
CIRP Annals - Manufacturing Technology 70 (2021) 635�658

Contents lists available at ScienceDirect

CIRP Annals - Manufacturing Technology

journal homepage: https:/ /www.editorialmanager.com/CIRP/default.aspx
Evolution and future of manufacturing systems
Hoda ElMaraghy (1)a,b,*, Laszlo Monostori (1)c,d, Guenther Schuh (1)e,
Waguih ElMaraghy (1)a,b

a Intelligent Manufacturing Systems Centre (IMSC), University of Windsor, Ontario, Canada
b Department of Mechanical, Automotive and Materials Engineering (MAME), University of Windsor, Ontario, Canada
c Centre of Excellence in Production Informatics and Control, Institute for Computer Science and Control, E€otv€os Lor�and Research Network, Budapest, Hungary
d Department of Manufacturing Science and Technology, Budapest University of Technology and Economics, Budapest, Hungary
e Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany
A R T I C L E I N F O

Article history:
Available online 21 July 2021
* Corresponding author at: Intelligent Manufacturing
versity of Windsor, Ontario, Canada.

E-mail address: imscadmin@uwindsor.ca (H. ElMarag

https://doi.org/10.1016/j.cirp.2021.05.008
0007-8506/© 2021 CIRP. Published by Elsevier Ltd. All ri
A B S T R A C T

The evolution of manufacturing systems, influenced by changes along four axes - products, technology, busi-
ness strategies and production paradigms - is presented. Adoption of human-centric decision making in
meshed collaboration with intelligent systems is examined. Implications and preparedness for the shift
towards more responsive, intelligent adaptive systems are reviewed. Research and industrial use cases are
presented. A vision for the new future Adaptive Cognitive Manufacturing System (ACMS) paradigm and its
characteristics, drivers and enablers are articulated highlighting the digital and cognitive transformations.
Perspectives and insights are offered for future research, education, and work to realize the evolution of
manufacturing systems.
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Fig. 1. Manufacturing systems evolution trends and scope.

Systems Centre (IMSC), Uni-

hy).

ghts reserved.
1. Introduction

Manufacturing systems continue to evolve in design, configura-
tion, operation, and control in an eco-system characterized by new
drivers, more advanced enablers and disruptive technologies and
business models. Socio-technical developments and business strate-
gies will shape their future.

1.1. Challenges and motivation

This section sets the stage with brief discussion of: importance
of manufacturing, various challenges (technical, economic, social,
strategic, business), drivers (cost, quality, variety, efficiency, value,
sustainability), transformative innovations, complexity, respon-
siveness, knowledge-based and data-intensive manufacturing,
digitalization, connectivity and communication, demographic
changes, human capital development and future work. Tracking
and analysing effects of industrial revolutions on changes in
manufacturing systems and enabling axes of evolution is a good
predictor of what is to come, and what industry and experts are
saying about needed developments. The paper scope is illustrated
in Fig. 1.
1.2. Scope and objectives

Manufacturing systems changes over many decades are driven by
advances in production and other technologies, introduction of new
materials and complex products requiring new processing techni-
ques, organizational strategies seeking to minimize cost, increase
quality and reliability, maximize profit and concerns about societal
and sustainability goals as well as humans’ interaction with systems
elements and the future of work.

The focus of this keynote paper is about the evolution and future
of manufacturing systems for discrete parts/products production as
well as the characteristics, enablers, and drivers of manufacturing
systems paradigms.

Manufacturing systems encompass both the physical and logical
aspects of production. Their physical configuration consists of
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Fig. 2. Keywords for manufacturing systems literature survey.

Fig. 3. Publications sources for manufacturing systems literature.
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machines, workstations, robots, and other equipment arranged in
various layouts and integrated or connected physically by material
handling equipment and logically via computer control and software
applications. People are an integral part of manufacturing systems
and play an important role in their design, planning, operation, and
control. Computers have played a significant role in the operation
and control of manufacturing systems and their modules including
software applications for computer-aided design and computer-
aided manufacturing (CAD/CAM), computerized numerical control
(CNC), product life cycle management (PLM), process planning, pro-
duction planning and scheduling, inspection, quality control, mainte-
nance, inventory, and supply chain management. Hence,
manufacturing systems are found physically on shop floors with logi-
cal support systems within and beyond the factory.

The objectives of this keynote paper are manifold including: a)
reviewing the evolution of manufacturing systems to date by survey-
ing the most relevant and important literature and identifying the
major milestones along their evolution path and their defining fea-
tures and characteristics, b) reviewing recent advances, trends and dis-
ruptors, relevant to the four axes of manufacturing systems evolution,
and discussing their expected/anticipated effects on future
manufacturing systems, c) reviewing the evolution of manufacturing
systems, their future, and related concepts and paradigms, d) review-
ing and assessing the readiness and state-of-implementation of the
“new technologies and business strategies” in manufacturing systems,
obstacles and challenges, and discussing illustrating use cases in indus-
try and academia, e) articulating a vision for a new adaptive cognitive
manufacturing systems paradigm, its drivers, characteristics, and ena-
blers, work force requirements, and societal expectations and respon-
sibilities, and f) offering future perspectives and establishing a map for
research needs and challenges towards achieving smarter, more adap-
tive, more sustainable and human-centred manufacturing systems.

1.3. Terminology

“Production” and “manufacturing” have been used interchange-
ably over the years in the literature. While manufacturing and pro-
duction have similar fundamentals, they are distinct with many key
differences. This keynote paper focuses on manufacturing systems,
which are broader and encompass production systems. The differ-
ence between “manufacturing” and “manufacturing systems” is
emphasized particularly with regard to the paradigms names that
have been introduced, mostly by CIRP, and generally agreed to in the
literature to-date, up to the ongoing fourth industrial revolution. In
addition, Cyber-Physical Production Systems (CPPS), Industrie 4.0 or
Industry 4.0, and Smart Manufacturing Systems (SMS) share many
similar features and characteristics. They are used interchangeably in
the literature and in this keynote paper. Cognitive manufacturing lev-
erages Industry 4.0 technologies, including big data analytics and
artificial intelligence and generates actionable insights and interac-
tions between humans and machines. This is discussed in greater
detail later in this keynote paper. Most of the used terminology is
consistent with, and often explicitly defined in, the CIRP Dictionary
and the CIRP Encyclopedia [97] .

1.4. Publications trends and bibliometric analysis

Extensive literature survey was conducted from a variety of per-
spectives and sources. Various search approaches and keywords
were used, with a focus on manufacturing systems documents pub-
lished to date. It was noted that the frequency of publication related
to earlier manufacturing paradigms, such as flexible manufacturing
systems (FMS), reconfigurable manufacturing systems (RMS), and
changeable manufacturing systems (CMS) had peaked in 2010, whilst
papers relating to smart and cyber-physical manufacturing systems
are on a steep rise. Fig. 2 illustrates the results of a Scopus search for
the selected keywords in documents published annually since the
year 2010. As illustrated, the number of publications relating to adap-
tive manufacturing systems and smart manufacturing systems, dur-
ing this period, is steadily increasing.
Fig. 3 shows the sources of these publications contributed to 10
high impact journals and conferences.

1.5. Keynote paper organization

The new trends and anticipated changes in the manufacturing
landscape, strategies, and manufacturing systems paradigms provided
the motivation for this keynote paper and shaped its scope. The fol-
lowing outlines the structure of the paper. Section 1 paints a picture of
the eco-system in which manufacturing systems exist, change direc-
tions and expectations, and outlines the keynote paper motivation,
objectives, and scope. Section 2 includes a survey of relevant literature,
definitions, and innovations, introduces four axes of evolution of
manufacturing systems and illustrates their co-evolution. It presents
major manufacturing systems paradigms, nature-inspired products/
manufacturing systems co-evolution, biologicalisation in manufactur-
ing systems, and manufacturing systems life cycle and sustainability.
Section 3 reviews the advances in cyber-physical systems (CPS) and
smart manufacturing systems including smart manufacturing drivers
and enablers such as internet of production (IoP) or industrial internet
of things (IIoT), big-data analytics, communication, connectivity, smart
data-driven manufacturing systems design and control, and bio-
inspired methodologies for manufacturing systems design and opera-
tion and their co-development In the context of the on-going smart
manufacturing (Industry 4.0) evolution, Section 4 focuses on smart
systems industrial implementations and applications of digital
manufacturing systems in car assembly, auto-parts tooling and com-
munication, and illustrates the use of IoT, IoP and digital shadows. It
discusses industry readiness and Industry 4.0 maturity models and
indices. It includes joint research-industry use cases of many aspects
of smart manufacturing systems examples of human-machine interac-
tion and learning. Section 5 introduces a vision for the new adaptive
cognitive manufacturing systems (ACMS) paradigm, its characteristics,
drivers, and enablers and explains why it represents a paradigm shift.
It discusses bio-intelligent manufacturing and human-centric adaptive
manufacturing. The multiple facets of systems adaptation are pre-
sented in a new classification including cognitive adaptation which is
at the core of the new paradigm. The ability of current manufacturing
systems to respond and adapt under the impact of extreme disruption,
such as those caused by the COVID-19 pandemic, are analysed.
Human-centric cognitive manufacturing systems and evolution of
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cognitive digital twins (CDT) are discussed. Finally, Section 6 presents
insights, reflections, and conclusions on how manufacturing systems
are being re-imagined. It offers an outlook and perspectives on current
challenges and future research.

2. Evolution of manufacturing systems and enablers

Manufacturing systems have evolved over many decades driven
by advances in production technology, machine tools, information
technology, materials, and products, as well as the evolution of orga-
nizational strategies seeking to minimize cost, increase quality and
reliability, maximize productivity and profits, and promote sustain-
ability. The proliferation of products variety and desire to increase
competitiveness through differentiation had a significant impact on
the evolution of manufacturing systems and motivated the develop-
ment of several manufacturing systems paradigms.

2.1. Four axes of evolution

Earlier evolution of manufacturing systems, from dedicated to
flexible and reconfigurable, was motivated by the need to manage
changes in production volumes and products variety. The next waves
of manufacturing systems evolution towards smart, cognitive and
more adaptable systems are influenced by disruptive advances along
four axes depicted in Fig. 4, which shows: a) products evolution, b)
technological evolution, c) business strategies evolution and d) pro-
duction/manufacturing evolution manifested in the industrial revolu-
tions to date which collectively gave rise to the development of new
manufacturing systems paradigms. The four axes of evolutions are
highlighted in the coming sub-sections.
Fig. 4. Four axes of manufacturing and systems evolution.
2.1.1. Products evolution
In the early days of mass production, products had simple shapes

and features due to limitations of technology, used materials and
manufacturing processes. Products with intricate shapes, complex
features, composite materials, and smart functionalities continued to
emerge giving rise to associated design, modelling, machines, and
manufacturing and services innovations and technologies to meet
the new challenges.

Advances in computer science and technology along with intro-
duction of several design theories and methodologies have directly
contributed to the design of products and their manufacturing sys-
tems. Parts/products coding, classification and group technology lead
to the efficient formation of product families and machine cells, and
improved the efficiency of numerical control (NC)/CNC programming,
fixtures and tooling design and process planning [17]. Modular prod-
uct design lends itself to flexible, reconfigurable and changeable
manufacturing systems and led to many methodologies for design
for ease of manufacture (DFM) and ease of assembly (DFA) which
directly improved manufacturing systems design, and rationalization
and standardization of processes. Modularity is the degree to which a
complex system (product, process plan, manufacturing system, etc.)
can be divided into sub-units (modules) which can be reconfigured
as needed [170]. Product modularity is enabled by design clustering
and granularity methods, and reflected in the used manufacturing
technologies, processes, machines clusters, and manufacturing cells,
and is mirrored by organizational units and clusters of suppliers.
Modularity reduces complexity and cost of design, manufacture, and
repair, increases reliability, improves maintainability, and prolongs
products life by facilitating selective updating of modules.
Manufacturing systems are products that also require use of design
methodologies, collaboration and complexity management
[49,50,159,161], and quality prediction [51].

The products platforms design concept, where clustering is used
to form a core of common components or modules that can later be
customized to generate product variants belonging to the family,
were developed as well as methods to optimize the design of the
product platform. It is an important enabler of product mass customi-
zation by designing manufacturing systems where products differen-
tiation is delayed, allowing manufacturing the product platform in
large quantities, i.e. mass production with push business model, then
individual product variants are produced in smaller volumes per vari-
ant, following a pull business model [70]. The effects of increased
variety on products design, manufacturing systems design and strate-
gies, industrial enterprises and supply chains, as well as management
strategies on all levels were discussed extensively [47].

Design methods for products reconfiguration, such as open archi-
tecture products (OAP) [67,92] were introduced for added adaptation
by allowing modules to be added/removed/swapped to change prod-
uct features and functionality. Research followed to identify the opti-
mal design of OAP and assess their assembly and disassembly
complexity [210]. Open architecture products coupled with modular-
ity, scalability and standard interfaces between product modules
enabled, and increased the efficiency of corresponding reconfigurable
manufacturing systems. These approaches apply to products made by
reconfigurable machine tools, reconfigurable robots, universal/recon-
figurable end-effectors, reconfigurable molds and fixtures, and uni-
versal tooling used in FMS and RMS. The discussed product design
methodologies have evolved along with flexible, reconfigurable sys-
tems and the hybrid additive/subtractive technologies to satisfy the
increasing need for products customization and personalization.

The use of new materials in consumer products continued to
increase partly because of customer’s demand for products with spe-
cific characteristics and performance. Light weight materials (alumi-
num, polymers, and composites) were introduced to auto-
manufacturing to reduce vehicles weight and fuel consumption,
which triggered related manufacturing technologies, processes, and
machines. Environmental concerns motivated the design and devel-
opment of new car engines and power trains using alternate fuels as
well as electric mobility led to major disruption in the automotive
powertrain production, which significantly impacted their
manufacturing systems design, configuration and operation [80]. The
manufacturing systems of mobility vehicles have witnessed signifi-
cant disruption in design, configuration, size, location, and produc-
tion volume not only due to these technological advances but also
the changing business strategies such as ride sharing and integrated
product-service models. This is not a unique example of the inter-
twined nature of the four axes of manufacturing systems evolution.
More examples can be seen in many large and small consumer prod-
ucts in various sectors. The innovation helix best represents that
intertwined nature of products, technology, and business innova-
tions; and manufacturing systems evolution which mark the compet-
itiveness frontier. Examples include smart materials capable of
responding to external stimuli with shape change, self-actuation,
self-sensing, self-diagnosing and self-healing behaviours [20]. Advan-
ces in 3D printing of products influenced products design. Additive
manufacturing use in printing organs and tissues, and responsive
materials for 4D printing [62] led to the development of special prod-
uct design methods and additive manufacturing machines. In the
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textile industry, smart materials for wearables that can adapt to tem-
perature and moisture to improve comfort are developed. All these
applications call for commensurate manufacturing systems capabili-
ties.

