control synthesis methods
available in the literature, e.g., H2 and H∞ methods [1],

[2]. However, the practical application of these methods can
be limited because they provide full-structure state-space con-
trollers. Industrial applications often prefer or require con-
trollers with specific structure for implementation. Examples
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include the Vega launch vehicle [3], automated landing of a
civilian aircraft [4], and chemical process control [5].

The H∞ synthesis conditions can be expressed as convex
constraints when the plant is nominal (no uncertainty) and
the controller is allowed to be full-order and unstructured [6].
Nominal synthesis becomes nonconvex, in most cases, once
structure or reduced order is imposed on the controller. One
notable exception is the quadratic invariance condition [7],
which allows for convex synthesis. As a consequence, most
research on structured control synthesis has focused on algo-
rithms that are reliable and computationally efficient on typical
engineering problems (but not necessarily with proofs of
global optimality).

Two notable algorithms for structured control synthesis
include the H∞/H2 fixed order optimization (HIFOO) in [8]
and structured H∞ design in [9]. This article focuses on the
algorithm in [9] due to its ease of use in MATLAB [10] as the
hinfstruct function. The approach has also been extended
to handle multiple frequency-domain design requirements in
the fixed structured design as implemented in the systune
function [11].

This article builds on a previous conference paper [12]
in proposing a structured synthesis method for systems with
mixed (i. e. parametric and dynamic) uncertainty. The chosen
objective of the design is the minimization of the worst case
gain, i. e. the maximal closed-loop H∞ norm over the set
of allowable uncertainties. The algorithm utilizes an iteration
in which controller synthesis is followed by analysis. This
iteration continuously updates a set of “bad” samples for
the parametric uncertainty. This yields a corresponding set
of sampled design plants. The synthesis step itself is an
iterative process, which resembles the traditional D-K iter-
ation [13]. The K-step is performed as a structured design
(using systune) on the collection of sampled plants. The
D-step solves for the scalings associated with each sam-
pled plant. In the analysis step, the worst case gain of the
closed loop is calculated along with a worst case uncertainty.
A sample of parametric uncertainty is extracted from this worst
case uncertainty. The subsequent synthesis step is repeated
using this updated set of sampled plants.

The proposed algorithm resembles the hybrid relaxation
approach in [14, Algorithm 2]. The novelty of this article
lies in the control synthesis step. In particular, the hybrid
relaxation given in [14] has a synthesis step that involves
parameterizing a single dynamic D-scale for all uncertainty
sample. It then jointly optimizes over the tunable parameters
in both the scaling and controller using structured synthesis
techniques [9], [10]. This approach is effective for many
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problems, but the restriction to a single dynamic scaling might
be conservative on certain examples, e.g., see Section IV-B
in [12]. As commented in [14], it is possible to extend
the hybrid relaxation to parameterize one scaling for each
parametric uncertainty sample at the expense of a larger
number of optimization variables.

In contrast, the approach given in this article utilizes
dynamic scalings that depend on the parametric uncertainty
sample. The use of parameter-dependent scalings reduces
conservatism at the expense of requiring a coordinatewise D-K
iteration for the synthesis. This coordinatewise iteration alter-
nates between optimizing the D-scaling while holding the con-
troller fixed and vice versa. This tends to be less effective than
the joint scaling and controller optimization used for the syn-
thesis in the hybrid relaxation approach. If the D-scales depend
strongly on the value of the uncertain parameters, however,
the individual D-scale construction has the advantage. This
is illustrated with a concrete example in [12]. Another minor
distinction is that we use a branch-and-bound implementation
for the worst case gain analysis. The branch-and-bounding
provides tighter analysis bounds. MATLAB implementation of
the algorithm is available online [15].

To demonstrate the effectiveness of this synthesis method,
and as an extension of our previous work in [12], a real-life
flutter suppression control example is presented for the demon-
strator aircraft of the FLEXOP project [16]. The aeroelastic
flutter is an adverse interaction between the aerodynamics and
the structural dynamics of the aircraft, which causes undamped
oscillations that can result in catastrophic structural failure.
There are a number of active control solutions to mitigate flut-
ter. The robust control framework was successfully applied in
[17] and extended to the linear parameter-varying (LPV) case
in [18]. Optimal blending of the inputs and outputs is utilized
in [19] to maximize control effectiveness for the flutter modes
and minimize the excitation of the remaining modes.

Our approach is similar to [20] with additional focus on
robustness. The design model is an uncertain control-oriented
model of the aircraft with both parametric and dynamic
uncertainties. The control problem is decomposed into the syn-
thesis of two independent single-input–single-output (SISO)
controllers with the performance criteria of robust stabilization
and control effort minimization. The robustness of the flutter
control loop is evaluated using the high-fidelity model of
the aircraft. Loop margins are computed and time-domain
simulations are conducted to investigate the extension of the
safe flight envelope.

The remainder of this article is laid out as follows. The syn-
thesis method is described in detail by Section II. Section III
presents the nonlinear high-fidelity model of the aircraft, the
bottom-up modeling that results in the control-oriented model,
the construction of the uncertain model, and the control design.
The analysis of the closed flutter loop is given in Section IV.
Finally, conclusions are drawn in Section V.

II. STRUCTURED ROBUST CONTROL DESIGN ALGORITHM

AGAINST MIXED UNCERTAINTY

The majority of this section is the restatement of the
method in [12]. The mathematical formulation of the design

problem is given in Section II-A. Then, Section II-B pro-
vides an overview of the algorithm. The construction of the
D-scales, and the synthesis and analysis steps are elaborated
in Section II-C, II-D, and II-E, respectively.

A. Problem Formulation

1) Notation : Let N ∈ C
rN ×cN and K ∈ CrK ×cK be given

matrices with rK < cN and cK < rN . Partition N such that
the lower right block is cK × rK and

N =
[

N11 N12

N21 N22

]
. (1)

The lower linear fractional transformation (LFT) is

FL(N, K ) := N11 + N12 K (I − N22 K )−1 N21. (2)

Similarly, the upper LFT of N and � ∈ Cr�×c� is defined as

FU(N, �) := N22 + N21�(I − N11�)
−1 N12 (3)

assuming compatible dimensions. The same definitions for
both the lower and upper LFTs hold if N , K , and � are linear
time-invariant (LTI) systems. Finally, diag{�1,�2, . . . ,�N }
denotes the block diagonal concatenation of �1, �2, …, �N .

2) Structured Robust Synthesis : The robust synthesis prob-
lem is formulated using the feedback interconnection shown
in Fig. 1. The uncertain plant P(�) = FU(M, �) consists
of an LTI system M and structured LTI uncertainty �. The
objective is to design an LTI controller with fixed structure,
K (κ), where κ ∈ Rnκ is a vector of tunable design parameters.