The demand for smart products which are intelligent, connected
and highly responsive is increasing [188]. Smart products contain
cyber-physical mechatronic components which have distinct differ-
entiating features and capabilities including sensing with integrated
or imbedded sensors, connectedness, and communication via inter-
net (IoT), networking with other smart products, interaction with
users, processing data and intelligence. Smart products are complex
multi-domain/multi-disciplinary in nature. Manufacturing their indi-
vidual components represents challenges for embedding sensors,
assembly and testing and increases complexity as they have highly
integrated hardware and software [114].

2.1.2. Technological evolution
Many technological advances have emerged in the manufacturing

field. Important developments and disruptive trends, which influence
manufacturing systems evolution are discussed in this section.

Automation and digitalization. Production systems have been
evolving from standalone machinery with proprietary controllers to
flexible and reconfigurable manufacturing systems with added mod-
ularity, mobility, and more open and smarter control architecture.
The automation technologies developed since the 1st and 2nd indus-
trial revolutions, such as computer-controlled programmable
machines (NC, CNC) made it possible to move from hard-wired logic
controls, punched cards and hard automation machines and produc-
tion lines to digital programmable machines/ workstations and pro-
grammable, reconfigurable and smart logic control. Advances in
communication control layers and systems from mobile application
protocols (MAP) to supervisory control and data acquisition (SCADA)
made it possible to control large and complex manufacturing systems
in hierarchical and distributed manner with two-way communica-
tion and feedback. These are the backbone technologies the evolution
of which paralleled that of manufacturing systems. Versatile multi-
axis, multi-tasking flexible machines along with advances in laser tri-
angulation and global positioning systems (GPS), bar code readers
and proximity sensors used in automated and self-guided vehicles,
made alternate part-machine assignment possible and enabled alter-
nate routing flexibility.

Sensors, RFIDs (Radio-frequency identification), IoT and IIoT, and 4G
and 5G internet communication protocols are essential elements of
digitalization and evolution of advanced manufacturing systems.
Sensors collect digital and analogue data from manufacturing sys-
tems and smart products for use in monitoring equipment condi-
tions, operations execution, and feedback. Large number of sensors
with different sizes and functionalities are required in any advanced
manufacturing systems implementation. Hence, both capacity and
speed of wireless networks and communication infrastructure as
well as techniques for sensor data integration and fusion to utilize
and interpret the measured data are crucial to the success of IIoT and
IoP [162] in digital manufacturing systems implementation.

Additive manufacturing (AM) is an example of disruptive
manufacturing technologies as parts are manufactured by adding
material in successive layers instead of removing it. It can produce
intricate shapes of many different materials with simple setup and
minor post processing. This technology evolved from rapid prototyp-
ing of products using plastics in the 1980s to applications beyond
prototyping such as producing automotive parts, aerospace products
and medical instruments where end products can be manufactured
in economical quantities [19,185]. Hybrid additive-subtractive
manufacturing supports production of new products with better
functionality more cost effectively. A macro-process planning meth-
odology for optimally selecting the type and sequence of hybrid addi-
tive-subtractive processes was developed [46,125]. Multi-tasking
machine tools for both additive and subtractive processes are now
available. These advances in AM facilitate the design of systems for
personalized manufacturing [92]. Advanced digital AM machines
with imbedded sensors are easily integrated with computer-
controlled manufacturing systems to be part of connected and data
intensive CPSs, Industry 4.0 and digital manufacturing systems.

Artificial Intelligence (AI) plays an important role in smart
machines and intelligent manufacturing systems by enabling the
application of essential features of natural intelligence such as sens-
ing, perception, learning, reasoning and decision making in areas
such as operating and controlling manufacturing systems, process
planning and production planning, and in planning robot-human col-
laboration and deep learning-based human motion trajectory recog-
nition [39,142,200]. Throughout the life of products and
manufacturing systems, large amounts of data are collected. The role
of data analytics in supporting smart manufacturing systems,
machines, products, and related technologies and business strategies
has been discussed [61,101].

Cyber-physical systems (CPS) which integrates cyber components
such as embedded sensors with the physical resources in the produc-
tion system are important enablers for implementing smart systems
[119]. Achieving realtime data acquisition, processing and decision
making, development of computational dynamic systems theory for
modelling and analysis, standardization of communication protocols,
and data security are fundamental for the success of CPS applications.

Cloud manufacturing refers to decentralized and networked
manufacturing resources that can be accessed by manufacturers as
needed enabled by cloud computing, IoT and service-oriented archi-
tecture. Cloud manufacturing differs from computer integrated
manufacturing (CIM) and CPS in that the connection between the
physical and cyber domains proceeds through services [150]. Optimal
allocation and scheduling of physical and computational resources is
required for efficient use of cloud manufacturing. Cloud manufactur-
ing models and protocols for cloud-based usage are not suitable for
all manufacturing. Cost benefit analysis and validation are needed to
assess their performance, effectiveness and technical and financial
feasibility [124].

Digital transformation leverages information technology to disrupt
traditional industry models and business practices to deliver excep-
tional customer and business value and create sustainable competi-
tive advantage. Artificial intelligence and machine learning, big data,
predictive analytics, and business process automation are important
rapidly emerging digital transformation enablers which are being
incorporated into the organization and modernization strategies of
manufacturing systems such as self-awareness, self-learning, self-
healing, and cognitive adaptation characteristics which are discussed
in Sections 4 and 5.

2.1.3. Business models evolution
Business models followed by companies for creating value and

profit have changed over time to satisfy consumers demands and
requirements. This section overviews and classifies the evolution of
classical and emerging business models as they affect manufacturing
systems. In craft manufacturing, a product was designed and made
for one customer following a pull model. In mass production, prod-
ucts were designed and made for customers a priori and offered in
large quantities following a push business model. To satisfy more cus-
tomer requirements, yet keep manufacturing cost manageable, flexi-
ble, reconfigurable, and changeable manufacturing and mass
customization were introduced. Customers configure their products
based on pre-designed and grouped features (packages) offered by
the manufacturer. Therefore, the customer is satisfied by ordering
the chosen product configuration, which is not unique, while the
manufacturer is able to group similar orders to increase efficiency
and reduce cost. Mass customization follows a hybrid push-pull busi-
ness model where the product family platform is mass produced
(push model) then customized according to customers configurations
(pull model). Personalized manufacturing drives customization fur-
ther where customers become closely involved in the design of many
features of the product. The followed business model clearly drives
the design, configuration and control of manufacturing systems and
the utilized manufacturing processes and technologies to achieve the
desired outcome. Personalized products cost more than mass cus-
tomized ones. Bespoke personalized products would cost even more,
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where the production system is akin to craft manufacturing, albeit
using more advanced machines and technologies.

Value creation within industrial enterprises has been gradually
shifting from manufacturing products to providing services or a com-
bination of both [178].

The production era - push model: Mass production follows the push
model of Make-to-Forecast and the material resource planning (MRP)
principle of Make-to-Stock, where products are produced in large
quantities based on volume forecasts regardless of customer orders
[56] and production planning and control flows from upper levels to
the shop floor adding value through manufacturing processes.

The marketing era - pull model: Manufacturing companies adopted
Make-To-Order strategy in which parts are ordered from suppliers
based on actual customer demand. In this strategy, firms used economic
ordering quantity principle, work-in-process, Kanban and base stock
strategies for inventory management and control. A hybrid approach
utilizes the benefits of push and pull business models where a portion
of the manufacturing system is dedicated to producing common com-
ponents shared among a product family, i.e. product platform, using a
push model and Make-to-Stock strategies. Differentiating product com-
ponents are manufactured based on customer orders, following the pull
businessmodel / Make-to-Order strategies, hence, delaying the differen-
tiation point in manufacturing and maximizing efficiency and profit.

The relationship era - JIT model: In the seventies, production waste
reduction started gaining momentum to reduce costs, and Just-In-
Time (JIT) philosophy gained traction. It aims at supplying the right
components, in the right place, at the right time, with the correct and
exact quantity and order [208] and uses the Kanban system to control
the material flow.

Industrial product-service systems - IPSS model: Industrial product-
service systems business models can be either product-oriented
where suppliers provide customers with a product and associated
service, or use-oriented where suppliers provide the product’s ser-
vice to customers through rental or leasing, and/or result-oriented
with agreed outcome [167]. IPSS business models also apply to
manufacturing systems where focussed flexibility can be achieved by
a) reconfiguration guarantee business model, in which the supplier
provides an initial manufacturing system with pre-designed flexibil-
ity modules to be added as needed, and b) capacity guarantee busi-
ness model, with built-in ability to change capacity if needed. These
business models require close cooperation between the supplier and
customer throughout the life of the manufacturing system [33,34].

Circular economy � sustainability model: It is a business model that
supports sustainability throughout products life cycle by re-using, re-
pairing, re-manufacturing, and re-cycling technologies and impacts
manufacturing systems design and operation. Linear economy is
characterized by a make-use-dispose business model [207]. Circular
economy aims at “a manufacturing system in which there is no waste,
where the products of today are also the raw materials of tomorrow”.
This business model has been actively researched and several proto-
types and implementations have been reported [31,32].

Challenges exist in applying and monetizing the sustainable circu-
lar economy business model due to the complexity of products, mul-
tiplicity of materials, short life cycle of products and widely variable
conditions of returned products. The use of Industry 4.0, IoT and
design for sustainability can extend the product’s life cycle and
enhance value creation towards a more innovative, resilient, and sus-
tainable economy.

It is evident that manufacturing systems business models have
evolved from providing more affordable products through mass pro-
duction (push) to more value through flexible, reconfigurable and
changeable manufacturing systems (pull) and continue to maximize
value by reducing waste (JIT and circular economy) and maximizing
value to customers through customized and personalized products
(pull) while enhancing the economic viability of manufacturing sys-
tems and companies.

2.1.4. Manufacturing and manufacturing systems paradigms
Craft Manufacturing or job shops feature general-purpose

machines, low-volume, high-variety production, and significant
human involvement. Upon receiving an order, single or few products
are made to specification and tailored to the customer requirements.
The work is carried out manually and/or using standalone versatile
machines with varying degrees of automation and sophistication.
This type of manufacturing still exists to satisfy the need for special
customized products.

Several “variety-oriented” manufacturing systems have evolved
over time influenced by changes in products, production technology
and processes, production volume and varying degrees of automa-
tion, intelligence and adaptation as depicted in Fig. 5.
Dedicated manufacturing systems (DMS). This significant change in
production strategy goes back to 1908 when Henry Ford introduced
affordable mobility by mass producing the Model�T sedan car with
only 2 variants, then rationalized limited product variety in mid-
1980s. The moving assembly lines signalled the shift from craft
manufacturing to standardization, interchangeability, automated
material handling systems (MHS), and Taylor’s production principles.
Dedicated manufacturing lines (DML) and systems are designed and
optimized to mass produce single or very limited product variants
following the “Economy of Scale” strategy to maximize efficiency and
minimize cost. Factory automation and robotization are actively pro-
moted by companies such as Fanuc’s Oshino-mura factory, to achieve
long hours of continuous unmanned machining [59].

Flexible manufacturing systems (FMS) consist of one or more inte-
grated group of machines (NC, CNC, distributed numerical control
(DNC)) and material handling equipment under central computer
control for the automatic processing of palletized parts with flexible
routing.

The concept of flexible manufacturing was developed by J. Lemel-
son, an American industrial engineer and inventor in the early 1950s.
His 1956 automation patents included a "machine vision" and a
robot-based system that could weld, rivet, convey, and inspect manu-
factured goods. Bar code scanning technology was developed around
the world and installed everywhere from supermarkets to automo-
bile assembly lines. Systems based on Lemelson's FMS inventions
debuted on factory floors in the U.S. and Europe in the late 1960s and
proliferated in the 1970s.

Flexible manufacturing systems continued to be used in discrete
manufacturing in response to the need for products customization
and greater responsiveness to changes in products, production tech-
nology and market demands. They are suitable for mid-volume, mid-
variety production of pre-planned parts/product families with simi-
larities in design features and/or production processes. They capital-
ize on the commonalities and grouping methods to produce the
desired variety while achieving the efficiencies of high-volume
manufacturing. FMSs are designed a priori with built-in flexibility
features, for anticipated variety within the product/part family,
including programmability, universal-adjustable fixtures, stream-
lined tools, changeable tool magazines, limited local buffers and cen-
tral automated retrieval system (ASRS). The product family-oriented
design, and use of group technology, and clustering in parts design,
system layout, and process and tool planning are pre-requisites for
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their success. FMSs are applied in different discrete manufacturing for
fabrication and assembly.

Flexibility can take many forms including machine, process, prod-
uct, product mix, routing, material handling, production volume,
labor, and expansion flexibility. The main objective is adaptation to
changes in production volume and product variants, within a pre-
planned family, without interruptions in production for changeovers
between models or penalty in time and cost. The concept of “focused
flexibility” [183] refers to building flexibility into a limited section
within an otherwise dedicated manufacturing line (DML) or system,
which features flexible and programable automated machines
and MHS where limited variations in the product is allowed while
not incurring the capital investment needed for a completely flexible
system.

The enablers of FMS are programmability for quick changeover
between different part/product variants; computer integrated control
and operation of system modules and production schedules for more
agility and responsiveness to change; parts pre-palletization, adjust-
able adaptable and universal fixtures and tooling to reduce time
waste during the production cycle; flexible routing to reduce down-
time and increase machine utilization; built-in sensors, realtime con-
trol and decision making for ease of fault detection and recovery; and
adaptable process plans and production schedules. The key features
of FMS are adaptability, responsiveness, agility, waste reduction and
lean manufacturing. Flexible manufacturing systems follow a pull
business model. They are robust but have high initial capital cost and
their flexibility features are sometimes under-utilized.

Reconfigurable manufacturing systems (RMS). The reconfigurable
manufacturing concept has emerged in the nineteen nineties [91] to
achieve changeable functionality and scalable capacity. In RMS,
machine components, machines, cells, and/or material handling units
can be added, removed, modified, or interchanged to respond to
changing market requirements or technologies. RMSs provide “cus-
tomized flexibility on demand” for a part/product family. They can be
improved, upgraded, reconfigured, and extended rather than
replaced.

Reconfigurable manufacturing systems have distinguishing char-
acteristics and enablers which affect the ease and cost of re-configu-
ration. These include: a) modularity of physical and logical modules,
b) integrability of system modules through standardized hardware
and software interfaces, c) customization of system capability to
match the variants within a planned product family, d) convertibility
to allow quick change-over between product family variants and
adaptation for future product changes, e) diagnosability to identify
quickly the sources of quality and reliability problems requiring
repair or maintenance and f) scalability to alter production capacity
and capability by adding/removing system components.

The “plug and produce” reconfiguration may be physical or logical
and can take place at three levels: system level (machines, buffers,
MHS, parallel lines) [109], and machine level (machine modules/
axes, tool magazine, modular robots, entire machines) [4,123,146]
and controls level (open-architecture control modules, reconfigura-
ble control systems, CNC programs) [146]. Hardware reconfiguration
also requires major changes in the software used to control individ-
ual machines, complete cells, and systems as well as to plan and con-
trol individual processes and production; but it can potentially
increase the life and utility of a manufacturing system.

A reconfigurable manufacturing system (RMS) architecture was
proposed [67] to produce personalized products by including parallel
subtractive and additive machine stages and allowing flow back-
tracking, which can lead to less efficiency due to the complex flow,
more movement times, imbalanced production and complicated
scheduling. Examples of RMS research include design and configura-
tion [13,22,82], optimal reconfiguration strategies [209], readiness of
manufacturing firms for implementation [14], product family design
[3,90,116], performance [66,93], and production planning and control
[68,126]. FMS and RMS were compared regarding pre-requisites,
scope, features, intelligence, benefits, limitations, cost and life [42].
Manufacturing paradigms evolved from mass production to mass
customization and personalization [81].
Changeable manufacturing (CM). Changeability is key to dynamic
adaptation of industrial production including FMS, RMS and beyond.
It applies from machines/workstations level to cells, systems, seg-
ments, factories, and production networks. It includes characteristics
to accomplish early, foresighted and economic adjustments of the
structures and processes on all levels in response to change drivers
[204]. Manufacturing changeability is an umbrella which embodies
changeover-ability, flexibility, reconfigurability, transformability and
agility according to the level within the manufacturing organization
[158,204].

Some definitions would be helpful to put these types of change-
ability in perspective. Changeover ability is the operative ability of a
single machine or workstation to switch between work pieces at any
time with minimal effort and delay. Flexibility is the operative ability
of a manufacturing or assembly system to switch with minimal effort
and delay between parts/products within a pre-defined family of
products through soft/logical changes (programs, plans) and the
addition or removal of minor functional elements without changing
the system physical structure. Reconfigurability is the tactical ability
of an entire manufacturing and logistics system to switch with rea-
sonable effort to new, albeit similar families of products by changing
the manufacturing processes, machines, material flows and logistical
functions as well as their structure, both physically and logically.

Changeability has additional characteristics beyond FMS and RMS
including transformability and agility. Transformability is the tactical
ability of an entire factory structure to switch to another product mix
including production and logistics systems, facilities and buildings,
organization structure and process, and personnel. Enablers of trans-
formability include universality, modularity, scalability, mobility, and
compatibility. Global production networks (GPNs) design, operation,
and their transformation into changeable GPNs have been reviewed
[96]. Agility is the strategic ability of an entire company to open new
markets, to develop the requisite products and services, to respond
to change, and to build necessary manufacturing capacity within and
beyond the walls of the factory. Agility, therefore, is an enabler of
dynamic adaptation of an organization [204].

Manufacturing changeability, design, operation, enablers such as
reconfigurable process plans (RPP) and adaptive production planning
and control (APPC), applications, performance indicators, cost and
economic justification, industrial adoption, benefits, and challenges
have been researched. A comprehensive framework of physical
(hard) and logical (soft) capacity and capability adaptation in
manufacturing systems is illustrated in Figure 6.
2.2. Co-development of products and manufacturing systems

The co-platforming and biologically inspired co-evolution of prod-
ucts and manufacturing systems are two important developments in
formalizing their bi-lateral association and co-development.

Products platforms methodologies are useful in managing prod-
ucts variety and coping with dynamic and uncertain market
demands [170] due to the significant efficiencies in design, process
and production planning and manufacturing of families of parts/
products by capitalizing on the commonality between members of
the same product family. Modules are added/removed from the
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platform to generate product variants. Product platforms are effec-
tive in achieving economy of scope by mass customizing products
in high production volumes while achieving economy of scale as
demonstrated in [60].

A methodology to develop manufacturing systems platforms was
introduced [44]. The manufacturing system platform consists of the
core machines, workstations, manufacturing processes required to
produce the core characteristics of the product family platform. Addi-
tional machines capabilities or machines needed for certain product
variants can be added through system re-configuration while the
core platform remains unchanged.
Fig. 7. Co-evolution model for products and manufacturing system [9].
2.2.1. Co-platforming of products and manufacturing systems
A novel methodology for designing manufacturing systems by co-

platforming them with product families was introduced [44]. It used
matrix-based mapping for machining and assembly and was vali-
dated using automobile cylinder engine blocks families of 4, 5 and 6-
cylinder engines machined using the same system [1,2].

Other methods for integrating products and manufacturing sys-
tems development include: conceptual design [111], product archi-
tecture commonality [89], simultaneous assembly and disassembly
for customizing products platforms [18], product platform optimal
configuration and co-planning, and relationships between products
and systems, knowledge discovery using Bayesian networks [71],
matching product components with specific process capabilities [24],
as well as a cladistics model to determine the relationship between
product features and the associated machining capabilities [11]. The
developed co-platforming concept and methodology were also used
to develop a methodology that integrates the product platform syn-
thesis with the selection of suppliers to form a suppliers platform
[132].
Fig. 8. Potential applications of biological transformation in manufacturing [27].
2.2.2. Co-evolution of products and manufacturing systems
Engineers have been fascinated with the powerful biological

transformations and their mechanisms and biological mimicry has
long inspired products designs, algorithms and optimization techni-
ques for planning, controlling, and scheduling of manufacturing sys-
tems [169]. A framework for the coordinated evolution
(co�evolution) of products, processes, and production systems (Spe-
cies) was elaborated [187].

Holonic systems, bionic systems and fractal manufacturing sys-
tems, multi-agent systems applied to manufacturing systems have
been investigated [99]. Intelligent adaptations which possess self-
properties, such as self-configuration, self-organization, self-optimi-
zation, and self-healing, are useful to apply to ensure robustness,
scalability, flexibility and re-configurability, and support developing
adaptive systems. These are discussed further in section 3.

This section focuses on the important phenomenon of symbiotic
co-evolution observed among species in nature and its use to model
co-evolution of products and manufacturing systems. The concepts
of dynamic evolving families of parts and products inspired by evo-
lution in nature, and co-evolving products and manufacturing sys-
tems were introduced [9]. Biologically inspired symbiosis, in the
world of artefacts, between products and their manufacturing sys-
tems using cladistics models was introduced and further exploited
as a powerful classification method to suggest future trends in the
design of products and their manufacturing systems [45]. This pow-
erful co-evolution model was applied to the co-evolution of milling
and turning machine tools and products using data from Morei-
Seiki as shown in Figure 7. An extended multi-domain evolution
and cladogram model was later introduced and demonstrated for 3
domains [10].

A new biologically inspired co-evolution model of products design
and manufacturing systems capabilities was introduced [9] using
parsimony analysis of cladograms. The model is validated using sev-
eral case studies including assembly of automotive engine accesso-
ries. Bio-inspired phylogenetics for designing product platforms and
delayed differentiation utilizing hybrid additive/subtractive
manufacturing was developed [46].
2.3. Biologicalisation in manufacturing systems

A new emerging frontier in the evolution of the digitalization and
the 4th industrial revolution is named biologicalization in manufactur-
ingwhich is defined as “The use and integration of biological and bio-
inspired principles, materials, functions, structures and resources for
intelligent and sustainable manufacturing technologies and systems
with the aim of achieving their full potential” [27].

The underlying concept of biologicalization in manufacturing can-
not be considered as new. What is novel, however, is the acceleration
of its realization, which builds on the capabilities available today and
prospectively in the future through the Industry 4.0 developments.
Although not exactly under this name, the principles of biologically
inspired manufacturing systems have a remarkable history [26]. The
concept of biological manufacturing systems (BMS) was introduced in
[189] with the aim to deal with the dynamic changes in the external
and internal environments in the whole product life cycle from plan-
ning to disposal, relying on biologically-inspired ideas such as self-
growth, self-organization, adaptation and evolution [190,191,193].
Cyber-physical manufacturing is evaluated in the light of Professor
Kanji Ueda's legacy in [195].

The cyber-physical era [119], i.e. the unprecedented integration of
the physical and the cyber spheres in industry, creates opportunities
to realize biology inspired solutions in practice, including production
systems and organizations.

Fig. 8 maps the various manufacturing topics with similar biologi-
cal elements (including botany) including “top-down” procedures, or
problem-driven, or manufacturing-driven, or technology pull, and
“bottom-up” approaches, i.e. from biology to manufacturing.
2.4. Manufacturing systems life cycle and sustainability

Sustainability has three pillars; environmental, social, and eco-
nomic all of which affect manufacturing systems. Environmental
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sustainability emphasizes environmentally conscious manufacturing
processes, and practices, and reduction of energy usage, resources
consumption and harmful emissions [73]. Social sustainability is con-
cerned with the wellbeing of the humans who work in these systems
and the quality of their work as they are increasingly called upon to
interact and share tasks with technology, machines, and robots. The
present I4.0 industrial revolution has the capabilities required to
focus on the use of technology to support humans and improve their
quality of life and their jobs including within manufacturing systems
[177].

Economic sustainability implies a good balance between the cost
of manufacturing and profits to ensure business continuity. This in
turn drives efficiency, waste reduction and productivity affecting the
design and operation of manufacturing systems and the whole enter-
prise [203]. Important strategies for achieving economic sustainabil-
ity of manufacturing systems are highlighted next.

Co-evolution and co-platforming of products and manufacturing
systems proved to have a significant effect on the life and economic
sustainability of manufacturing systems. Having an optimal stable
core and non-core of machines capable of producing all product fam-
ily variants as the product and manufacturing system evolve prolongs
the life and utility of a manufacturing system beyond one product
generation. They minimize the cost and need for factories re-tooling
or re-building manufacturing systems every time a substantially new
product is introduced, reduce repeated ramp-up cost, and improve
quality. Co-evolution and co-platforming enhance manufacturing
systems economic sustainability and prolongs their useful life.

The various stages of a manufacturing system life from its design,
modelling, planning, construction, operation, reconfiguration, and re-
design when needed are illustrated in Fig. 9 including end of life end
of life reusing, recycling, and retiring.
Fig. 9. Manufacturing systems life cycle for sustainability (modified from [43]).
A manufacturing systems classification code was developed [41]
for characterizing the components of manufacturing systems includ-
ing machines, robots, material handling equipment in great details.
This classification system represents the characteristics of all system
components in strings akin to genetics codes, much the same as
OPITZ parts classification system. This novel classification and coding
system was demonstrated and applied to machining and assembly
systems [48] including industrial applications [172]. The developed
manufacturing systems coding system is used during the design
phase in identifying similarities, grouping of system components,
streamlining the acquisition of machinery, and assessing the system
design and operation complexity with a view to re-designing it to
reduce complexity and hence cost.

Example of de- and re-manufacturing systems
A laboratory scale “De- and Remanufacturing” pilot plant is

installed at CNR-STIIMA, Milan, Italy to integrate and validate multi-
disciplinary methodologies, tools, and technologies for the smart de-
and re-manufacturing systems of the future, with specific focus on
mechatronic products. Research supporting this system is pursued at
three levels; single process/technologies innovations, integrated pro-
cess chain, and sustainable circular economy business models [31].
The pilot plant includes technologies to support products disassem-
bly, remanufacturing and recycling of materials, including mechani-
cal pre-treatments, and implementing the most valuable End-of-Life
(EoL) strategy for the various parts [25]. Model predictive control
(MPC), knowledge-based modules for adaptive distributed control
systems, and a generic evolutionary control knowledge-based mod-
ule (GECKO) multi-agent distributed control approach were devel-
oped. Online part routing problem (OPRP) where the reconfigurable
transportation systems (RTSs) mechatronic modules transport parts
according to their destinations efficiently and collision-free was
implemented. A hyper spectral imaging (HSI) system for in-line rec-
ognition and classification of shredded products mixture composition
(i.e. percentage of metal and non-metal fractions, shape, and dimen-
sional distribution) enables application of smart waste classification.
A virtual system model (Digital Twin) connected to the real plant was
developed for implementing concepts of the digital de-manufactur-
ing factory. In addition, the plant supports technology services to
companies for assessing new integrated technological solutions for
circular economy, mainly in the automotive, white goods, and tele-
communication sectors. It is also used for training and education as a
learning factory [186].

3. Smart manufacturing systems (SMS) paradigm

Smart manufacturing is defined as “fully-integrated, collaborative
manufacturing systems that respond in realtime to meet changing
demands and conditions in the factory, in the supply network, and in
customer needs” [128]. There are a few similar paradigms which rely
on previous and foreseeable further developments of computer sci-
ence, information, and communication technologies, as well as
manufacturing science and technology, and promise higher, sustain-
able performance of manufacturing systems.

The cooperative and responsive manufacturing enterprises (CORME)
concept emphasizes abilities for cooperation and responsiveness of
future manufacturing enterprises, which are vital in competitive, sus-
tainable manufacturing. The compelling challenges due to generic
conflicts between cooperation versus competition, local autonomy
and emergence versus global behavior, adaptiveness and robustness
versus optimization, plethora of information versus responsiveness
are also discussed [196].