The uncertainty � is assumed to be block-structured con-
sisting of unit norm-bounded parametric and dynamic uncer-
tainty [21], [22]. Specifically, define the following sets of
parametric and dynamic uncertainties:

�p : =
{

diag
{
δ1 Ir1 , . . . , δNp IrNp

} ∣∣∣ δi ∈ R, |δi | ≤ 1
}

�d : = {
diag

{
�1, . . . ,�Nd

} ∣∣�i LTI, ||�i ||∞ ≤ 1
}

(4)

where ||·||∞ denotes the H∞ norm. The dynamic blocks in
�d are assumed to be square. This assumption can be relaxed
with only notational changes. The plant uncertainty is given
as � ∈ � where

� := {
diag

{
�p,�d

} ∣∣�p ∈ �p and �d ∈ �d
}
. (5)

Note that ||�||∞ ≤ 1 for all � ∈ �. We also define a set of
D-scales Dd associated with the set of dynamic uncertainties
�d. The set Dd consists of stable, minimum phase, and
invertible LTI systems that commute with the elements of
�d, i.e., if Dd ∈ Dd, then Dd�d = �d Dd, ∀�d ∈ �d. This
set of scalings will be used in the structured robust synthesis
algorithm.

Define the worst case gain of the closed loop in Fig. 1 as

J (κ) := max
�∈�

||FL(P(�), K (κ))||∞. (6)

This definition assumes that FL(P(�), K (κ)) is robustly sta-
ble, i.e., stable for all � ∈ �. If the closed loop is not
robustly stable, then J (κ) is defined to be +∞. The synthesis
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Fig. 1. Closed loop interconnection for the control design.

Fig. 2. Scaled plant used in the D-K iteration.

objective is to tune the parameters of the structured controller
to minimize the closed-loop worst case gain, that is

κ� = arg min
κ∈Rnκ

J (κ). (7)

According to our engineering experience, optimizing the worst
case gain is a better performance objective than the usual
robust performance [13]. If robust stability is reached, the
design objective is to improve the performance without extend-
ing the stability margin any further.

Structured robust synthesis is, in general, a nonconvex
optimization problem. Sections II-B and II-E describe an
iterative method to compute suboptimal controller parameters.

B. Overview of the Algorithm

This section introduces the proposed algorithm for comput-
ing a structured controller to minimize the closed-loop worst
case gain. An overview summary of the proposed approach is
given in Algorithm 1. The algorithm is iterative and utilizes the
sample sets for the parametric uncertainty �p,s and D-scales
Dd,s. The set �p,s is initialized with the nominal value of the
real parametric uncertainty (Step 2). These sets are updated
throughout the iteration, as described further in the following.
The algorithm also expects that a controller K (κinit) is avail-
able for initialization. It is further assumed that this controller
robustly stabilizes the system for the dynamic uncertainty (�d)
and the nominal value of the parametric uncertainty (�p = 0).
In some problems, the open loop is robustly stable, and hence,
K (κinit) = 0 can be used for initialization. Otherwise, an initial
robustly stabilizing controller can be computed with a related
stability margin maximization algorithm.

The first key step of Algorithm 1 is to synthesize a struc-
tured robust controller using an iteration (Steps 4–7) that is
similar to the (unstructured, full-order) D-K iteration [13]. This

Algorithm 1 Structured Robust Synthesis

alternates between a D-step (Step 5) that computes a set of
scalings Dd,s and a K-step (Step 6) that computes a structured
robust controller K (κ). This iteration terminates when γ̄d does
not decrease significantly compared to the previous iteration
or when the maximum number of iterations is reached. Our
specific implementation terminates the D-K inner loop if γ̄d

fails to decrease by more than 1% or the maximum number
of 15 iterations is reached.

The D-step (Step 5) first constructs a set of closed loops
with the structured controller K (κ), and each sample of the
parametric uncertainty �p ∈ �p,s obtained in Step 8. Each
closed-loop sample still has the remaining dynamic uncertainty
�d. Worst case gain analyses are performed to compute a
scaling Dd ∈ �d for each closed loop with the corresponding
sample�p ∈ �p,s. Thus, Dd,s has the same number of elements
as �p,s. Details on this step are given in Section II-C.

The K-step (Step 6) forms a collection of scaled plants
from the samples of parametric uncertainty and D-scales.
Specifically, a scaled plant is constructed for each sample
(�p, Dd) ∈ �p,s ×Dd,s, as shown in Fig. 2. Then, systune is
used to compute a structured controller K (κ) to minimize the
worst case gain on this collection of sampled, scaled systems.
Details on this step are provided in Section II-D.
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Finally, an analysis step (Step 8) is performed on the
resulting closed loop FL(P(�), K (κ)). In the analysis, the
entire uncertainty � is considered using a version of wcgain
with additional branch-and-bounding. This generates lower
and upper bounds on the worst case gain. It also computes
a worst case uncertainty that achieves the lower bound. The
parametric block of this worst case uncertainty is added to the
sample set �p,s (Step 9). Details on the analysis are given in
Section II-E.

The algorithm outer-loop terminates (Step 3) if the worst
case synthesis gain is within the interval of the analysis
bounds, i.e., γs ∈ [γ

a
, γ̄a], and γ̄a fails to decrease significantly

(more than 1%) over the last iteration. The loop also terminates
if the maximum number of iterations counts (30) is reached.

The outline of Algorithm 1 is inspired by [14, Algorithm 2].
The key difference between the two approaches is the control
synthesis in Steps 4–7. Specifically, in Algorithm 1, a separate
Dd ∈ Dd,s corresponds to the individual samples in �p,s,
instead of a common Dd. This solution reduces conservatism
and decreases the number of decision variables for the struc-
tured synthesis. This comes at the expense of having to use an
iterative process for the controller synthesis, however. Another
distinction between the two approaches is that we use branch-
and-bounding for the worst case gain computation, which
results in tighter bounds.

The proposed algorithm is designed to handle mixed uncer-
tainty. If the system only contains dynamic uncertainty (� =
�d), then only Steps 4–7 are performed. On the other hand,
if the uncertainty is purely parametric (� = �p), then the
samples are LTI systems without uncertainty. In this case,
Steps 4–7 are replaced by a single controller synthesis step,
where we find a controller that simultaneously stabilizes all the
samples and minimizes performance at the same time. This is
done using hinfstruct [9], [10].