Cyber-physical production systems (CPPS) consist of autonomous
and cooperative elements and sub-systems that, based on the con-
text, are connected within and across all levels of production, from
processes through machines up to production and logistics networks
[118,119]. Three main characteristics of CPPS are underlined:

� Intelligence (smartness) where elements can acquire information
from their surroundings and act autonomously.

� Connectedness, such as the ability to set up and use connections to
the other system elements, including human beings, for coopera-
tion and collaboration, and to the knowledge and services avail-
able on the Internet.

� Responsiveness towards internal and external changes.

Cyber-physical production systems (CPPS) enable the 4th Indus-
trial Revolution (Industry 4.0) [6,8,16,88,154,173,184]. “Smart
manufacturing integrates manufacturing assets of today and tomor-
row with sensors, computing platforms, communication technology,
data intensive modelling, control, simulation and predictive engi-
neering. Smart manufacturing utilizes the concepts of CPS, Internet of
Things (IoT) (and everything), cloud computing, service-oriented
computing, artificial intelligence, and data science. Once imple-
mented, these overlapping concepts and technologies will make
manufacturing the hallmark of the next industrial revolution.” [95].

3.1. Smart communication and connectivity

Throughout the development towards Smart Manufacturing,
important key issues include IIoT, cloud computing, edge computing
and fog computing, digital twins [181,198], digital shadows [174],
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and service-oriented technologies. The 5th generation mobile net-
work (5G) promises high transmission rate, low latency and high
security [29]. A critical review of standards applicable to smart auto-
mation is found in [103]. Architecture of intelligent perception, IoT,
cloud manufacturing is discussed in [182] and [179] respectively.

3.2. Smart products

Industrial product-service systems (IPS2) [110] and hybrid products
[88] consider the dynamic interdependencies of products and serv-
ices throughout the entire product life cycle. Smart products using
CPS represent the new generation of intelligent, agile, flexible and
networked products [5,166,168]. Smart products are considered CPSs
which integrate internet-based services [188].

3.3. Augmented reality for smart manufacturing systems design

Augmented reality (AR) has matured and proven to be an effective
and innovative solutions in design and manufacturing [129]. It is
related to the more general concept of mixed reality (MR) that merges
real and virtual (digital) information into the user’s view [105]. Prod-
ucts and manufacturing processes can be simulated, assisted, and
improved using AR before implementation. Augmented reality
enhanced human-machine interfaces are enabling users to manipu-
late components realistically using hand gestures and receive tactile
feedback (forces and torques) for more realistic interaction [201].

3.4. Smart manufacturing systems control

Some earlier concepts, often considered revolutionary, can now
find real industrial applications by utilizing the latest developments
of information and communications technologies.

One such concept is the holonic (or agent-based) manufacturing
systems (HMSs)which consist of autonomous, intelligent, flexible, dis-
tributed, cooperative agents or holons [21,107,122,192,193,194]. One
of the most promising features of HMSs is that they represent a tran-
sition between fully hierarchical and heterarchical systems [72].

Digital twins represent a way for realizing these earlier concepts as
they provide two-way interaction between the real and virtual
worlds of manufacturing. “A Digital Twin is the digital representation
of a unique asset (product, machine, service, product-service system
or other intangible asset) that compromises its properties, condition
and behavior by means of models, information and data” [174]. In
the literature, digital twins and digital shadows are usually distin-
guished. Both incorporate data and information collected during the
usage / operation phases of the product or production system. With
the use of digital twins and digital shadows, together with predictive
engineering [95] anticipatory rather than reactive enterprises can be
realized. With the construction of high-fidelity models (digital repre-
sentations) of the phenomena of interest, future spaces can be
explored and appropriate decisions made [181].

3.5. Data-driven smart manufacturing

The volume of data collected is rapidly increasing due to the digi-
talization of manufacturing and growing number of sensors and dif-
ferent IoT devices. Cloud computing enables networked data storage,
management and off-site analysis [180]. Data-driven strategies are
important for companies to remain competitive. In manufacturing
systems, multi-source, heterogeneous data are generated throughout
the product life cycle. They can be characterized by 5Vs: high volume,
variety, velocity veracity and value [28] as data is generated and col-
lected [180]. Machine learning approaches can be used for processing
and analyzing big manufacturing data [120]. Algorithms such deep
learning are increasingly being used. They represent extremely pow-
erful techniques for many applications such as pattern recognition,
however, their applicability to a specific problem, availability of
appropriate training patterns, and whether incremental learning is
important should be assessed. A comprehensive survey of commonly
used deep learning algorithms is presented and their applications
towards making manufacturing smart are discussed [198].

4. Smart manufacturing systems implementations

Smart manufacturing systems offer competitive advantages for
companies when technical progress is transferred to industry. Assess-
ment of the gap between the state of research compared to actual
industrial practice is accomplished using maturity models as indica-
tors of progress. Ongoing innovation implementation is evaluated by
examining various maturity models and analyzing the state of indus-
trial practice based on latest research trends regarding SMS. The
transformation path of different countries, and governments initia-
tives are described.

4.1. Maturity models and benchmarks for manufacturing systems

Maturity model is a tool to assist manufacturing companies in
comparing their status quo with a defined target state and develop
an implementation roadmap [155,163]. Comparing relevant maturity
models for manufacturing systems regarding CPS, Industry 4.0 and
sustainability provides an overview of their purpose and scope [156].

The capability maturity model integration (CMMI) and the process
and enterprise maturity model (PEMM) are universally applicable as
a basis for production-specific maturity models [69,197]. The smart
manufacturing system readiness assessment model (SMSRL) exam-
ines four dimensions: organizational, IT, performance management
and information connectivity maturity. The measurement categories
are processes, personnel, software systems, output data format, key
performance indicators (KPI) and KPI relationship [87].

The smart manufacturing maturity model for small and medium-
sized enterprises (SMEs) (SM3E) developed in the USA and Mexico
contains five categories: finance, people, strategy, process and prod-
uct and evaluates smart manufacturing and the organizational struc-
ture [115]. PEMM, “Leitfaden Industrie 4.0” and the “Reifegrad f€ur
Industrie 4.0” examine an organization’s maturity level by analyzing
methodological competence and corporate culture [84,165]. They
focus on information flow and use of data in production such as infor-
mation generation and processing, networking, interaction of CPS
and intelligent and self-controlling processes [84,152]. The “Leitfaden
Industrie 4.0” and the “IMPULS” maturity models focus on technical
assistance systems and production networks [12,102] for SMEs and
classifies the company competencies in production data processing,
machine-to-machine communication, company-wide networking,
ICT infrastructure, human-machine-interfaces and efficiency for
small batch sizes. Other models such as the Industry 4.0 / digital oper-
ations self-assessment are cross-industry self-assessments with sub-
sequent recommendations for action to achieve a higher degree of
maturity and add perspectives on market and customer access, com-
pliance, legal, risk, security and taxes [144]. The SIMMI 4.0 measures
maturity in information flow along the supply chain and across all
hierarchical levels, cross-sectional technologies and digital product
development [100].

Another important aspect of maturity models with focus on CPS is
customer orientation. For example, the “Digitalisierungs” index
assesses the digital maturity regarding customer relationship, pro-
ductivity, digital offers and IT-security [38]. The Industry 4.0 “Reife-
grad Test” assesses the maturity regarding research and
development, production, logistics and warehouse management and
administration as well as sales and customer service. Both the Leitfa-
den Industrie 4.0 and the Brazilian instrument to measure lean
manufacturing maturity include customer orientation and supplier
integration. The instrument to measure lean manufacturing maturity
evaluates information flows, corporate culture, suppliers and custom-
ers regarding quality of data source, problem solving, processes and
tools, strategic planning, continuous improvement, supplier integra-
tion and customer orientation [153]. The Korean assessment frame-
work analyzes the maturity level of intelligent manufacturing
regarding the integration of data analytics in production as well as
finances. The smartness assessment framework for smart factories
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uses analytic network process and focuses on leadership and perfor-
mance. It is the only maturity model that explicitly considers perfor-
mance factors such as productivity, finance, quality and lead time as
evaluation criteria as well as leadership, processes, and system and
automation [98].

Most German and the Korean maturity models generally focus on
technology, automation and production and many German models
specifically cater to SMEs. The American and international models
often focus on connectivity, corporate culture and finance or the
company indicating the current technological mid-term outlook.

The Singapore smart industry readiness index (SIRI) assesses
Industry 4.0 based on processes, technology, and organization crite-
ria. The integration of operations, supply chain and product lifecycle
are evaluated. Criteria for assessing technology readiness are the
degree of automation, connectivity, and intelligence. In addition, the
organization and employees’ readiness for Industry 4.0 are evaluated
[171].

Benchmarking studies assess the state of industrial practice, readi-
ness and implementation and underlying success factors. A recent
benchmarking of Industry 4.0 identified successful and proven
approaches for German and European small, medium, and large com-
panies. Manufacturing companies that specifically address smart
data and digital assistance of Industry 4.0 in addition to culture and
methods tend to be ahead with their systematic implementation of
modern manufacturing systems (Fig. 10).
Fig. 10. Results of benchmarking Production Systems 4.0 [160].
Successful companies consistently apply lean methods in Industry
4.0 to increase agility and productivity, develop strategically impor-
tant assistance systems and integrate users [171].

Smart data including effective analytics applications, consistent
semantics along the entire order processing chain, a middleware con-
necting data of different domains as well as cooperation of data scien-
tists and production employees are important success factors for
increasing productivity.

4.2. Modern manufacturing in the global context

It is important to understand the economic and social impact of
ongoing digital transition on the entire manufacturing economic sec-
tor in different countries, the role of manufacturing within an econ-
omy and the measures taken to secure or strengthen their relevance
in global markets.

Some countries are selected based on rankings like the global
competitiveness index (GCI) and the global manufacturing competi-
tive index (GMCI) which reveal their economic and scientific rele-
vance [37,58] to examine their efforts and spending related to GDP,
Industry 4.0, regulations, tax policies, energy, transportation, health
cost, workforce quality, infrastructure and innovation of different
countries [58,130,131,202,205,206]. Fig. 11 summarizes the results
[130,131,175,184,205,206]. Many countries introduced initiatives to
support the digital transition of small, medium, and large manufac-
turers. Some examples include the USA smart manufacturing pro-
grams and clusters of excellence in IoT, advanced manufacturing,
new materials and software [7,74]. Germany introduced the Industry
4.0 initiative and funded related academic and industrial research
and development programs. Canada established an advanced
manufacturing program through the national research council of
Canada (NRC), next generation manufacturing supercluster (NGen), a
network of super research clusters, and collaborative international
research programs (e.g. with UK and Germany) to support small and
medium size innovation and manufacturing enterprises and technol-
ogy transfer of academic research in smart manufacturing. The Chi-
nese government has initiated plans to develop artificial intelligence,
robotics, better handling of big data and above all their initiative of
“Made in China 2025” [138].

The Japanese government supports initiatives regarding robotics,
new IT, IoT, industrial value chains or connected industries to build
up new industries and strengthen existing ones and enhance data
exchange, use of AI in SMEs and cloud services [64]. Besides
manufacturing benefits, they focus on problems like the aging society
with their Society 5.0 initiative to achieve high acceptance of human-
machine-interaction including in manufacturing. In Korea, the term
fourth industrial revolution is more used than smart manufacturing
systems. Government initiatives include Manufacturing Industry
Innovation 3.0 Strategy as part of the Creative Economy Initiative or
the Connected Smart Factory, along with company collaborations
regarding smart factories, intelligent manufacturing or smart engi-
neering [7]. Korea is making huge efforts to support their companies
through other initiatives from different ministries ranging from Sci-
ence and ICT to interior and safety [176]. The European community
supported many multi-national collaborative programs and projects
focused on Industry 4.0 and its enabling technologies. Europe is het-
erogenous regarding programs, funding, and challenges. For example,
Scandinavian countries, the Netherlands and the UK are dominating
the digital economy and society index (DESI), which tracks digital
performance and competitiveness in Europe, whilst Malta has the
highest percentage of companies analyzing big data [57]. Regarding
Industry 4.0, less than 35% of European companies have implemented
two or more key technologies, which are social media, big data & data
analytics, cloud technologies, IoT, mobile services, robots and auto-
mated machinery, cyber-security solutions, 3D printing, and artificial
intelligence, while only 25% is using big data analytics countries have
their own initiatives for implementing Industry 4.0 combined with
the digitalizing European Industry initiative in 2016 [147]. In Ger-
many, more than 20 Industry 4.0 competence centers are developed,
and German companies are investing €40 bn annually in Industry 4.0
technologies until 2020 [145]. The government supports initiatives to
strengthen Germany’s position including Industry 4.0, smart service
world, high-tech-strategy, and collaborations with companies and
research organizations on digital factories and Internet of Things
[87,163]. Together with research related to sustainability and effi-
ciency [151], it is expected to achieve an overall efficiency (productiv-
ity, energy and resource utilization) gain of 18% in five years [145].

The gap between companies is mainly seen in Asia where some
corporations are huge and innovative while followers are usually
small without advanced manufacturing systems. While governments
support companies significantly in achieving Industry 4.0 standards,
they often face obstacles such as changes in regulations which hinder
commercialization of innovative solutions [137].

In addition to governments supportive initiatives, it is up to the
sector’s ingenuity to invent and innovate new concepts, ecosystems
and solutions and implement them successfully in practice, for exam-
ple in smart factories. To apply CPS to manufacturing, the concept of
the smart factory as a hyper-connected network-based integrated
manufacturing system has been developed. It uses IoT to connect the
real shop floor equipment such as machines and assembly lines by a
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CPPS Platform that monitors, plans and controls manufacturing steps
by MES which are supported by a cyber model of the real production
- digital twin. Based on this model, discrete event simulation and
data analytics methods help improve the factory performance [15].
This vertical integration of sensors, MES and ERP helps the smart fac-
tory to achieve product life cycle integration and a horizontal integra-
tion of several smart factories into a smart supply chain. The product
life cycle integration allows an early integration of the optimal pro-
duction structure for upcoming new and changing products and their
manufacturing requirements in the factory development planning.
PLM software is used to link R&D data with production and user-
data. The connection of several smart factories in an inter-company
value chain finally creates a hyper-connected network that allows
new forms of cooperation and business models [141].