C. Parameter-Dependent D-Scales

Let a parametric uncertainty sample �p ∈ �p and controller
K (κ) be given. The corresponding closed loop T (�p, κ),
shown in Fig. 2, is defined as

T (�p, κ) := FL
(FU

(
M, �p

)
, K (κ)

)
. (8)

The worst case gain for the closed loop over the remaining
dynamic uncertainty is given by

max
�d∈�d

∣∣∣∣FU
(
T (�p, κ), �d

)∣∣∣∣∞. (9)

It follows from standard μ analysis results [22], [23] that an
upper bound on this worst case gain over �d is given by

min
Dd∈Dd
γ>0

γ

subject to:∣∣∣∣∣
∣∣∣∣∣
[

Dd 0
0 1√

γ
I

]
T (�p, κ)

[
D−1

d 0
0 1√

γ
I

]∣∣∣∣∣
∣∣∣∣∣∞ ≤ 1. (10)

Fig. 2 shows the sampled closed loop with D-scales and
performance gain scaling. For the remainder of the derivation,
the notational dependence of T on (�p, κ) is dropped for

Fig. 3. Gain of the scaled system with D-scales obtained using different
methods.

simplicity. Form the partitioning T =: [
T1
T2

]
where T2 has

the row dimension of the error signal e. Recall that, for any
complex matrix L, it follows that σ̄ (L) ≤ 1 if and only if
I − L∗L � 0. Here, � 0 means positive semidefiniteness of
the left-hand side, and L∗ is the conjugate transpose of L.
This can be used to express the constraint in (10) as a
(frequency-dependent) linear matrix inequality (LMI). By the
Schur complement lemma, this constraint is equivalent to

⎡
⎣ γ I T2( jω)

T2( jω)∗
[

X( jω) 0
0 γ I

]
−T ( jω)∗

[
X( jω) 0

0 0

]
T ( jω)

⎤
⎦ � 0

(11)

∀ω, where X( jω) := Dd( jω)∗ Dd( jω).
Every Dd ∈ Dd has the structure diag

{
d1 I, . . . , dNd I

}
, with

each di as a stable, minimum-phase, invertible SISO system.
Thus, X has the structure X = diag

{
x1 I, . . . , xNd I

}
, where

xi = d∗
i di ≥ 0 for all ω. Express each xi as xi = ψ∗
iψ ,

where ψ is a (fixed) column vector of stable, minimum phase
basis functions, and 
i = 
∗

i are decision variables to be
optimized.

For the subsequent synthesis step, it is advantageous to find
a D-scale that does not only minimize the peak of γ but
minimizes it over a broad frequency range. To illustrate this,
consider Fig. 3. If we solve (10) frequency-by-frequency while
allowing the D-scales to vary arbitrarily between each point,
then we obtain the theoretical worst case gain lower bound.
This is the dashed blue curve in Fig. 3. If we search for a
realizable Dd(s) by enforcing (11) only at the frequency of the
peak, then γ (ω) we get is in general only accurate at the peak
and can be far from the theoretical value at other frequencies.
See the red dashed–dotted line in Fig. 3. Using such a D-scale
leaves little room for the control synthesis to improve the
performance further. Therefore, it is better to enforce (11)
at several frequencies at the same time. In practice, this
calculation usually leads to some inaccuracy at the peak, but
it provides lower γ values at the rest of the frequencies,
as illustrated by the continuous yellow curve in Fig. 3.

Therefore, the constraint in (11) is enforced on a frequency
grid {ωk}Nω

k=1. The cost function to be minimized is turned into

γ̂ +
Nω∑

k=1

γk (12)
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where γk is the gain at ωk and γ̂ is the peak gain over all
frequencies, that is

γ̂ ≥ γk, k = 1, . . . , Nω (13)

is added to the constraints.
To ensure that xi ≥ 0 for all ω, additional Kalman–

Yakubovich–Popov (KYP) lemma constraints are added [24].
This guarantees that the solution X obtained from the opti-
mization can be spectral factorized to get a stable, minimum
phase scaling Dd. If ψ( jω) = Cψ

(
jωI − Aψ

)−1
Bψ + Dψ ,

then ψ∗
iψ ≥ 0 for all ω is expressed as[
( jωI − Aψ)−1 Bψ

I

]∗[C∗
ψ

D∗
ψ

]

i

[
Cψ Dψ

] ·[
( jωI − Aψ)−1 Bψ

I

]
≥ 0

for all ω. By the KYP lemma, this condition is equivalent to
the existence of Qi = Q∗

i such that[
A∗
ψQi + Qi Aψ Qi Bψ

B∗
ψQi 0

]
−

[
C∗
ψ

D∗
ψ

]

i

[
Cψ Dψ

] 
 0. (14)

The optimization in (10) is reformulated as the minimization
of the cost function in (12) with constraints (11) for each ωk

and γk , (13) and (14). This is a convex SemiDefinite Pro-
gram (SDP) in the variables γ̂ , {γk}Nω

k=1, {
i }Nd
i=1, and {Qi }Nd

i=1.
Finally, this optimization is solved to compute dynamic scaling
Dd for each uncertainty sample �p ∈ �p,s.

An alternative formulation of this optimization is possible
in which the minimization of the cost function in (12) is
decomposed into two steps. First, only the peak γ̂ is mini-
mized. Second,

∑Nω
k=1 γk is minimized with γk ≤ (1 + ε)γ̂ ,

k = 1, . . . , Nω , replacing (13), where ε is a positive tolerance
parameter. This approach may yield better results for some
problems. Specifically, this alternative algorithm performed
better on 13 of the 31 test examples (with no difference
in 8 cases). However, the computation time is roughly doubled
for the alternative algorithm since two optimization steps are
performed.

D. Synthesis Step

The output of the D-step is a set of dynamic scalings Dd,s

each computed for a corresponding element of the parameter
uncertainty set�p,s. The synthesis step optimizes the controller
K (κ) to minimize the worst case gain over the set of scaled,
closed-loop samples. This is formulated as the following
optimization:

min
κ∈R

nκ

γ>0

γ

subject to:∣∣∣∣∣
∣∣∣∣∣
[

Dd 0
0 1√

γ
I

]
T (�p, κ)

[
D−1

d 0
0 1√

γ
I

]∣∣∣∣∣
∣∣∣∣∣∞ ≤ 1

∀(�p, Dd) ∈ �p,s × Dd,s. (15)

This control synthesis is directly addressable using the
systune command in MATLAB [11].

Fig. 4. Demonstrator aircraft built for the FLEXOP project.

If K (κinit) is not robustly stabilizing for the dynamic uncer-
tainty, as assumed in Algorithm 1, the D-scales are set to
identity in Step 5. Under these conditions, the optimization
in (15) may still yield a solution (and in fact usually does).
If there is no solution however, a different algorithm is
invoked, which maximizes the stability margin of the system,
thus providing a robustly stabilizing controller if possible. This
algorithm is not detailed in this article for lack of space.

E. Analysis Step

The analysis step computes the upper and lower bounds on
the worst case gain of the closed-loop given in (6) for a fixed
controller K (κ). This is performed using the wcgain function
in MATLAB but modified to incorporate branch-and-bound on
the parametric uncertainty. The lower bound γ

a
is computed

using a combination of a (skewed-μ) power iteration for the
dynamic uncertainty blocks and a Hamiltonian-based coordi-
natewise iteration on the parametric uncertainty. This returns a
worst case uncertainty �� that achieves the lower bound. The
upper bound γ̄a is computed using a frequency-gridded SDP
with D-scales for the dynamic uncertainty and (D,G)-scales for
the parametric uncertainty. Thus, instead of using the D-scales
obtained during the controller synthesis like the algorithm
in [14], we recompute the D-scales on a frequency grid for
the analysis step. This is less conservative since the state-space
realization of the D-scales is not required for the calculation
of the worst case gain upper bound.

Branch-and-bounding of the real uncertainty is used to
reduce the gap between the upper and lower bounds. Specif-
ically, the real parameter uncertainty set �p is described
by a normalized hypercube. This hypercube is split and the
upper/lower bounds are computed on each subcube. The split-
ting of subcubes continues until the gap between the overall
upper and lower bounds is below some relative error or a
maximum number of cube splits is reached. Details on this
analysis step are given in [25].

When the worst case gain upper bound γ̄a is infinite, the
worst case uncertainty is chosen, which corresponds to the
upper bound of the stability margin of the closed loop. This
is computed using the robstab function in MATLAB [26].

III. FLUTTER SUPPRESSION CONTROL DESIGN FOR THE

FLEXIBLE AIRCRAFT

The demonstrator of the FLEXOP project, shown in Fig. 4,
was built specifically for flutter control experimentation [16].
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Fig. 5. Positions of the sensors and control surfaces used for the flutter
suppression control. The control inputs and measurements are marked at the
corresponding control surface or sensor. The signals qL, qR, and q denote
angular rates along the y-axis, and uf,L and uf,R are deflection commands for
the actuators.

The single-engined aircraft features a wingspan of 7 m, aspect
ratio of 20, and takeoff weight between 55 and 66 kg.
This section is dedicated to the application of the structured
synthesis method to the flutter suppression control design
for this platform. In Section III-A, the high-fidelity model
is given, which is used in the analysis of the closed loop.
The reduced-order control-oriented model is described in
Section III-B. Finally, the formulation of the uncertain design
model and the control problem along with the synthesis results
are in Section III-C.

A. Nonlinear High-Fidelity Model of the Flexible Aircraft

Each wing of the FLEXOP aircraft is equipped with four
control surfaces [27] with the outermost pair dedicated to
flutter suppression, as shown in Fig. 5. To actuate these, a
custom-made direct-drive actuator is developed with band-
width greater than the flutter frequencies. Based on system
identification, the direct-drive actuator has 0.1-ms delay and
transfer function

Gact(s) = 0.78s + 2.74 · 105

s2 + 564.51s + 2.74 · 105
. (16)

In addition to the GPS and air data probe, the aircraft features
inertial measurement units (IMUs) at the center of gravity
and in the wings, as shown in Fig. 5. The IMUs provide
acceleration and angular rate measurements along all three
body axes.

The construction of the aeroservoelastic (ASE) model is
based on a subsystem approach, which involves the integra-
tion of aerodynamics, structural dynamics, and flight dynam-
ics [28], [29], as shown in Fig. 6. The components in Fig. 6
are developed separately and then combined to form the ASE
model.

The structural dynamics are modeled by the high-fidelity
finite-element method [30] and are then condensed with
Guyan reduction [31]. The aerodynamics model of the air-
craft is based on the vortex-lattice method (VLM) and the
doublet-lattice method (DLM), and it is complemented by
results from computational fluid dynamics (CFD) simulations.
The nonlinear equations of motions are derived based on a
mean axes reference frame [32]. The mean axes approach

Fig. 6. ASE subsystem interconnection. Faero represents the aerodynamic
forces acting on the rigid body dynamics and Fexternal represents external, i.e.,
the propulsion and gravitational forces; the rest of the variables are defined
in the remainder of the section.

describes the dynamics of the flexible body by a set of equa-
tions that decouple the rigid body modes from the vibrational
modes. The mean axes coordinates ensure that the coupling is
restricted to external forcing terms only [32].

The nonlinear ASE model of the FLEXOP aircraft con-
sists of 12 rigid body states, 100 states corresponding to
flexible modes, and 1040 aerodynamic lag states in addition
to the actuator dynamics. This model is considered as the
high-fidelity model. Based on this model, the aircraft has
two unstable aeroelastic modes. The symmetric flutter mode
becomes unstable at 52 m/s and 50.2 rad/s, and the asymmetric
mode becomes unstable at 55 m/s and 45.8 rad/s.

B. Bottom-Up Model Reduction

The high-fidelity model in III-A has over 1000 states.
Control design for such a high-dimensional model is not prac-
tical; therefore, an appropriately low-order and numerically
tractable control-oriented model is required [17]. Because the
size of this model poses considerable difficulty to the LPV
reduction techniques [33], [34], the “bottom-up” modeling
approach in [35] and [30] is applied in this article. The key
idea is to reduce the components of the system in Fig. 6
separately. Since the structural and aerodynamics subsystems
have a simpler structure than the combined ASE model, it is
possible to simplify them using more straightforward reduction
techniques. This approach leads to a sufficiently low-order
ASE control-oriented model.

The outermost control surface pair is used for flutter sup-
pression, as shown in Fig. 5. The actuating signal is the control
surface deflection command received by the actuator denoted
as uf,L and uf,R for the left and right wings, respectively. The
sensors used for flutter control are three IMUs: one in the
center of gravity and two at the 90% of the half wingspan
on each wing. Only the angular rate measurements along the
y-axis of the three IMUs are used (see Fig. 5). The signals of
the IMUs on the left and right wings are denoted by qL and
qR, respectively, while q denotes the pitch rate in the center
of gravity. Only these inputs and outputs are considered in the
reduction.
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The frequency range of interest where the control-oriented
model is expected to provide a good approximation of the
high-fidelity model is [0, 100] rad/s; 100 rad/s is roughly twice
the flutter frequencies 50.2 and 45.8 rad/s, which ensures the
accurate representation of the flutter behavior. It is possible to
retain the accuracy of the control-oriented model over a wider
frequency range at the expense of additional dynamics.

The objective of the reduction is to decrease the number
of states of the subsystems in Fig. 6 while maintaining
an acceptably low ν-gap between the high-fidelity and the
control-oriented model in the frequency range of interest
([0, 100] rad/s). The ν-gap metric δν(·, ·) is used since it
considers the feedback control objective. It assumes values
between zero (for identical systems) and one. If a feedback
controller stabilizes the system P1(s) with stability margin ε,
then it also stabilizes P2(s) if δν(P1(s), P2(s)) < ε. A plant
at a distance greater than ε from P1, on the other hand, will
in general not be stabilized by the same controller [36]. The
ν-gap between P1(s) and P2(s) at the fixed frequency ω is

δν(P1( jω), P2( jω)) = σ̄
[(

I + P2( jω) P∗
2 ( jω)

)−1/2·
(P1( jω)− P2( jω))

(
I + P∗

1 ( jω)P1( jω)
)−1/2

]
2

(17)

where σ̄[·] denotes the largest singular value.
The aerodynamic lag terms assume the state-space form

ẋaero = 2VTAS

c̄
Alagxaero + Blag

⎡
⎣ẋrigid

η̇

δ̇cs

⎤
⎦

yaero = Clagxaero (18)

where VTAS is the true airspeed (TAS), c̄ is the reference chord,
xrigid is the rigid body state, η is the state of the structural
dynamics, and δcs is the control surface deflection.