Smart manufacturing (Industry 4.0) industrial adoption
The smart manufacturing (Industry 4.0) adoption report [85] anal-

yses the status in the manufacturing industry with regard to Industry
4.0. Overall, less than 30% of manufacturing companies use Industry
4.0 technologies to a great extent. In the regional comparison, North
American companies have the highest adoption of Industry 4.0. The
adoption of technologies and use cases varies between different
industry sectors, with companies in the automotive sector using
Industry 4.0 most extensively. For this also, the average return on
investment and the likelihood to increase budget for Industry 4.0
technologies is highest in the automotive sector.
4.3. Industrial applications of smart manufacturing systems

The different smart manufacturing paradigms have already been
springing to life in industry in the past years with many different sol-
utions. Examples of implemented smart manufacturing systems and
technologies, advantages and challenges are presented.
Fig. 13. Change request system at the e.Go LIFE electric car factory.
4.3.1. Smart digital manufacturing and assembly systems
The e.GO Life is an electric car designed and manufactured in

Aachen, Germany by the e.GO Mobile AG. This example is an excel-
lent demonstration of successful transfer of technical knowledge
from academia to industrial application as well as commercial prod-
ucts and demonstration of several Industry 4.0 enablers.

Long time to market and low agility limit existing manufacturing
systems in automotive industry. At the e.GO Mobile AG, the time to
market for new products is drastically decreased by using a highly
iterative product development approach. Horizontal integration of
the manufacturing system is essential to enable industrialization
while the product being developed is constantly changing without
defined design freezes. Hence, company-wide agility, including han-
dling of change requests, is required. A change request is a process
which initiates a change of the product after releasing it for further
development or manufacturing. It can be categorized into internal,
such as due to construction mistakes, and external, e.g. induced by
changes in customer needs and requests. These changes have a wide
range of effects on the company as they influence employees, prod-
ucts, processes, and cost. Establishing an effective change request
process ranges from increasing the customer surplus and integrating
technological innovations to shortening the time needed for a devel-
opment process in an agile environment. These two main goals are
contradictory for most manufacturing processes. Certain steps are
needed to reduce the conflict, by initiating a combination of organiza-
tional actions and other manual actions regarding the information
and communication technology infrastructure.

Other key enablers of efficient change requests are filtering rele-
vant data, transparency and flexibility of data distribution, defined
data structures and high-quality data. The main challenge in realizing
these key enablers is insufficient working infrastructure, which can
effectively be overcome by implementing the IoP framework which
combines the use of apps and smart data with integrated data man-
agement acting between raw and smart data, hence, enabling effi-
cient change processes and highly iterative product development
[23].
The idea of the IoP is pursued within Industry 4.0. Linkage hetero-
geneously available data from different IT systems and sensors (as
done in IoT); the IoP generates a digital representation of the
manufacturing system at different levels of aggregation, called digital
shadow. Application-specific apps with detailed production engi-
neering models can be created based on the digital shadow as shown
in Fig. 12. They aim to enable production managers to react faster to
problems and gain new insights to increase productivity. Therefore,
the IoP is an extension of the IoT but with specific production tech-
nology models and associated data structures [162].
The e.GO Life electric car is produced in an Industry 4.0 plant
where technologies like sensors, connected material handling equip-
ment, automated guided vehicles (AGVs) and robots are used. The
data collected in production is transmitted via 5G network, which
guarantees high data transfer rates and reliable low latencies sup-
porting realtime communication. Production and other data from IT
systems are integrated to enable cross-domain collaboration. The
change request procedures (Fig. 13) are used. Data is selected and
aggregated on an application-specific basis to support daily work and
decision-making.
One example of implemented connected systems is the end of line
control. The employee uses an augmented reality app to report
errors. When entering a light tunnel, the vehicle is automatically rec-
ognized via RFID. The product life cycle management system provides
information about the vehicle configuration and necessary checks.
Cameras scan the vehicle and the image data is processed using artifi-
cial intelligence (AI) application trained to detect errors. Quality
inspectors check the errors and manually enter errors in the app. All
errors are documented in a manufacturing execution system (MES)
which provides necessary data for rework. After rework, all informa-
tion is added to a digital vehicle file. This example shows how differ-
ent IT systems, sensors, AI, and augmented reality are connected in
one system to simplify and improve the quality inspection. All neces-
sary information is provided by an app, hence, reducing information
search and increasing process stability. All data for a vehicle is imme-
diately stored in the vehicle file creating continuous documentation
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and transparency where all assembled parts and performed work
steps are traceable. In addition, the pre-evaluation of errors using AI
enables a focused and faster inspection and improves quality. As a
result, the time to market is decreased compared to traditional OEMs.

The e.Go electric cars, now in serial production (Fig. 14), are avail-
able in different configurations/variants e.g. size and wheels material,
and depending on the model can feature infotainment system, seat
heating, parking sensors and LED headlights.
Fig. 14. e.GO LIFE electric car production line in Aachen, Germany [e.GO Mobile AG].
4.3.2. Internet of things (IoT) platform at Hirotec
Hirotec is a US$1.6 billion automotive part and tooling manufac-

turer with 23 locations around the world. To improve quality, reduce
downtime and optimize production planning, Hirotec implemented
PTC’s ThingWorx IoT Platform and Kepware's IoT Gateway in its
Detroit, Michigan factory.

The company recognized early on that access to operating data
from their machines had an enormous impact on planning, avoiding
reactive maintenance, and missed opportunities. Today, production
management can use realtime data from the factory linked to the ERP
system for planning and optimizing CNC modules, systematic analy-
sis and decision making. To support the long-term IoT vision, Hirotec
developed an IoT framework with short six-week agile sprints. While
a full IoT implementation would have taken several years for the first
results to emerge, the Scrum model delivered early visible and quan-
tifiable progress. In six weeks, the company went from no realtime
visibility in its operations to full visibility of the operational states at
any time, with data analytics capabilities for trend forecasts of uptime
and efficiency.

Hirotec expects that the IoT measures will affect every aspect of
the company, from operating the business and IT to financial fore-
casts, customer relations and sales. As the sprint projects progress,
Hirotec will obtain various contextual data to develop new improve-
ment case [104,148,149].
Fig. 15. Human�robot collaboration autonomous production control [Fraunhofer
IGCV/Institute for Machine Tools and Industrial Management] [76, 77].
4.3.3. Smart factory by Ericsson
Ericsson, a global distributor, provider and manufacturer of com-

munication technologies goods and services in Sweden, invested in a
smart factory in the Jiangsu province, China. It is located in Nanjing
and focuses on the manufacture of 5G and 4G radio technology prod-
ucts. With an investment of about US$50 million, smart manufactur-
ing capabilities were enabled and automated streamlined production
systems were implemented. The new technologies include a modular
automatic assembly line for 5G radios as well as an upgraded auto-
matic packing line for higher speed and efficiency. Modernized 5G
testing equipment allow more efficient processes and higher flexibil-
ity in reacting to changes. Data analytics capabilities were imple-
mented for components and objects recognition in production using
AI and machine learning. IoT-technologies enabled an automated
alert system for critical issues and faults. The decreased latency of
error in production to initiate counter measures allows accelerated
production and increased efficiency. Reduced cost of material and
manual machine maintenance due to reduced human errors and pro-
duction system downtime, amounted to annual savings of up to US
$10,000. This smart factory project resulted in a 50% ROI, with a
breakeven duration of about two years [54,55].

4.4. Research use cases

Extensive research in academia and industry is being devoted to
developing enablers of smart manufacturing systems including
human-machine collaboration. The following are but a few examples
of ongoing joint academic-industrial research projects.

4.1.1. Autonomous, mobile, and ad-hoc cooperating robot teams
High integration costs and complex programming often limit the

use of industrial robots to identical repetitive tasks behind protective
fences and separate from workers. Advanced sensors and increasing
miniaturization of control systems allow mobile industrial robots to
navigate autonomously through the factory while using end effectors
to perform a variety of tasks with sensory feedback. This was demon-
strated by the Technical University of Munich (TUM) with three
industrial partners as part of the FORobotics research network for uti-
lizing autonomous mobile robot platforms in smart production. This
use case features modular software architecture for flexible tasks
execution through reconfiguration of robot tasks, and interaction
between humans and robots. It includes interpretation of human ges-
tures and 6 degrees of freedom pose estimation for assembly and
heavy objects bin picking, a world model representing multi-user
capability, combined consideration of geometric, topological, and
hierarchical environment information, and integration of predicted
and planned object dynamics. It enables motion and task planning in
unstructured environments. For Human-Robot cooperation, the robot
uses cameras to enable detection of human hand, eye, or speech ges-
tures. A projector displays information on the floor about the motion
direction and target for the human to understand the robot’s activi-
ties. Various psychological and ergonomic aspects such as trust in
automation, stress, safety perception or workers’ attitudes and their
experience were studied in this user-centred application using field
observations, laboratory experiments with participants, employees’
surveys, and interviews to use in further development. This combina-
tion of human and robot capabilities resulted in new forms of ad-hoc
robot human cooperation in a smart manufacturing system (Fig. 15)
[76,77].
4.4.2. Flexible reconfigurable allocation of work tasks
This use case conducted at iwb, TUM introduces flexible reconfig-

urable work tasks allocation using “jumpers” or “auxiliary workers”.
It is implemented on a balanced mixed-model assembly line at a
brakes and transmission systems manufacturer, which is character-
ized by a one-piece flow of three product variants, running through
the same assembly process and is fed by three pre-assembly stations.
Hybrid combination of automated and manual processes at the same
station is conducted with proportionately higher manual activities.
Initially, the workstations were equipped with touch screens for digi-
tally displaying work instructions. To avoid interruptions in produc-
tion caused by bottlenecks, knowledge deficits or imbalanced
distribution of the workers tasks; smart watches (wearables) were
used by workers to initiate requests for “jumpers” and coordinate
their deployment (Fig. 16). The smart watch app provides three
jumper request options; namely replacement, assistance or coach
jumper [40]. The use of smart watches and apps to coordinate
replacement workers (jumpers) increased production by 15% by
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maximizing the operation efficiency and capacity utilization of the
assembly line, and reduced reaction time for handling interruptions
by 20%. Insufficient internet speed, which caused the calls for jump-
ers to be interrupted frequently, presented a challenge. This confirms
the importance of fast, high capacity integrated IT-infrastructure as a
prerequisite for successfully implementing smart technologies in fac-
tories. The overall feedback from workers was very positive, as they
could receive support promptly as needed. One downside for some
jumpers was the uncertainty caused by not knowing the next assign-
ment.

4.4.3. Autonomous matrix production control
Agile production system for remanufacturing using artificial intel-

ligence (AgiPROBOT project 2019-2024) is carried out by nine
research institutes at the Karlsruhe Institute of Technology (KIT) and
funded by Carl-Zeiss-Stiftung. Integrated semi-automated demon-
strator factory for remanufacturing capable of autonomously disas-
sembling automotive electric drives manufactured by Bosch after
their usage phase characterized by a high degree of variety and
uncertainty regarding their condition and specification is used. This
agile system is structured with a matrix layout to enable highly flexi-
ble and adaptable material flows (Fig. 17). It features several autono-
mous capsuled stations and a variable material flow using
independent AGVs and robots for inspection and disassembly in col-
laboration with humans.
Fig. 17. Autonomous adaptable matrix production control [Karlsruhe Institute of Tech-
nology. KIT].
The system performance is enhanced using reinforced machine
learning for adaptive dispatching, co-learning with humans in disas-
sembly operations, and decentralized hierarchical intelligent control
via autonomous agents to utilize the potential of the modular matrix
or grid manufacturing systems [78]. This use case demonstrates a
“plug-and-work” functionality of manufacturing systems designed
with flexible matrix layout and intelligent production control all of
which enable adaptable remanufacturing of electric drives with
uncertain product specifications using adjustable automation.

4.4.4. Reconfigurable intelligent robotic assembly system
Dynamic reconfiguration of a factory by employing cooperating

mobile robot platforms (MRPs) and mobile product platforms (MPPs)
is researched at the laboratory for manufacturing systems and auto-
mation (LMS) at University of Patras, Greece. An assembly line
inspired by assembly of the front axle of a passenger vehicle where
dampers are assembled on the disks with 480 parts for three axle var-
iants/models in 8-h shifts. Mobile dual-arm robot workers can auton-
omously navigate on the shop floor and perform multiple operations
such as screwing, handling, and drilling while acting as assistants to
human operators. Human operators’ behavior is estimated using
multiple sensors data to enable human robot interaction, task plan-
ning and robot behavior adaptation to surroundings. Robot percep-
tion libraries allow MRPs to avoid collisions, dock at different
workstations accurately and detect parts orientation for assembly
[112,140].

Application of the new system reduced weight lifted by operators;
increased assembled variants from 3 to 6 models and operator utili-
zation; reduced number of operators from 3 to 1 as well as part flow
time.; improved quality and productivity by automating repetitive
strenuous tasks, and reduced set-up time for changing models
through robot mobility. The return on investment (ROI) was 12
months.

Some limitations of robot perception accuracy due to lighting con-
ditions, realtime continuous object detection, and networking issues
were encountered when multiple sensing devices were encountered
and required human participation and support. This shows that the
future of AI in robotics requires combined AI applications and crea-
tive human operators.

Summary of observations on industrial and academic use cases
Different applications and use-cases were presented which exem-

plified various aspects of smart manufacturing systems such as flexi-
ble operation and production control using intelligent mobile robots,
connectivity and integration using advanced IT systems, use of smart
automation and control technologies, and adjustable flow and adap-
tive intelligent control of equipment and systems to improve perfor-
mance and increase responsiveness.

Digitalization which is an important foundation for smart
manufacturing systems and the important role of humans in future
manufacturing systems and facilitating their cooperation with
machines is abundantly clear. These are only few of the numerous
examples of smart manufacturing research carried out in academia
and industry around the world. They illustrate the necessity of inves-
ting in research and development as well as effective technology
transfer and implementations.

Increased attention is being paid to making the concepts and
implementation of augmented human machine interaction in smart
factories more accessible and clearer to industry and academia.
Research centres and laboratories provide opportunities to explore
innovations regarding the digital transformation, impact of Industry
4.0 on manufacturing, and making digitalization and automation sol-
utions tangible to interested stakeholders. In different demonstrators
the human-robot collaboration, use of AI and mobile apps in
manufacturing and autonomous production as part of SMS have been
illustrated.