Balancing transformation is applied for the aerodynamics
model given by Alag, Blag, and Clag in (18). The order reduction
is achieved by residualizing the states with the smallest Hankel
singular values. Keeping two lag states results in acceptable
accuracy. Coefficient CQ3η1

for the modal generalized force
(see Chapter 7 of [32] for more details) affecting the symmet-
ric flutter mode and coefficient Clp affecting the asymmetric
flutter mode of the control-oriented model was scaled by
0.65 and 1.6, respectively. By this heuristic modification, the
resulting control-oriented model matches the flutter speeds and
frequencies of the high-fidelity model better. The effect of this
modification on the rest of the dynamics is negligible.

The structural dynamics of the aircraft are of the form

Mη̈ + Cη̇ + Kη = Fmodal (19)

where M, C, and K are the modal mass, damping, and stiffness
matrices, respectively, and Fmodal is the external excitation
in modal coordinates. The structural dynamics model is an
LTI system; therefore, state truncation is applied. Along with
the first six structural modes, modes 19, 20, and 21 are
retained since their removal results in a large increase in the ν-
gap between the high-fidelity and the control-oriented model.
In this way, the 100th order structural dynamics model is
reduced to 18 states. It is assumed that the structural dynamics

Fig. 7. ν-gap values as a function of frequency between the high-fidelity
and the control-oriented model for the inputs and outputs used for the flutter
suppression control design.

Fig. 8. Pole migration of the control-oriented and high-fidelity models.

model has parametric uncertainty. Specifically, the first six
modes of the control-oriented model have ±1% uncertainty
in the natural frequency and ±10% in their damping.

The resulting bottom-up control-oriented model
has 56 states that consist of 12 rigid body states, 18
structural dynamics states, two aerodynamic lag states,
and 24 actuator dynamics states. The design model is
obtained by trimming and linearizing this model for straight
and level flight at 36 equidistant points of the airspeed in
the interval [30, 65] m/s and for each combination of the
perturbed parameters in the structural dynamics. The ν-gap
between the high-fidelity and the control-oriented model for
different airspeed values and the nominal structural dynamics
is shown in Fig. 7. The ν-gap is calculated for the inputs and
outputs used for flutter control (see Fig. 5).

The pole migration of the high-fidelity and the
control-oriented model is compared in Fig. 8. The full-order
model predicts flutter at 52 and 55 m/s at frequencies of 50.2
and 45.8 rad/s, respectively. In comparison, flutter occurs
in the control-oriented model at 52 and 56.5 m/s at 50.3
and 46 rad/s, respectively. The flutter speed and frequency
accuracy of the control-oriented model is deemed sufficient
for control design.

C. Flutter Suppression Control Synthesis

In this section, the flutter suppression control design for
the flexible aircraft in Section III-A is discussed. First, two
uncertain SISO models are obtained from the reduced-order
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Fig. 9. Structure of the control loop using two SISO controllers to stabilize
the symmetric and asymmetric flutter modes separately.

control-oriented model detailed in Section III-B. Then, the
performance specification used for the optimal control design
is described. Finally, the results of the synthesis method in
Section II are given.

1) Design Model : Selecting the control surfaces and sensor
signals as described in Section III-B (and in Fig. 5) allows us
to separate the symmetric and asymmetric flutter modes of
the aircraft using the combination of these variables shown in
Fig. 9. Two SISO systems are obtained this way: G̃sym(s) and
G̃asym(s). The input and output of G̃sym(s) are uf,L + uf,R and
qL + qR − 2q , respectively. The states consist of w (vertical
velocity), q (pitch rate), the modal coordinates that correspond
to the symmetric deformations, the lag states, and the actuator
states. For G̃asym(s), the input and output are uf,L − uf,R and
qL − qR, respectively. The states are v (horizontal velocity), p
(roll rate), r (yaw rate), the modal coordinates corresponding
to the asymmetric deformations, and lag and actuator states.

Both parametric and dynamic uncertainty are introduced
using G̃sym(s) and G̃asym(s). As the result of the model
reduction technique in Section III-B, the state-space matrices
of these systems are given on a parameter grid. The grid
consists of 36 equidistant points of the TAS between 30 and
65 m/s, five points of the natural frequency in the structural
dynamics between ±1% of the nominal value, and five points
of the damping in the structural dynamics between ±10%
of the nominal value. These two arrays of LTI systems are
used to introduce parametric uncertainty in the system. The
dependence of the dynamics on the airspeed is expressed
via the uncertain parameter δV . The uncertainty of the nat-
ural frequency and the damping in the structural dynamics
correspond to uncertain parameters δω0 and δξ , respectively.
The parameters are normalized uncertainties, i.e., |δV | ≤ 1,∣∣δω0

∣∣ ≤ 1, and
∣∣δξ ∣∣ ≤ 1. Least-squares fitting is performed to

obtain the uncertain state-space matrices of the form

Aδ = A0 + A1δV + A2δ
2
V + A3δω0 + A4δ

2
ω0

+ A5δξ

Bδ = B0 + B1δV + B2δ
2
V

Cδ = C0 + C1δV + C2δ
2
V

Dδ = 0

where {Ai }4
i=0, {Bi}2

i=0, and {Ci }2
i=0 are constant matrices. The

elements of Aδ, Bδ, and Cδ are assumed to be a second-order
polynomial in δV based on Chapter 5 in [37]. Only Aδ depends
on δω0 and δξ since the perturbation in the damping and natural

Fig. 10. Uncertain plant interconnection with the dynamic uncertainty �d(s)
and Aδ , Bδ , and Cδ matrices depending on the parametric uncertainty.

Fig. 11. Bode magnitude plot of the dynamic uncertainty weights.

frequency influences the position of the poles. Also, this form
of Aδ , Bδ, and Cδ provides low error when compared to G̃asym

and G̃sym in the parameter grid points.
Dynamic uncertainty is added to account for the model

reduction in Section III-B. As shown in Fig. 10, input mul-
tiplicative uncertainty structure is chosen, i.e., both uncertain
SISO plants have the form

G(s) = Cδ(s I − Aδ)
−1 Bδ(1 + Wd(s)�d(s)) (20)

where �d(s) is the stable SISO uncertainty block for which
||�d(s)||∞ ≤ 1, Wd(s) is the weight of the uncertainty, and
the subscripts “sym” and “asym” are omitted. The weight
is obtained by comparing the singular values of the system
Cδ(s I − Aδ)

−1 Bδ to the high-fidelity model, which results in

Wd,sym(s) = 33.31(s + 111.7)
(
s2 + 49.17s + 2195

)
(s + 409.5)

(
s2 + 97.17s + 198900

)
Wd,asym(s) = 55.703(s + 100)(s + 40)2

(s + 400)
(
s2 + 350s + 25000

) .
The Bode magnitude plot of both of the weights is shown
in Fig. 11. These weighting functions serve to add moderate
uncertainty at low frequencies and significant uncertainty
at high frequencies. The level of uncertainty starts to rise
considerably at the flutter frequencies and it is above one
(100%) after 100 rad/s. This is in accordance with the ν-gap
results of the model reduction in Section III-B (see Fig. 7).

The resulting uncertain systems are written in the LFT form
as

G(s) = FU(N(s), �(s)) (21)

where �(s) is the structured uncertainty block containing the
three uncertain parameters δV , δω0 , and δξ and the dynamic
uncertainty block �d(s). Therefore, for Gsym(s) and Gasym(s),
respectively, the uncertainty sets �sym and �asym are defined
as in (5) with

�p,sym = {
diag

{
δV I51, δω0 I45, δξ I7

}}
�p,asym = {

diag
{
δV I49, δω0 I45, δξ I7

}}
�d,sym = {

�d,sym
}

�d,asym = {
�d,asym

}
.
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Fig. 12. Domain of the migration of the flutter mode poles due to the
parametric uncertainty.

Fig. 13. Bode magnitude plot of the nominal value and random samples of
the uncertain systems Gsym(s) and Gasym(s).

The number of repetitions is especially high for δV and δω0 .
The LFR-toolbox for MATLAB could be used to reduce the
size of �(s) [38], but since the control synthesis method
in Section II samples the uncertain parameters, this is
unnecessary.

The poles of Gsym(s) and Gasym(s) migrate with the change
of the uncertain parameters. The domain of migration of the
flutter modes is shown in Fig. 12. The introduction of δω0

and δξ in Gsym(s) and Gasym(s) captures the uncertainty in
frequency and damping ratio in addition to the variation with
airspeed. Note that the nominal systems are stable. The gain
of the two systems changes due to both types of uncertainty.
In Fig. 13, the Bode magnitude plot of the nominal systems is
depicted along with random samples. In the frequency range
below the flutter frequencies, only a moderate variation is
observable, while for frequencies above 100 rad/s, the gain
of the systems is highly uncertain. Since the nominal systems
are stable, the gain at the flutter frequencies are finite for both
Gsym(s) and Gasym(s). For some values of the uncertainty,
the gain of these systems is significantly higher or even
unbounded.

2) Performance Specification : The purpose of the flutter
controller is to robustly stabilize the undamped vibrations of

Fig. 14. Generalized plant interconnection.

the aircraft. There are further considerations to be considered.
The effect of the flutter controller on the rigid body behavior
of the aircraft ought to be minimal so that the flutter controller
does not interfere with the baseline controller governing the
rigid body motion of the aircraft. The controller is to be imple-
mented on an embedded computer whose sampling frequency
is 200 Hz. Beyond this constraint, the bandwidth of the flutter
controller must not breach the limitation posed by the actuator.
Also, the closed loop must remain stable even in the presence
of 15-ms output delay introduced by the autopilot hardware.

The generalized plant interconnection in Fig. 14 incorpo-
rates all the requirements above for both Gsym(s) and Gasym(s).
The 15-ms delay is represented by τ(s) that is the fourth-order
Padé approximation of e−0.015s . The controller is augmented
with the filter

F(s) = 1.6 · 105

s2 + 560s + 1.6 · 105
(22)

to ensure appropriate bandwidth. In this way, the sampling
constraint is met and the excitation of high-frequency dynam-
ics is avoided. The Bode magnitude plot of F(s) along with
the performance constraints is shown in Fig. 15.

The task of robust stabilization is expressed as sensitivity
minimization. The sensitivity function of both closed loops is
S(s) = (1/1+τ (s)G(s)K (s)F(s)). For any stable SISO loop,
the minimal distance between the open-loop Nyquist curve
and the −1 point is the inverse of the peak of |S( jω)|, i.e.,
(1/maxω|S( jω)|) = (1/||S(s)||∞) [1]. It is also known that
the gain margin of the loop is at least (||S(s)||∞/||S(s)||∞−1)
and the phase margin is at least 2 sin−1((1/2||S(s)||∞)) [1].
Therefore, we want to achieve ||S(s)||∞ ≤ 2 since this
provides at least 6-dB gain margin and close to 30◦ phase
margin. To that end, the weight of the tracking error (i.e.,
the sensitivity function) is chosen as We(s) = (1/2). To limit
actuator effort, the weight of the control input is Wu(s) =
(1/10◦) = 5.78.

3) Synthesis : The structure of the flutter suppression
controller is shown in Fig. 16. The SISO controllers are
parameterized as general second- and fourth-order transfer
functions, that is

Kasym(s) = κ1s2 + κ2s + κ3

s2 + κ4s + κ5
(23)

Ksym(s) = κ6s4 + κ7s3 + κ8s2 + κ9s + κ10

s4 + κ11s3 + κ12s2 + κ13s + κ14
(24)

where {κk}14
k=1 are tunable design parameters. For the synthesis

of Kasym(s), a frequency grid of 30 points and five basis
functions were used. For Ksym(s), the number of frequency
points and basis functions is 90 and 9, respectively.
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Fig. 15. Bode magnitude plot of F(s) and the performance constraints. The
actuator dynamics Gact(s) are given in (16).

Fig. 16. Structure of the flutter suppression control.

As shown in Fig. 16, the flutter controller is

[
uf,L

uf,R

]
= Kf(s)

⎡
⎣qL

qR

q

⎤
⎦ (25)

where

Kf(s) =
[

1 −1
1 1

]
· (26)[

Kasym(s)F(s) 0
0 Ksym(s)F(s)

] [
1 −1 0
1 1 −2

]
. (27)

Therefore, the final state order of Kf(s) is 10.
The two SISO loops are tuned separately. As the result of

the synthesis, the tunable components of Kf(s) are

Kasym(s) = 0.0106s2 + 0.5476s + 53.6039

s2 + 40.4171s + 904.595
Ksym(s)

= 0.0126s4+ 3.7765s3 +1479.85s2 + 48443.9s + 444523

s4+ 114.354s3 +59809.2s2 + 538987s + 1.4737 · 106
.

It takes ten iterations (i.e., ten samples of �p,asym) to obtain
Kasym(s) and nine iterations (nine samples of �p,sym) are
required for Ksym(s).1 The singular values of the flutter con-
troller are shown in Fig. 17. The controller has enough control
authority at the flutter frequencies, and it is sufficiently rolled
off at the sampling frequency. The performance of Kf(s) is
analyzed in closed loop with the high-fidelity model linearized
at certain speed values in Section IV.

IV. EVALUATION OF THE FLUTTER CONTROLLER USING

THE NONLINEAR HIGH-FIDELITY MODEL

This section details the evaluation of the flutter controller
described in Section III. First, the baseline control architecture
is presented that governs the rigid body motion of the aircraft.

1The computation takes approximately 3 h on a computer that runs Ubuntu
16.04 LTS and features an eight-core 2.1-GHz Intel Xenon CPU with 20 GB
RAM. The algorithm is run on MATLAB R2016b making use of the Parallel
Computing Toolbox.