5. Adaptive cognitive manufacturing systems paradigm

As many innovations and disruptors along the axes of evolution
continue to appear, it is important to carefully consider, and be cogni-
zant of, those changes that would truly lead to paradigm shift(s) in
manufacturing systems causing them to be designed, operated, con-
trolled and/or used differently. Disruptive innovation, a term used in
business and technology, is one that helps create a new market and
value network, and eventually disrupts existing ones and displaces
an earlier technology [30,80].

Paradigm shift, a concept identified and coined by the American
physicist and philosopher Thomas Kuhn [94], indicates a change in
the basic assumptions within the ruling theory and represents a fun-
damental change in the basic concepts and experimental practices of
a scientific discipline. In manufacturing systems this means funda-
mental change in the ways products are made. This paradigm shift
criteria have been used in evaluating manufacturing systems
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evolution trends in this keynote paper and in identifying future new
manufacturing systems paradigms.

5.1. Towards bio-intelligent manufacturing

In the long term, transition is expected from the old “lifeless
manufacturing systems” to the manufacturing systems being alive:
self-learning, cognitive, communicative, self-healing, and self-assem-
bling towards a “living manufacturing system”. Future manufacturing
systems are expected to incorporate components, features, and capa-
bilities that enable the convergence towards living systems as
hypothesized in [27] and further elaborated in [121]. It is observed
that the ongoing Industry 4.0/Smart Manufacturing is increasingly
bringing together the physical, virtual, and biological worlds. Next
phase of the evolution is envisioned to be the emergence of what can
be labeled “human-centric” “bio-intelligent” manufacturing [113]
integrating automation, information, bio-production, smart products,
and materials technologies.

5.2. Human-centric adaptive manufacturing

The manufacturing industry continues its evolution towards per-
vasive automation, while human-machine collaboration is advanc-
ing by placing human operators in the center of attention. Even
with the advances towards more intelligent automation, the trend
is an increased attention to the central role played by human work-
ers and their well-being both physically and psychologically as well
as considering the environmental issues. This socio-technical
approach to the evolution of the manufacturing system, where auto-
mation is human-centric, cognitive, intelligent and environmentally
friendly has led an IEEE technical committee to call this “bio-auto-
mation”, others have claimed that these are characteristics of the
fifth industrial revolution (Industry 5.0), however, these terminolo-
gies and associated implementations have not yet been widely
adopted.

The idea of self�optimizing machining systems (SOMS) in the
context of Industry 4.0 was investigated [117]. Enabling technologies,
principles, and methods are described that would potentially allow
for the implementation of machining systems which are capable of
adapting their parameters and settings autonomously, in order to
optimize for productivity, quality, and efficiency and concluded that
“last but not least, the higher complexity of SOMS requires new solu-
tions for human�machine interaction”.

Industry 4.0 brought a great change in the interaction between
workers and machines; the latter includes every kind of dynamic
technical systems such as automation, robots, decision support,
equipment, and software [127]. Industry 4.0 allows communication
between humans and machines throughout a highly networked
environment, using automation technologies like CPS, IoT and cloud
computing and the various levels of the supervision and control sys-
tems. Furthermore, human�machine interaction deeply changed
over the years, and reached a new level of innovation in Industry
4.0 due to some additional pillars including big data analytics;
robot-assisted production; self-driving logistics vehicles; and aug-
mented reality. It is possible to think of the resulting systems as the
new ‘internet-of-people-and-things’ in which the cyber-human sys-
tem (CHS) complements the activities deemed to be difficult for the
CPS and vice-versa, with the CHS having the supervisory control to
naturally leverage the needed cognitive, adaptive, and corrective
actions. In the Industry 4.0 era, companies are required to use a
socio-technical strategy. In addition to investing in technological
infrastructures, it is essential to value the human factor and workers
well-being before technology, and drive and anticipate change. The
ability to solve complex problems and use critical thinking to help
organizations adapt quickly to changes in perspective is critical.
Database analysis must turn data into knowledge and strategic busi-
ness suggestions [127].

The HumAn-CEntred (ACE) factories [83] cluster, shared in a key
white paper, the understanding of future human-centered factories
and provided recommendations on how to bring this vision into
industrial practice. The vision and recommendations are based on
the work of the five EU funded H2020 research projects
(2016�2020): A4BLUE, Factory2Fit, INCLUSIVE, HUMAN and MANU-
WORK. The ACE Factories cluster has identified several lessons
learned and recommendations for successful technology and best
practices adoption including: a) augmented reality (AR) and virtual
reality (VR) are efficient tools for on the job training, which increase
productivity and enhance the workers’ well-being; b) making oper-
ators’ tacit knowledge, such as best work practices and problem
solving, visible and accessible with social media-based tools can be
a very effective complement for workers support and training; c)
the usage of wearable apparatus like exoskeleton devices has shown
their potential to reduce operator’s physical fatigue and increase
their overall safety and productivity; d) ACE pilot cases have shown
that human-centered factory solutions have positive impacts both
on the productivity and well-being of the operators; e) the know-
how of industrial workers must be protected from unauthorized use
especially by data and analytics companies; f) the human-centered
paradigm shift will only be successful if work processes are
reshaped and new training approaches are introduced to support
continuous development of skills taking into account personal capa-
bilities, skills and situational preferences of individual operators; g)
new technical solutions for the realtime measurement of the opera-
tor’s capacities, mental strain and adaptation to automated pro-
cesses can be used to improve productivity and workers’ well-being
and increase the value of humans role; h) providing factory workers
with ways to influence and improve their work will increase work
motivation and productivity; e) changing work roles should be
implemented with consideration of the needs of elderly workers
such that no one is left behind; j) criteria related to enhancing trust
in the collaboration between automation and advanced technologi-
cal applications such as human-machine and human-robot collabo-
ration (HRC) should be considered; and k) small and medium
enterprises (SMEs) should be supported in adopting human-cen-
tered factory solutions.

For adaptive factory automation and management solutions inte-
grating the man in the loop, a methodology was proposed [35], vali-
dated in two industrial cases, to integrate cognitive workload into
the design of workplaces to match the human safety and well-being
necessities and the tasks cognitive requirements. The proposed
approach allows for the human-in-the-loop within factory automa-
tion through seamless human and automation collaborative deci-
sion-making, while monitoring production performances and
workers well-being indicators.

The symbiotic human-robot collaborative assembly issues were
discussed [199] Human-robot collaboration (HRC) in a manufacturing
context has been researched in the last few years, with a view to
facilitating multimodal communication, dynamic assembly planning
and tasks assignment assisted by deep learning. Insights on program-
ming-free adaptive robot control through algorithm embedding and
brainwave-driven methods; and different techniques for mobile
worker assistance were discussed. Challenges and twelve future
research directions were identified for further advancement in the
years to come. It envisioned that “with the support of the latest tech-
nologies of sensing, communication, AI, AR and robot control, HRC
will find its way to practical applications on shop floors in factories of
the future”.

Human-centric bi-directional interaction between hardware and
software components in the system and the people associated with
its functioning will benefit from an effective blend and symbiotic
relationship between the principles and drivers of Industry 4.0 and
Society 5.0 to maximize the effectiveness and contributions of the
humans in future manufacturing systems and enhance their well-
being.

5.3. The multiple facets of adaptability

Three important related mechanisms of effecting changeability
are resilience, robustness, and adaptability. Resilience is the capacity
to recover quickly from disruptions and spring back into the original
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designed system state or normal operation. Robustness is fault-toler-
ance, i.e. the ability to withstand disruptions without the need for
adaptation. Adaptability, however, is the ability to adjust to new con-
ditions and to be modified for a new goal, use or purpose. It is the
most relevant characteristic of evolving manufacturing systems and a
core foundation for any new system paradigm.

System adaptability has been utilized in earlier paradigms such as
flexible and reconfigurable manufacturing systems. A new classifica-
tion is presented next. The four classes of adaptability are informative
in differentiating the new adaptive cognitive manufacturing system
(ACMS) paradigm.

5.3.1. Static adaptability
The static adaptability refers to built-in pre-planned flexibility by

design (Section 2.1.4) enabled by the design of the system compo-
nents, modules, machines, configuration, and operating rules. It
allows flexible, resilient, and robust behavior within the pre-defined
parameters and boundaries such as pre-planned product family and
well-defined range of production capabilities (scope) and capacity
(scale). This type of adaptability relies on universality and program-
mability features of machines, robots, fixtures, and manufacturing
system, to cope with anticipated ranges of change in products and in
production volume.

5.3.2. Dynamic adaptability
This class of adaptability is labeled dynamic because it involves

action-oriented changes that affect the manufacturing system and its
constituents and involves external efforts by the technical specialists
such as engineers, technicians, and workers to implement and realize
the intended adaptation. It involves both physical hardware adapta-
tion, and logical soft adaptation by reprograming devices, changing
controls of machines and/or system, and revising operating and
sequencing rules as discussed in Section 2.1.4. It relies on built-in
flexibility and reconfigurability enablers, such as modularity, stan-
dard interfaces, mobility, integrability, diagnosability, and program-
mability to allow agile changes in function (scope) and capacity
(scale) between anticipated flexibility corridors within manageable
variations above initially designed boundaries such as extending
products family, and production scope and scale.

5.3.3. Cognitive adaptability
Cognitive adaptability is built on top of, but is differentiated from,

static and dynamic adaptability in that the adaptive responses are trig-
gered and/or executed autonomously by important cognitive character-
istics. Human-centric adaptive cognition includes context- and self-
aware as well as self-optimizing behavior in the two-way interac-
tions between a) machines and other hardware components in the
manufacturing system using sensors and IT, IoT and IoP capabilities,
and b) human operators and intelligent technological applications.
Therefore, cognitive adaptation utilizes built-in changeability ena-
blers to allow agile and optimal changes in function (scope) and
capacity (scale) beyond previously anticipated and planned total
changeability ranges/corridors using the autonomously synthesized
cognitive adaptation response. It is enabled by employing elements
of artificial and hybrid human-machine intelligence such as sensing,
perception, anticipation, prediction, planning, action, and autono-
mous decentralized decision making and control of machines and
production. In addition to self-awareness and self-optimizing fea-
tures, the cognitive adaptability includes self-planning, self-healing
such as maintenance and repair, and generally knowledge and cogni-
tion-based adaptive responsiveness.

5.3.4. Extreme adaptability
Extreme adaptability relies on the manufacturing system resil-

ience and capacity to recover (partially or fully) from major unex-
pected multi-dimensional extreme disruptions and return to the
normal/near normal designed system state or operation with the
least delay and losses. The key operative words in extreme adaptabil-
ity are unanticipated, extreme disruptions, and least losses. The antic-
ipation and prediction capabilities are therefore particularly
important in forecasting impending disruptive changes and in timely
planning and deciding optimal and economically feasible adaptation
responses and action.

Manufacturing systems response to the unprecedented disruption
during 2020 Pandemic brought to the fore the importance of this
class of extreme adaptability.

“The COVID-19 pandemic is challenging politics, society and the
economy to an unprecedented extent. Its effects are so drastic that
it requires companies and industries not only to manage the crisis
in the short term, but also to develop strategic options for the
future” [143]. Indeed, this multi-domain disruption which occurred
in 2020 significantly afflicted countries around the world. Drastic
changes in production volume (increase and decrease depending on
the product) often resulted in shutdowns for extended periods.
Increased demands for essential products such as medical supplies
and protective personal equipment depleted existing stock in very
short order and outstripped any planned production scope and
capacity/volume. Supply chains were crippled or broke down
completely by travel and transportation restrictions as well as
national protectionism. Companies which produce pharmaceuticals,
medical gowns, face shields and masks were asked to double, triple,
and quadruple their production; others like auto-parts manufac-
turers and OEMs were called upon to produce the essential products
that are far from their normal products which presented many chal-
lenges. Other companies faced drastically reduced demands and
were forced to consider producing significantly different products
to stay afloat. Furthermore, the supply chains of just about all goods
and materials came to a near standstill. In summary, the pre-
planned defensive strategies of flexibility, reconfigurability, agility,
changeability, resilience, and robustness of manufacturing systems
were all put to the test compounded by the immediacy of the
required responses. As discussed in Section 4, the degree of pre-
paredness and implementation of flexibility, reconfigurability, agil-
ity, changeability and smart manufacturing paradigms varies
among companies which affected their ability to respond to these
extreme changes and in a timely manner.

Response to extreme disruption
Some manufacturing systems were able to make changes quickly

to keep the business running and protect jobs. Wineries, liquor and
perfumes makers and drinks bottlers were able to produce new
product variants in an expanded product family. For example, win-
eries already using alcoholic liquids were able to switch to making
disinfectants and hand sanitizers by changing the fluids formula-
tion, the bottles, and labels, and reprogramming the material han-
dling systems while using the same processes. Parts manufacturers
and tool and die makers which produced small and medium size
batches of custom orders using versatile multi-purpose and pro-
grammable flexible machines switched easily with minor changes
to producing face shields and masks in large size lots. Use of
advanced digital design and 3D printing technologies made rapid
switching to new products feasible. Other urgent virus-related
products include clips to attach to paediatric face masks, sheet
metal components for automated COVID-19 lab test equipment, and
different moulds for ventilators production. A vacuum-maker
switched to making ventilators by switching from making suction
machines to ones that blow air. Even Mints, known for making
money bills and coins, tuned their focus to helping protect people
against COVID-19 by making valuable plastic visors for healthcare
staff. Major electronics manufacturers adapted existing clean-room
production facilities for LCD display panels to make surgical masks
in large quantities. Several automotive OEMs began producing face
masks using medical-grade textiles previously used for car seats
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and interior details. Setting up new or re-configured production
lines by adding/removing and reconfiguring portions of the
manufacturing equipment and systems also worked for some other
manufacturers. Many companies used time flexibility to increase
the number of worked shifts as needed. Companies re-purposed
their production lines for different reasons, such as government
incentives or invoking certain laws, but the majority switched pro-
duction willingly to maintain some output and revenues when reg-
ular orders dried up. Such drastic production changes are not
without their hurdles, such as securing new materials at a time of
scarcity and developing new/modified product designs and quickly
getting regulatory approvals. Sharing design information and intel-
lectual property across business sectors are other issues. Digitaliza-
tion, communication, connectivity, and availability of open-source
tools allowed effective sharing of knowledge and resources. The
urgency and scale of disruption due to the pandemic could change
the way collaboration is done in the future. The business paradigm
may also change from “just-in-time” to “just-in-case”, and the
manufacturing system and supply chains may be designed for emer-
gence and to accommodate black swan events. This need was
addressed [143].