Fig. 17. Singular values of the flutter controller along with the
frequency-domain constraints.

Fig. 18. Control surface configuration of the baseline control architecture.
The control inputs are marked at the corresponding control surface.

Then, the stability, performance, and robustness analysis are
described with the baseline and flutter suppression control
loops closed. These results are also contrasted with a design
based on a single D-scale instead of the D-K iteration. Finally,
two time-domain simulations are conducted to confirm the
frequency-domain results. All tests are performed using the
linearized versions of the nonlinear high-fidelity model in
Section III-A.

A. Baseline Control Architecture

The rigid body motion of this aircraft is described by
a standard nonlinear six-degree-of-freedom flight mechanics
model (e.g., [39]) in terms of translational velocities u, v, and
w and angular velocities p (roll), q (pitch), and r (yaw) in
the body-fixed frame. Orientation in the earth-fixed reference
frame is described in terms of Euler angles � (bank), �
(pitch), and � (heading). The angles between the body-fixed
frame and the wind axes are angle of attack α and side-slip
angle β. The flight path is described with respect to the earth
by the path angle γ and the course angle χ .

For the actuation of the rigid body motion, four ruddervators
on the V-tail of the aircraft are used, two on the left (urv,L1,
urv,L2) and two on the right side (urv,R1, urv,R2), as shown in
Fig. 18. These ruddervators are combining the functionalities
of classical rudders and elevators. The symmetric deflections
of the ruddervator correspond to classical elevator deflections,
whereas asymmetric deflections exhibit rudder deflections.
In addition, four control surfaces are available on each wing.
As discussed in Section III, the outermost pair (uf,L, uf,R) is
used for flutter control, whereas the innermost pair is used as
high lift devices during takeoff and landing. The remaining two
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Fig. 19. Control architecture for fully automated flight and augmented flight (indicated in orange).

TABLE I

SUMMARY OF THE CONTROL LOOPS OF THE FLEXOP BASELINE FLIGHT

CONTROL SYSTEM WITH THE INNER LOOP FUNCTIONS (FIRST PART)
AND AUTOPILOT FUNCTIONS (SECOND PART)

pairs (ua,L2, ua,R2, ua,L3, and ua,R3) are utilized in the baseline
control law as ailerons to actuate the roll motion of the aircraft.

The structure of the baseline controller is a classical cas-
caded setup shown in Fig. 19. The lateral-directional control
problem is necessarily multivariable and requires the coor-
dinated use of aileron command ua and rudder command
ur. The innermost loop features roll-attitude (�) tracking,
roll-damping augmentation via the roll rate ( p), and coor-
dinated turn capabilities, i.e., turns without side slip, via
feedback of the side-slip angle (β). The outer loop establishes
control of the course angle (χ). All controllers are scheduled
with velocity to increase the performance over the velocity
range. Within the fully automated flight mode, the reference
signals for the velocity (Vref), altitude (Href), and course angle
(χref) are provided by a dedicated navigation algorithm. It uses
the GPS longitudinal and lateral position of the aircraft (xa

and ya) as well as the current course angle (χ) to provide
the commands. More details on the algorithm can be found
in [40].

Structurewise, the control loops use scheduled elements of
proportional–integral–derivative (PID) controllers with addi-
tional roll-off filters in the inner loops to ensure that
no aeroelastic mode is excited by the baseline controller.
A scheduling in dependence of the TAS VTAS is used to
ensure an adequate performance over the velocity range from
32 to 70 m/s. For the scheduling, a first- or second-order
polynomial in VTAS is applied. The free parameters are directly
included in a structured controller optimization problem.
A comprehensive summary of the used controller structures
for each cascaded loop is provided in Table I, including

Fig. 20. Change of pole trajectories due to the flutter and baseline controller.

the channel description in the controller architecture and the
implemented scheduling.

Note that these controller outputs ue, ua, and ur defer from
the actual surface inputs to ease the control design task. Thus,
they need to be transformed to physical actuator commands via
an adequate control allocation. The commands to the actuators
of the two aileron pairs are determined by

ua,L2 = ua,L3 = 0.5ua

ua,R2 = ua,R3 = −0.5ua

to generate the required differential aileron deflections for
roll motion control. For the ruddervators, superposition of the
elevator command ue and the rudder command ur is applied
by

urv,L1 = urv,L2 = ue + 0.5ur

urv,R1 = urv,R2 = ue − 0.5ur.

Thus, symmetric deflections on the left and right of the rudder-
vators correspond to elevator commands, whereas differential
deflections establish rudder commands. The free parameters
of the control laws are tuned to satisfy certain performance
and robustness criteria as explained in [40].

B. Closed-Loop Stability and Performance Evaluation

The pole trajectories of the closed loop (with both the
flutter and baseline controller) are shown in Fig. 20.
The damping of both flutter modes is increased significantly.
The asymmetric flutter mode is stabilized up to 70 m/s,

Authorized licensed use limited to: Institute for Computer Science and Control. Downloaded on January 10,2022 at 10:26:25 UTC from IEEE Xplore.  Restrictions apply. 



322 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 30, NO. 1, JANUARY 2022

Fig. 21. Sensitivity functions of the two SISO loops.

Fig. 22. Gain from input disturbance to wingtip acceleration in open and
closed loops.

whereas the symmetric flutter mode crosses over to the right
half-plane at 68 m/s. Since the closed loop is unstable at
68 m/s, this is called the absolute flutter speed. Several other
modes are influenced by the two controllers but none becomes
unstable, and therefore, no adverse interaction between the
flutter and baseline controller is observed.

Let us verify the result of the optimization in Section III in
terms of the sensitivity functions. To this end, only the flutter
controller is applied and the closed loop is opened loop-at-a-
time to get the sensitivity function of the two SISO loops
separately. The magnitudes from 30 to 60 m/s are shown
in Fig. 21. The regions where the sensitivity functions are
greater than one are concentrated to low frequency due to the
bandwidth of the flutter controller. The sensitivity functions
are also reasonably flat. The peaks are 2.41 and 2.08 for
the symmetric and asymmetric loop, respectively. This means
that the objective of pushing the sensitivity functions below
two was not completely accomplished. The resulting stability
margins are computed in Section IV-C.

To demonstrate the increase in damping, we compare the
gain of the system with and without flutter control. Specif-
ically, Fig. 22 shows the gain from an additive disturbance
on uf,L to the vertical acceleration measured by the IMU on
the left wing (see Fig. 5). The figure shows a significant
decrease in damping around the flutter frequencies. Comparing
Fig. 22 to Fig. 21, we observe that the gain increased in the
low-frequency range, where the sensitivity values are high,
and remained close to the original in the high-frequency range
where the sensitivity values are close to one.

Fig. 23. Interconnection with the injected uncertainties for the disk margin
analysis.

Fig. 24. Loop-at-a-time margins (OLFS and RFS).