Observations
The above examples demonstrate successful static and dynamic

adaptability. Manufacturers with reasonably diversified and robust
supply chains fared better in securing the materials and parts needed
for their operations. However, in dire situations such as the 2020
pandemic, increased nationalisms, and a continued gradual move
away from globalization were clearly observed and affected the eco-
nomic recovery efforts. Built-in passive and dynamic adaptability
enablers in manufacturing systems and the extent of implementing
supportive advanced technologies played an important role in the
ability of manufacturing systems to cope with the drastic challenges
posed by the pandemic and the required immediacy of response, but
both are effective only within boundaries of anticipated changes and
limited by the design of the systems and their components. Defensive
passive responsiveness and adaptability proved insufficient in situa-
tions of extreme disruptions in manufacturing scope and/or scale.
Offense strategies are required to ensure cognitive adaptation beyond
the planned scenarios in short order. Just-in-Case supply chains sce-
narios not only Just-in-Time are essential [133,134,135,136]. A con-
ceptualization of a decision-making environment of integrated
supply chain (ISN) viability formation through a dynamic game-theo-
retic modeling of a biological system that resembles the intertwined
supply network was proposed [86].

Lessons learned
Effective human-machine collaboration in all aspects of

manufacturing is needed as workers proved pivotal and most flexi-
ble in making the transition to new manufacturing systems and
operation strategies during this time of extreme changes. There is a
need for a combination of proactive and reactive manufacturing sys-
tems adaptation, however, it is the cognitive adaptation that will
play a crucial role in anticipating extreme changes and planning
optimal adaptation plans and implementation strategies. These new
norms are significantly influencing future manufacturing systems.

The pandemic experience will prove to be a turning point with
significant impact for manufacturing and manufacturing systems.
For instance, many of the artificial barriers to moving more of the
manufacturing activities online will be removed. Not everything can
be virtual, of course, but in many areas remote work will become
not only feasible but also necessary. Once companies sort out
related technicalities, it will be harder and more expensive to deny
employees those options. Indeed, a great deal of design, planning,
support functions and management meetings can be effectively
done virtually and remotely saving travel, reducing pollution, and
allowing more flexible work environment so workers can better
support their families. It is anticipated that remote will become per-
manent with more people working from a distance. All these new
modes of work in the future will make manufacturing and systems
more environmentally, socially, and economically sustainable and
more human-centered. Re-thinking the value of work and workers
as most important and flexible assets is already on-going but work-
erless manufacturing systems are not part of the future manufactur-
ing systems paradigms.

The experienced products shortages during the 2020 pandemic
emphasized the importance of supporting local manufacturing,
research and development, and promoting self-sufficiency that will
slowly lead to de-globalization. It will intensify countries investment
in innovation in product design and manufacturing technologies to
maximize locally owned intellectual property (IP). Supply chains will
be re-designed for the unexpected with optional scenarios that
embrace uncertainty to increase their adaptability, robustness, and
resilience.

5.4. ACMS paradigm characteristics, drivers, and enablers

The evolution of manufacturing systems and future trends
towards smart cognitive manufacturing is discussed in this section
within the context of the evolution of manufacturing throughout the
industrial revolutions from craft production to the current smart
manufacturing (Industry 4.0) era and into a future bio-intelligent
manufacturing era, in which the augmented human abilities will play
a central role in enhanced decision making.

The human cognition capabilities can receive visual cues from the
environment and combine them with other sensory information
such as sounds, smell and tactile feedback to create perceptual expe-
riences. Perceptual processes depend on the perceiver’s expectations
and previous knowledge as well as the information available in the
stimulus itself. Processing all this information in a lapse of millisec-
onds makes the humans a very powerful “cognition machine”. Fur-
thermore, humans are very adaptable to the environmental stresses,
changes, and complexities. In this context, the cognitive system has
emerged to meet human capabilities and has been defined as “a sys-
tem that can modify its behavior on the basis of experience” [79]. In
general, it can be said that the term “cognitive system” has been used
to define a new solution, software or hardware that mimic in some
ways human intelligence.

Manufacturing systems are continuing to evolve in response to
may disruptive products, processes and market drivers, and the need
to adapt to these changes. The evolution and co-evolution trends of
products, technologies, business models, and production paradigms;
the accelerated rate of adaptation to change; and research and devel-
opment of new and disruptive game changing technologies all point
to a fundamental change in the ways products are made.

It is envisioned that the next manufacturing systems paradigm
will be an adaptive cognitive manufacturing system, coined as ACMS,
and characterized by its cognitive adaptability. It differs from static
and dynamic adaptability in the manner in which the need to adapt,
e.g. due to different products/variants, change in production volume,
supply shortages, technological advances, and online changes is rec-
ognized and response is triggered, as well as how adaptation gets
implemented; will all be enabled and supported by AI modules, smart
sensors, extensive information and data analytics, and the auto-
mated, cognitive and hybrid human-machine adaptation actions and
execution methods and human experience and wisdom. It is a new
paradigm where the power of the 4th industrial revolution and
beyond is deployed to achieve a more responsive as well as a more
humane and human-centric manufacturing systems driven by eco-
nomic and environmental sustainability and social responsibility.

Such new ACMS paradigm will be enabled and made possible by
predictive analytics, AI enhanced decision making and cognitive
behavior such perception, planning, and smart actions as well as
effective connectivity and seamless integration. Features of the
ACMS will include ability to anticipate changes by continuously ana-
lyzing wide range of data collected at all levels internally within the
system and externally from other sites, partners, markets, and
global trends; and planning and constructing sound strategies for
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the most appropriate type of adaptability to be implemented and
the right timing supported by scenarios for just-in-case disruptions
and commensurate physical, logical and strategic mitigation
responses. The ACMS will ultimately also be characterized by con-
text and self-awareness, self-diagnosing, self-healing and repairing
behavior as well as self-optimizing control and operation strategies.
These characteristics will be designed to make it possible to support
a healthy symbiotic relationship between human workers and
smart automation in an integrated collaborative workspace envi-
ronment which utilizes essential humans’ input to critical tactic and
strategic decision making at all levels while also making the nature
of work not only safer and more ergonomic but also more fulfilling
and rewarding to maximize the satisfaction of the people in the sys-
tem.

It should be emphasized that the time frame for when ACMS with
all its features and capabilities will be developed and implemented in
factories was intentionally left out as many of its enabling technolo-
gies are still being developed and evolving.

5.4.1. Cognitive digital twin (CDT) transformation
The digital twin (DT) of manufacturing systems has evolved

greatly, since the term was first coined in 2002 [65]. In the first stage
of digital transformation, DT transitioned from standalone simula-
tion model to a more detailed digital mock-up. The next stage of
digital transformation till present saw the introduction of IoT, IoP,
sensors and data analytics allowing the digital simulation to become
more representative of the physical system and more connected in
realtime to its operation. This expanded its use from off-line deci-
sion support tool during the design and planning of a manufacturing
system to an integrated multi-physics, multi-scale simulation sys-
tem that uses the most appropriate model, data history and sensor
updates to mirror the operation of its corresponding physical sys-
tem throughout its life from design to implementation and actual
operation. This is when it was labeled a digital twin. It is worth men-
tioning that even in real life human twins are not always identical,
hence, the level of granularity and accuracy of a digital twin in
model representation, analysis and simulation is a matter of trade-
off between the desire for a high fidelity and need for realtime inter-
action performance depending on the application. Digital shadow is
a term used to refer to reduced but sufficient level of detailed repre-
sentation in favor of delivering time sensitive feedback for realtime
adaptive machine and system control.

Introduction of smart sensors, artificial intelligence, and simple
machine learning technologies such as pattern recognition to a DT
saw the beginning of its cognitive transformation to stage 3 of its
evolution. This is supported by the increased application of CPS,
which is at the core of smart manufacturing systems (Industry 4.0),
that resulted in digitally and adaptively controlled machines with
embedded sensors and software, and high connectivity within, and
between, machines in the system to collect and analyze pertinent
data and control various functions. Digital twins are evolving and
growing in sophistication and abilities mirroring the evolution of
manufacturing systems as illustrated in Fig. 18.
Fig. 18. Digital transformation towards the adaptive cognitive digital twin [Intelligent
Manufacturing Systems (IMS) Centre, U. Windsor].
The future cognitive digital twin (CDT) will become not only an
accurate digital representation but also an augmentation and intelli-
gent companion of the physical system, including sub-systems,
throughout its life cycle and evolution. In the fourth stage of transfor-
mation, CDTs will become highly interconnected, distributed cogni-
tive adaptive systems evolving as their physical counterpart grows in
complexity and smartness [63]. The adaptive cognitive digital twin
will also have built-in models of human operators in the system not
only physically but also behaviourally to capture their actions and
guide their interaction with increasingly smart, adaptive, and cogni-
tive collaborating robots and machines.
5.4.2. Prognostics predictive maintenance using CDT
Digital twins offer a great amount of business potential by pre-

dicting the future instead of just analyzing the past of the
manufacturing process. General Electric (GE) currently operates
more than 500,000 alive cognitive digital twins [63]. They are used
to eliminate guesswork for service and to prevent catastrophic fail-
ures because they continuously learn and update themselves from
multiple sources representing their near realtime status, working
conditions or environmental factors. This learning system learns
from itself, via artificial intelligence and/or machine learning algo-
rithms using a trove of data from sensors that convey various
aspects of its operating conditions, and from human operators mak-
ing functional decisions and other human specialists with deep and
relevant industry domain knowledge. A cognitive digital twin also
integrates historical data from past usage to compare deviation
from a baseline.
5.5. Future manufacturing systems perspectives

Highlights of expected features of future manufacturing systems
considering the four axes of evolution include:

Products: will be more intelligent, more complex, and more
environmentally friendly, include embedded systems and embedded
intelligence, and use bio-degradable smart and self-healing materi-
als.

Technology: will witness accelerated progress in exponential tech-
nologies including computing, information technology, communica-
tion, artificial intelligence applications, machine learning, and deep
learning methodologies; advances in transformative manufacturing
technologies; development of resilient, communicating, cognitive,
and more autonomous machines; and deployment of biologically
inspired technologies.

Business Models: will employ digital business strategies and more
diversity in operating models; augment “just-in-time” model with
scenarios for “just-in-case”; utilize new strategic collaboration and
partnership networks; implement pay-per-use business models,
such as leasing and subscription that will likely disrupt manufactur-
ing systems with incremental payments for performance and guar-
antee of usage level a priori. They will ensure more effective
scalability of systems capacity and capability by sharing distributed
resources among many customers; derive increased value from dig-
ital services; use more resilient supply chains and value networks
enabled by AI will contribute significantly to competitiveness and
offer more support for local manufacturing and local innovation
[164].

Manufacturing Systems: will feature maximum flexibility, physi-
cal and logical scalability, and agility; and utilize more static,
dynamic, and cognitive adaptability enablers to improve produc-
tivity and emphasize all three facets of sustainability; increase
shared human-machine collaboration and decision making,
replace implicit interactions with explicit tasks sharing, and enjoy
greater visibility throughout. Future manufacturing systems will
use hybrid augmented natural and artificial intelligence in systems
operation and control. The use of autonomous machines, robots,
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production planning and control, enhanced diagnostics, predictive
maintenance, and quality verification will be extensive. Using
intelligent management and business functions; expanded data
and knowledge sharing with cyber-security measures in place will
be commonplace.

Digital and physical twins will become inseparable for more effi-
cient and optimum operation, but humans will continue to be an
essential part of interactive decision-making on the operational, tac-
tical, and strategic levels.

People are the most adaptable and valuable assets in manufactur-
ing systems. Integrating human experience and insights with
machine learning visibility and cyber-physical digital and cognitive
transformation requires new skills and upgraded multi-disciplinary
education. More versatile and flexible work and workers will be
essential. Remote work will increase enabled by enhanced digital
operation transparency. The nature of work in manufacturing sys-
tems will change, and different jobs will appear to support the new
technologies.

The evolving adaptive cognitive manufacturing systems (ACMS) par-
adigm will become more predictive, adaptive, human-centric, and
transparent and will enjoy increased industrial adoption.
Fig. 19. Aspects of re-imagined manufacturing systems.
6. Conclusions and future research

6.1. Insights and reflections

Manufacturing has witnessed many major changes throughout
the first, second and third industrial revolutions. The fourth indus-
trial revolution is characterized by more distributed, collaborative,
connected, networked and global manufacturing. Sophisticated and
powerful sensors and sensing techniques are introduced allowing
better communication between manufacturing entities on the shop
floor and throughout the enterprise and beyond. The ever-increas-
ing computing power, speed and storage capacity and novel com-
munication techniques created a very fast wide band information
highway making it possible to more effectively utilize IoT, IIoT and
IoP and enabled better knowledge-based decisions in realtime. This
in turn led to generating huge amount of data (big data) about all
aspects of manufacturing and products. Powerful data analytics,
application of artificial intelligence, expert systems and machine
learning methods made intelligent knowledge-based decision mak-
ing in realtime feasible. New products with embedded intelligence
and the design and control of more intelligent manufacturing sys-
tems allow autonomous planning, operation, and execution. Advan-
ces in intelligent automation and robotics and their use in
manufacturing, along with human workers, presents novel ways of
human-machine collaboration.

Advanced software applications and increased computing capa-
bilities are enabling high fidelity simulation and digitalization of all
manufacturing aspects including products design, making, use and
recycling/re-use throughout their life cycle, as well as systems
design, implementation, control/operation and redesign/recycle,
and realistic useful mathematical and simulation models (DT, CDT,
and ACDT). Smart products and systems which are increasingly
multi-disciplinary coupled with increased variety add new layers of
complexities and present challenges in managing such complexity
while ensuring products and systems robustness and resilience
[52,53].