C. Robustness Analysis

The robustness of the closed loop is analyzed using
disk margins. To define the disk margins, consider the
interconnection in Fig. 23. Here, αk ∈ C are complex scalar
uncertainties of the form αk = (1 + δk/1 − δk), where δk ∈ C,
k = 1, . . . , 5. We differentiate between loop-at-a-time and
multiloop disk margins. The loop-at-a-time disk margin is
the largest simultaneous gain and phase variation in a single
channel for which the closed loop remains stable. It is the
largest value of ml such that the closed loop in Fig. 23 is
well posed and stable for |δl| < ml , while δk = 0 for k �= l.
For multiloop margins, the uncertainties in several loops are
allowed to vary simultaneously and independently.

The classical gain and phase margin interpretation of the
loop-at-a-time margins for each input and output channel in
Fig. 23 is shown in Fig. 24. For four channels, the margins
are nearly the same. Since the q channel is shared by the
two control loops, it shows greater robustness. The loop-at-
a-time margins have acceptable values up to 60 m/s where,
for all channels, the gain and phase margins are 5.5 dB
and 34◦, respectively. The margins also degrade slowly after
60 m/s; therefore, there is a sufficiently wide safety region
around 60 m/s. In view of these facts, the robust flutter speed
(RFS), i.e., the speed at which the demonstrator may fly safely,
is determined to be 60 m/s. The loop-at-a-time margins became
zero at 68 m/s, which is the absolute flutter speed already
established in Section IV-B.
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Fig. 25. Multiloop margins. (OLFS, RFS).

The multiloop margins of the closed loop are shown in
Fig. 25. These margins also start to significantly degrade after
60 m/s. The most notable is the simultaneous input–output
margin for which all five uncertainties are allowed to vary
at the same time. At the RFS, the simultaneous input–output
margin in 2.2 dB and 14◦. The rate of degradation for these
margins is similar to the loop-at-a-time margins. This confirms
the RFS to be 60 m/s.

The critical frequency corresponding to a loop margin is
the frequency where the Nyquist curve of the open loop
touches the critical point (−1 or 0). The critical frequencies
for all margins and all channels are less than 65 rad/s.
This ensures that these robustness measures are meaningful
because this shows that the perturbation causes instability in
the low-frequency range where the accuracy of the modeling
is acceptable. At higher frequencies, any model is more
uncertain, and therefore, larger gain and phase margin are
required.

We designed a second flutter controller using a variation on
Algorithm 1 for comparison. In this version, instead of the D-K
iteration in Steps 4–7, a single parameterized D-scale is tuned
together with the controller, similar to the hybrid relaxation
method in [14]. The D-scales are defined to be state-space
systems with state order equal to the number of basis functions
in Section III-C3 (i.e., 5 for the synthesis of Kasym(s) and 9 for
Ksym(s)). The “companion” parameterization option of the
tunableSS function is chosen for both. The performance
setup and controller structure is identical to what is described
in Section III-C2. The resulting controller guarantees 2-dB
simultaneous input–output gain margin and 13◦ phase margin
up to 60 m/s. Comparing these values to 2.2 dB and 14◦
obtained when using Algorithm 1 reveals the advantage of
having separate D-scales for the samples in the synthesis.

We note that a controller designed using a single LTI system
obtained by fixing the values of the uncertain parameters in
our design model can only increase the damping of the flutter
modes at low speeds. We were unable to extend the RFS
beyond the open-loop flutter speed (OLFS) using a controller
designed for a single LTI system.

Fig. 26. Nonlinear simulation setup.

Fig. 27. Results of the first simulation. On the bottom diagram, g = 9.81 m/s2

(OLFS and RFS).

D. Time Domain Simulations

Two time-domain simulations are conducted to verify the
frequency-domain results in Sections IV-B and IV-C. In both
cases, the baseline controller described in Section IV-A and
the flutter controller from Section III-C3 are operating at
the same time. The setup for both simulations is shown in
Fig. 26. The controllers are implemented in discrete time
(with 200-Hz sampling frequency), and a 15-s output delay is
included to simulate the delay caused by the sensors. Gaussian
measurement noise is added to the plant output. The only
reference command input of the baseline controller used is
the speed reference to demonstrate the behavior of the closed
loop at different speed values.

In the first simulation, the speed is increased starting at
46 m/s and following a staircase reference. No wind distur-
bance is used in this simulation. The vertical acceleration from
the two IMUs on the wing in Fig. 5 is recorded to demonstrate
the load caused by the oscillations. These are denoted by
az,L and az,R for the left and right wings, respectively. The
results are shown in Fig. 27. In the graph on the top, the
airspeed is depicted as a function of time, while the graph
on the bottom shows the vertical acceleration. If the flutter
suppression controller is not activated and the aircraft passes
the OLFS, the acceleration of the wingtip becomes greater than
g indicating structural failure. With the flutter controller how-
ever, the demonstrator safely passes the OLFS. The wingtip
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Fig. 28. Results of the second simulation. On the bottom diagram, g =
9.81 m/s2 (OLFS and RFS).

Fig. 29. Control input in the second simulation.

acceleration values are below critical at the RFS as well. The
oscillations become damaging at 63 m/s, i.e., 3 m/s above the
RFS. This is achieved with

∣∣uf,L

∣∣ < 0.5◦ and
∣∣uf,R

∣∣ < 0.5◦.
In the second simulation, we test whether it is indeed possi-

ble to fly at the RFS even in the presence of continuous Dryden
wind gusts. The aircraft is accelerated from 43 to 60 m/s, and
then, it follows a constant 60-m/s speed reference command.
This is illustrated in the top diagram of Fig. 28. Without
flutter control, the wing tip accelerations become critical a few
seconds after the OLFS was passed. When the flutter controller
is used, the RFS is reached and acceptable acceleration values
are maintained even if the wind gusts continually push the
speed beyond the RFS. This demonstrates the robustness of the
flutter controller discussed in Section IV-C. The control input
is shown in Fig. 29. The control surface deflections increase
when the open loop and the RFS are passed. For the entire
simulation, the control input is within the ±1.5◦ bounds.

V. CONCLUSION

A control design algorithm is presented to minimize the
worst case gain of the closed loop by tuning a fixed structure
controller in the presence of mixed uncertainty. The method
is iterative. In the analysis step, the worst case sample of
the uncertain parameters is computed. In the synthesis step,
D-scales are constructed by solving a convex optimization

problem for each sample separately to account for the dynamic
uncertainty. The controller is tuned for the collection of
scaled samples. The applicability of this method for the flutter
suppression control design of the flexible demonstrator aircraft
of the FLEXOP project is also demonstrated. The problem is
articulated as the minimization of the sensitivity function and
control effort for two SISO loops. Disk margins are computed
using the baseline controller and the high-fidelity model of
the aircraft. Based on these margins and on time-domain
simulations, the OLFS of 52 m/s is extended to 60 m/s, which
is a 15% increase of the flight envelope. The controller is low
order and LTI and therefore easy to implement on the onboard
computer of the aircraft.
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