There have been successes and failures along the evolution of
manufacturing systems path, which have been used to inform future
evolutions. For instance, the early enthusiasm for computer inte-
grated manufacturing (CIM), artificial intelligence and machine learn-
ing did not achieve their intended purpose in the past, are now
realized with the advent of the Industry 4.0 transformational technol-
ogies. The early vision of a fully automated unmanned factory is now
being realized in autonomous systems and in human�machine
symbiosis. Undoubtedly, the significant advances in manufacturing,
information technologies and industrial revolutions will bring trans-
formational change to all aspects of manufacturing and manufactur-
ing systems, and the impact on society and humanity will be
profound.

The following sections review how manufacturing systems are
being re-imagined, highlight important conclusions, and indicate
some directions of future research in the field.

6.2. Manufacturing systems re-imagined

Future manufacturing systems are being re-imagined in many
aspects as categorized and summarized in Fig. 19.
The system design will include features to enable static, dynamic,
and cognitive adaptability. It will continue to evolve and co-evolve
with the four axes of evolution and benefit from biologically inspired
designs, tools, and materials. The system design will also be influ-
enced by emerging business models such as considering manufactur-
ing systems as providers of valuable service by producing certain
goods as needed. This subscription and pay-per-output model will
lead to re-thinking the relationship between customers and manu-
facturers and affect how manufacturing systems are designed, oper-
ated, sized, located, and owned.

The system configuration is all the physical modules that make-up
the system, their arrangement, and physical and logical relationships
between them which define the parts flow. Increased adaptability
requires more modularity at the machines, stations and system lev-
els, and sufficient decoupling of function between modules to allow
freedom of mobility, reconfiguration, and scalability of the equip-
ment. This level of modular functionality leads to significantly
streamlined production scheduling, flow control, changeability, and
better cost.

The system control and operation will become more de-central-
ized, reconfigurable, agile, responsive, and adaptive. It will be data-,
knowledge-, and AI-driven with many cognitive features such as self-
awareness, self- repairing, self-organizing [36,157] and self-optimiz-
ing behavior. The control and operation will likely be semi-autono-
mous or autonomous.

The human capital and workers in the system will remain in the
loop as important elements of future manufacturing systems but
they will have to become multi-skilled through re-skilling and up-
skilling for maximum versatility and adaptability in a smarter envi-
ronment; their work will be AI supported and augmented by collabo-
rating robots and machines to increase efficiency and reduce errors.
Digital twins with imbedded cognitive abilities will include physical,
behavioral, and cognitive models of human workers abilities which
can be used for planning and training. Many work categories will
become possible to perform remotely, and work weeks will be
shorter. Automation applications in manufacturing systems will be
more socially responsible with humans’ safety and security at the
fore front.
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Multiple scales of manufacturing systems will exist with a wide
range of sizes to suit the needs. Full scale large manufacturing sys-
tems will continue for certain types of manufacturing but with
added agility, adaptability, and smart cognitive features. In addi-
tion, smaller highly agile niche or boutique manufacturing systems
will increasingly be used for smaller production of specialty prod-
ucts. Demand will increase for mini-manufacturing systems with
full and versatile capabilities and better ability to adapt and recon-
figure as needed. Small, mini- and desk-top systems will surge in
response to increased demand for more products variety, customi-
zation, and personalization, and remote manufacturing enabled by
advances in additive 3D manufacturing for producing relatively
simpler and smaller size products, will become more common
place.

The location of future manufacturing systems also will vary from
being in industrial sites as usual to more distributed yet well con-
nected and integrated networks of manufacturing systems nationally
and internationally. The location and relocation of manufacturing
systems will be influenced by the need for more urban, sub-urban,
close to home or at home manufacturing [75]; more diversified, resil-
ient and adaptive supply/value chains closer to home base will
increase; and increased tendency for de-globalization and protec-
tionism will become evident.
6.3. Challenges and future research

The impact of manufacturing throughout the industrial revolu-
tions up to the ongoing Industry 4.0 is well recognized and docu-
mented. The contributions of CIRP researchers and others to the
development of manufacturing systems paradigms, drivers, and
enablers from changeability (flexible and reconfigurable
manufacturing systems (FMS/RMS)) to cyber-physical systems
(CPS) and smart manufacturing systems (SMS) are extensively dis-
cussed in the literature. Manufacturing systems have been trans-
formed from isolated optimized cells to fully integrated data and
product flows within a factory and between distributed locations,
with vertical and horizontal communication along the entire value
chain. The objective of the earlier computer integrated
manufacturing (CIM) is finally becoming realizable with the tech-
nological enablers and pillars of smart manufacturing (Industry
4.0). There is still a myriad of related research topics in which
manufacturing researchers are actively engaged, and industry
(large, medium, and small) continue to develop and implement to
achieve the business objectives.

Nevertheless, the future productivity and growth in the
manufacturing industries require careful long-term strategic plan-
ning of future research directions to reap the desired benefits from
their industrial implementation and increase sustainability and com-
petitiveness into the future.

It is recognized that each stage of the evolution makes full use of
the results of and experience gained from earlier stages. Therefore,
this section focuses on the research targets and topics that are moti-
vated by the new adaptive cognitive manufacturing system (ACMS)
paradigm, while recognizing that the earlier research agendas will
naturally continue, probably at an accelerated pace. It is also known
that the implementation in practice normally lags research results
to various degrees depending on the industry sector and company
size.
6.3.1. ACMS top strategic technology trends and challenges
Hyper-automation, blockchain, AI security, and autonomy drive

disruption and create opportunities in strategic technology areas
[139]. ACMS includes many of the Gartner 2020 technology trends
such as: a) Hyper-automation which deals with the application of
advanced technologies, including artificial intelligence (AI) and
machine learning (ML) to increasingly automate processes and
augment humans; b) Multi-experience that aims at replacing tech-
nology-literate people with people-literate technology, c) Human
augmentation which uses technology to enhance a person’s cogni-
tive and physical experiences, for example by using smart wear-
ables; d) The empowered edge which explores how increasing smart
devices are forming the foundations for smart spaces, and moving
key applications and services closer to the people and devices that
use them; and e) Autonomous technology which operates on a spec-
trum of intelligence ranging from semi-autonomous to fully autono-
mous, and from stand-alone to collaborative swarms. Additional
trends include democratization of technology, transparency, and
traceability.
6.3.2. Adaptive cognitive manufacturing systems research
As manufacturing systems evolve to the next stage of adaptive

cognitive manufacturing systems (ACMS), there are basic technolog-
ical challenges ahead while incorporating concepts, enablers and
technologies developed in earlier paradigms. New research direc-
tions are needed to support the evolution of future manufacturing
systems through its digital and cognitive transformations including
manufacturing systems physical, sensorial, and cognitive support;
static, dynamic, cognitive and extreme adaptation methodologies;
modularity, flexibility, reconfigurability, changeability, and respon-
siveness; more intelligent, cognitive, knowledge-intensive, data-
driven cyber-physical and biologically inspired manufacturing sys-
tems; and better connected, integrated, and networked autonomous
systems.

Smart adaptive automation systems design and operation
An imminent change to a future where fully integrated and inher-

ently intelligent systems, subsystems, and components shall define
the next generation of intelligent machines, systems, and enterprises.
A great more research is needed to bring this closer to practical appli-
cations. Related research topics include: new production system con-
cepts through the study of adaptability, emergence,
self�organization, and cooperation; autonomous production sys-
tems; bio�inspired manufacturing; human�centric dynamic adapta-
tion; manufacturing as a service; manufacturing on demand; and
subscription models for production facilities.

Adaptive cognitive digital twin (ACDT)
Future research includes robust multi-scale mathematical models

to increase the accuracy and fidelity of digital twins of machines and
manufacturing systems; engineering CPS and IT powerful architec-
tures to increase efficiency and reliability of digital twins and shorten
their development cycle; and development of the new cognitive digi-
tal twins, and adaptive cognitive digital twins of humans for use in
planning of human-centric manufacturing systems and in workers
training.

Data processing, perception, and knowledge discovery
A main challenge is to develop systems capable of processing all

the needed information and data from various sensors, devices and
machines and any other contextual information available to charac-
terize settings in analysis, and retrieve knowledge and past physical,
virtual, or human experiences for creating perceptions and aug-
menting the human experience and expertise and knowledge. There
is also need for implementing a human-centric decision making in
meshed collaboration with intelligent systems. Therefore, knowl-
edge representations capable of building a multi-modal space com-
posed of information from different sources, in the form of
experiential knowledge, would be a very useful tool to facilitate this
process.

New smart strategies for vertical and horizontal integration
Physical and logical enablers need to be researched and enhanced

to implement further collaboration between the hard and soft ena-
blers, the physical and virtual domains, and the humans in the sys-
tem. Connecting existing machines and systems, attaching sensors,
and collecting large volumes of data are insufficient to make
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manufacturing systems cognitive. New concepts, theories and practi-
ces regarding engineering and design of future systems should be
fully researched and developed.

Smart manufacturing systems prognostic maintenance
Prognostics in maintenance intended to predict failure before it

happens is an enhanced predictive maintainability strategy which
should be further researched and developed as well as AI-based algo-
rithms and supportive cognitive and adaptive cognitive digital twins
of systems, equipment and subsystems.

Complexity and trust management
Methodologies for ACMS complexity management, transparency,

and traceability; blockchain and AI security with emphasis on ensur-
ing human-centric decision making; and collaboration and mutual
trust need further investigation. Careful attention should be paid to
the ethical issues arising from use of smart machines, hybrid human-
machine collaboration and intelligence. Specific topics include:
cyber-security mechanisms and governing regulations and standards
as the pervasive use of smart sensors, and data collection with 5G
communication networks increase; better built-in protections and
safeguards, and developing appropriate guidelines and legislations
for operators in the new work environment under smart digitalized
operating schemes; legislations for protection of data collected on
human performance with digital supports, and regarding human-
machine interaction; and socio-technical research regarding imple-
menting socially responsible manufacturing and artificial intelli-
gence.

Supply chain design and operation for the unexpected
Proactive and reactive strategies should be developed for ACMS to

plan for inevitable disruptions in a multi-echelon supply chain, since
unexpected or black swan events can highly deteriorate supply
chains performance. The drastic effects of the COVID-19 pandemic
highlighted the need for developing more effective methods and
models not only to manage crises in the short term, but also to
develop strategic options for future more resilient and robust supply
chains.

Innovative dynamic cost models
Companies can achieve competitive advantage by reducing oper-

ating cost while investing in automated cognitive manufacturing sys-
tems. One of the important factors affecting the adoption and
implementation of next generation manufacturing systems is cost.
Better business and cost estimation models and comprehensive
methods for justification of investments in ACMS and related
advanced technologies are needed to accelerate the introduction and
implementation of smart manufacturing systems.

Wireless power transfer for improved equipment mobility
The introduction and application of wireless power transfer sys-

tems in manufacturing can bring about not only convenience but also
improvement in safety and reliability as well as cost savings due to
the automatic recharging of AGVs, mobile robots, mobile inspection
stations and other manufacturing equipment. In automated produc-
tion systems and warehouses, AGVs are heavily used in material han-
dling and transportation of material and goods. Optimally placed
power transmission pods throughout the factory would help AGVs
become self-charging while moving or when they are idle while
goods are loaded/unloaded. A battery with a substantially reduced
capacity can be used and recharged, thus considerably saving the
operation and maintenance costs. New methods, hardware solutions
and software tools to encourage using this emerging technology in
manufacturing systems need further research. This technology can
also facilitate the mobility of mini factories between several loca-
tions.

Smart reverse logistics and circular economy
The prospect of nearly 9 billion people on the planet by 2030 is

driving leaders to retool their business models to enable their long-
term growth and prosperity. Sustainability mega forces continue to
change the operating conditions in which companies can succeed
and thrive. Smart cognitive systems and ambitious long-term sus-
tainability strategies can help guide manufacturers to contribute to
a prosperous future for themselves and the society. New models
and justification methods should be developed for making smart
reverse logistics and circular economy not only more economically
feasible but also to reap the full benefits of the adaptive cognitive
principles.

Future manufacturing jobs, learning and training for ACMSs
The next phase of the evolution of manufacturing systems, dis-

cussed in detail in this paper, is a cognitive transformation that aims
to develop smarter more sustainable factories and business pro-
cesses. Therefore, the future of manufacturing jobs and the contin-
ual learning and training of the workforce is of paramount
importance.

Several publications [106,108,198] have noted that AI is intro-
ducing asymmetries that are transforming the job market and creat-
ing misalignments with the effective technical readiness levels,
which is typically the case with any new technology. It is under-
stood that AI will affect some aspects of all jobs to various degrees.
Existing literature project a loss in traditional manufacturing jobs,
with the possibility that new jobs will be created. Research suggests
that organizations adopting smart manufacturing technologies will
need a workforce with increased variety of technical skills, auton-
omy, and interdependence, as well as increased cognitive, creative,
technical, and social skills. While automation and AI will likely dis-
place some manual work and entry level jobs, the engineering, plan-
ning, and managing tasks as well as all operation activities will
remain human-centric, albeit with augmented machine intelligence
capabilities, for the foreseeable future due to their relative complex-
ity.

It should be noted, however, that the future is not inevitable.
While the existence of the necessary technologies is a precondition
for automation, it does not necessarily mean that all manufacturing
activities will be automated, because automation depends on several
other factors including a) cost of automation; b) cost and relative
scarcity of trained labor and required skills; c) benefits of automation
and return on investment; d) social acceptance, and e) regulatory
issues.

Nevertheless, everyone must embrace change and develop a
mindset of continuous evolution, and workers will require contin-
uous retraining in advanced technological skills such as intelligent
automation technologies, programming and big data analytics
which will grow rapidly. Furthermore, it should be noted that the
adaptive cognitive transition will favor social, emotional, and
higher cognitive skills, such as creativity, critical thinking, and
teamwork all of which machines find hard to replicate. Additional
pressure on the already existing workforce skills challenge
includes the need for new credentials and certification systems for
training people to do the jobs that cannot be replaced by robotics
and smart automation.

Finally, it agreed that AI is doing a lot of good in many fields
and will continue to provide several benefits for manufacturing
while allowing people to enhance their human contributions.
However, along with the good, there will inevitably be some neg-
ative consequences. That is why humans should remain in control
and develop and introduce the appropriate level of automation
and intelligence to maintain the overall good. With careful plan-
ning, the worst fear by some about "superintelligence" - the point
at which computers become more intelligent than humans - can
be avoided as humans maintain control of their competitive crea-
tions, including adaptive cognitive manufacturing systems
(ACMS).
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